



#### Study of CKM angle γ sensitivity using flavor untagged B<sub>s</sub> → D<sup>(\*)</sup> φ decays Do Ao, Daniel Decamp, Wenbin Qian, Stefania Ricciardi, Halime Sazak, Stephane T'Jampens, Vincent Tisserand, Zirui Wang, Zhenwei Yang, Shunan Zhang, <u>Xiaokang Zhou</u>

2020.11.07 CLHCP 2020



# Outline

- Introduction
- Formalism
- Expected yields
- Sensitivity study for Run 1&2 LHCb dataset
- Prospective for Run 1-3 and HL-LHC LHCb dataset
- Summary

# Introduction

- LHCb-CONF-2020-003 give:
  - $\gamma = (67 \pm 4)^{\circ}$
- LHCb latest measurement  $\gamma = (69 \pm 5)^{\circ}$ from GGSZ method (single best world measurement, LHCb-CONF-2020-001)
- $B_s$  result based on  $B_s \rightarrow D_s K$  and  $D_s K2pi$  with large uncertainty
- Additional B<sub>s</sub> will help improve the measurement precision





# Formalism



• We define the amplitudes (neglecting CPV in D decays):

$$A(B_S \to D^{(*)0}\phi) = A_B^{(*)}, \ A(B_S \to D^{(*)0}\phi) = A_B^{(*)}r_B^{(*)}e^{i(\delta_B^{*} + \gamma)},$$
$$A(\overline{D}^0 \to f) = A(D^0 \to \overline{f}) = A_f, \ A(D^0 \to f) = A(\overline{D}^0 \to \overline{f}) = A_f r_D^f e^{i\delta_D^f},$$

• According to the tree-level Amplitudes of  $\overline{b} \to \overline{u}c\overline{s}$  and  $\overline{b} \to \overline{c}u\overline{s}$ ,

$$A_{Bf} = A(B_{S} \to [f]_{D^{(*)}}\phi) = A_{B}^{(*)}A_{f}^{(*)}[1 + r_{B}^{(*)}r_{D}^{f}e^{i(\delta_{B}^{(*)} + \delta_{D}^{f} + \gamma)}],$$

$$A_{B\bar{f}} = A(B_{S} \to [\bar{f}]_{D^{(*)}}\phi) = A_{B}^{(*)}A_{f}^{(*)}\left[r_{B}^{(*)}e^{i(\delta_{B}^{(*)} + \gamma)} + r_{D}^{f}e^{i\delta_{D}^{f}}\right],$$

$$\frac{d\Gamma(B_{S}(\tau) \to [f]_{D^{(*)}}\phi)}{d\tau} + \frac{d\Gamma(\bar{B}_{S}(\tau) \to [f]_{D^{(*)}}\phi)}{d\tau} \propto$$

$$e^{-\tau}|A_{Bf}|^{2}\left[(1 + |\lambda_{f}|^{2})\cosh(y\tau) - 2Re(\lambda_{f})\sinh(y\tau)\right]$$
CLHCP2020 Nov.06-09 2020

#### Time acceptance



 Time acceptance effect on decay time distribution (Trigger & selection requirement to inefficiencies)

$$\varepsilon_{ta}(\tau) = \frac{(\alpha \tau)^{\beta}}{1 + (\alpha \tau)^{\beta}} (1 - \xi \tau),$$

Trigger & selection cut effect Efficiency decreasing when vertex of track far away from beam

arbitrary unit

• Use MC we modeled  $\alpha=1.5$ ,  $\beta=2.5$  and  $\xi=0.01$   $\Gamma(\bar{B}_S \to [f]_{D^{(*)}}\phi)$  $= \int_0^\infty \left[ \frac{d\Gamma(B_S(\tau) \to [f]_{D^{(*)}}\phi)}{d\tau} + \frac{d\Gamma(\bar{B}_S(\tau) \to [f]_{D^{(*)}}\phi)}{d\tau} \right] \varepsilon_{ta}(\tau)d\tau$ 

 $\Rightarrow \quad \Gamma(B_s^0 \to [f]_D \phi) \propto |A_{Bf}|^2 \left[ (1 + |\lambda_f|^2) \mathcal{A} - 2y \operatorname{Re}(\lambda_f) \mathcal{B} \right],$ 

 $\mathcal{A}$  and  $\mathcal{B}$  are parameters and defined in backup.

# Observables for D<sup>0</sup> decay

• Using flavor modes:  $D \rightarrow K\pi$ ,  $K3\pi$  and  $K\pi\pi^{\circ}$ , and CP modes  $D \rightarrow KK$ ,  $\pi\pi$ 

$$N\left(B_{s}^{0} \rightarrow \left[K^{-}\pi^{+}\right]_{D}\left[K^{+}K^{-}\right]_{\phi}\right) = C_{K\pi}\left[-2\mathcal{B}yr_{B}\cos\left(\delta_{B}+2\beta_{s}-\gamma\right)\right.$$
$$\left.+\mathcal{A}\left(1+r_{B}^{2}+4r_{B}r_{D}^{K\pi}\cos\delta_{B}\cos\left(\delta_{D}^{K\pi}+\gamma\right)\right)\right],$$

- Make approximation  $(r_D^{K\pi})^2 \ll 1$  and  $yr_D^{K\pi} \ll 1$
- Normalization factor  $C_{K\pi}$  (Estimated from LHCb Run1 data):

$$C_{K\pi} = N(B_s^0) \times \epsilon(B_s^0 \to D(K^-\pi^+)\phi(K^+K^-)) \times \frac{C}{\Gamma(B_s^0 \to all)} \qquad C = \frac{(2\pi)^4}{2M_{B_s}} \int |A_B|^2 |A_f|^2 |A_{\phi}|^2 d\Phi_4(P, p_1, p_2, p_3, p_4)$$
  
=  $N(B_s^0) \times \epsilon(B_s^0 \to D(K^-\pi^+)\phi(K^+K^-)) \times Br(B_s^0 \to D(K^-\pi^+)\phi(K^+K^-))$ 

• For f= K3 $\pi$  / K $\pi\pi^{o}$  (more observables in backup)  $N\left(B_{s}^{0} \rightarrow [f^{-}]_{D}\left[K^{+}K^{-}\right]_{\phi}\right) = C_{K\pi}F_{f}\left[-2\mathcal{B}y\left[x_{-}\cos\left(2\beta_{s}\right) - y_{-}\sin\left(2\beta_{s}\right)\right] + \mathcal{A}\left(1 + x_{-}^{2} + y_{-}^{2} + 2r_{D}^{f}R_{D}^{f}\left[(x_{+} + x_{-})\cos\delta_{D}^{f} - (y_{+} - y_{-})\sin\delta_{D}^{f}\right]\right)\right],$ 

•  $F_f$  is scale factor of f decay relative to  $K\pi$  decay

$$F_f = \frac{C_f}{C_{K\pi}} = \frac{\varepsilon(D \to f)}{\varepsilon(D \to K\pi)} \times \frac{[Br(D^0 \to f) + Br(\overline{D}^0 \to f)]}{[Br(D^0 \to K^-\pi^+) + Br(\overline{D}^0 \to K^-\pi^+)]}$$

# Observables for D\*<sup>0</sup> decay

- According to *Phys. Rev.* D 70 (2004) 091503, consider CP eigenstate D\*→Dπ° and Dγ:
  - $D^*_{\pm} \rightarrow D_{\pm} \pi^{o}$ , observables similar as  $D\phi$
  - $D^*_{\pm} \rightarrow D_{\mp} \gamma$ , observables with an effective strong phase shift of  $\pi$
- D\* CP eigenstate: Longitudinal polarization fraction  $f_L = (73 \pm 15 \pm 4)\%$  Phys. Rev. D 98 (2018) 071103
- Examples (more in backup)

$$\begin{split} N\left(B_{s}^{0} \rightarrow \left[\left[K^{-}\pi^{+}\right]_{D}\pi^{0}\right]_{D^{*}}\left[K^{+}K^{-}\right]_{\phi}\right) &= C_{K\pi\pi^{0}}\left[-2\mathcal{B}yr_{B}^{*}\cos\left(\delta_{B}^{*}+2\beta_{s}-\gamma\right)\right.\\ &+ \mathcal{A}\left(1+r_{B}^{*\,2}+4r_{B}^{*}r_{D}^{K\pi}\cos\delta_{B}^{*}\cos\left(\delta_{D}^{K\pi}+\gamma\right)\right)\right],\\ N\left(B_{s}^{0} \rightarrow \left[\left[K^{-}\pi^{+}\right]_{D}\gamma\right]_{D^{*}}\left[K^{+}K^{-}\right]_{\phi}\right) &= C_{K\pi\gamma}\left[2\mathcal{B}yr_{B}^{*}\cos\left(\delta_{B}^{*}+2\beta_{s}-\gamma\right)\right.\\ &+ \mathcal{A}\left(1+r_{B}^{*\,2}-4r_{B}^{*}r_{D}^{K\pi}\cos\delta_{B}^{*}\cos\left(\delta_{D}^{K\pi}+\gamma\right)\right)\right],\end{split}$$

# Expected yields

#### • According to Run1 result (Phys. Rev. D 98 (2018) 071103)

| Years/Run         | $\sqrt{s}$ (TeV) | int. lum.( $fb^{-1}$ ) | cross section                  | equiv. 7 TeV data |
|-------------------|------------------|------------------------|--------------------------------|-------------------|
| 2011              | 7                | 1.1                    | $\sigma_{2011} = 38.9 \ \mu b$ | 1.1               |
| 2012              | 8                | 2.1                    | $1.17 \times \sigma_{2011}$    | 2.4               |
| Run 1             | _                | 3.2                    | _                              | 3.5               |
| 2015-2018 (Run 2) | 13               | 5.9                    | $2.00 \times \sigma_{2011}$    | 11.8              |
| Total             | _                | 9.1                    | _                              | 15.3              |

|                                                                 | Expect. yield (Run 1 only) |             |  |  |
|-----------------------------------------------------------------|----------------------------|-------------|--|--|
| $B^0_s {\rightarrow} \tilde{D}^0(K\pi)\phi$                     | 577 $(132 \pm 13 \ [18])$  |             |  |  |
| $B_s^0 \rightarrow \tilde{D}^0(K3\pi)\phi$                      | 21                         | 8           |  |  |
| $B^0_s \rightarrow \tilde{D}^0(K\pi\pi^0)\phi$                  | 58                         | 3           |  |  |
| $B^0_s \rightarrow \tilde{D}^0(KK)\phi$                         | 82                         | 2           |  |  |
| $B_s^0 \rightarrow \tilde{D}^0(\pi\pi)\phi$                     | 24                         | ł           |  |  |
| $B^0_s \mathop{\rightarrow} \tilde{D}^0(K^0_{\rm S}\pi\pi)\phi$ | 54                         | ł           |  |  |
| $B^0_s\!\rightarrow\!\tilde{D}^0(K^0_{\rm S}KK)\phi$            | 8                          |             |  |  |
| $B^0_s \rightarrow \tilde{D}^{*0} \phi$ mode                    | $D^0\pi^0$                 | $D^0\gamma$ |  |  |
| $B^0_s \to \tilde{D}^{*0}(K\pi)\phi$                            | 337                        | 184         |  |  |
|                                                                 | (119)                      | [18])       |  |  |
| $B^0_s \rightarrow \tilde{D}^{*0}(K3\pi)\phi$                   | 127                        | 69          |  |  |
| $B^0_s \rightarrow \tilde{D}^{*0}(K\pi\pi^0)\phi$               | 34                         | 18          |  |  |
| $B^0_s \mathop{\rightarrow} \tilde{D}^{*0}(KK)\phi$             | 48                         | 26          |  |  |
| $B^0_s \!\rightarrow\! \tilde{D}^{*0}(\pi\pi)\phi$              | 14                         | 8           |  |  |

- Normalization factor:
  - $C_{K\pi} = 608 \pm 67$
  - $C_{K\pi \pi 0} = 347 \pm 56$
  - $C_{K\pi\gamma} = 189 \pm 31$

#### Sensitivity study for Run 1&2 dataset

- A procedure involving global  $\chi^2$  fit based on CKMfitter package
- Establish formulism between γ and observables
- Set initial variables:  $\gamma$ , rB<sup>(\*)</sup>,  $\delta$ B<sup>(\*)</sup> $\rightarrow$ Obtain observables mean value
- Use observables errors from data set (e.g. Run 1&2) → generate toys → refit to obtain γ sensitivity
- $\gamma$  set to be  $(65.64^{+0.97}_{-3.42})^{\circ}$  (1.146 rad), rB<sup>(\*)</sup>=0.4,  $\delta$ B=3.0 rad,  $\delta$ B<sup>\*</sup>=2.0 rad



9

#### Relationship between $\gamma$ and other variables

- δB<sup>(\*)</sup> is a nuisance parameter, 6 different values are assigned: (0,1,2,3,4,5 rad)
- rB<sup>(\*)</sup> is expected to be |V<sub>ub</sub>V<sub>cs</sub>|/|V<sub>cb</sub>V<sub>us</sub>|~0.4, also
   o.22 from B<sup>0</sup>→DK<sup>\*0</sup> is tested.
- $\rightarrow$  72 tested configuration (2×6×6)
- 4000 pseudoexperiments are generated for each configuration
- An extended unbinned maximum likelihood fit is performed based on the 4000 toys
- The sensitivity is deduced and any bias or correlation is eventually hightlighted and studied

# Different rB<sup>(\*)</sup>



Color suppress  $B^0_d \rightarrow DK^{*0}$ 





 $r_B = 0.221^{+0.044}_{-0.047}$  LHCb-CONF-2018-002

# Varying $\delta B^{(*)}$ and $rB^{(*)}$

Fitted mean value of  $\gamma$ , uncertainties are statistical only



- γ mean value float with different δB<sup>(\*)</sup>, the best agreement when δB<sup>(\*)</sup> ~ 0/180 degree (reasonable from formulism, largest CP violation effects there)
- Worst sensitivity when  $\delta B^{(*)} = 90/270$  degree

# Varying $\delta B^{(*)}$ and $rB^{(*)}$ (II)

Fitted resolution of  $\gamma$ , uncertainties are statistical only



- rB<sup>(\*)</sup> is strongly impact the precision on γ as 1/rB<sup>(\*)</sup>
- Best resolutions when rB<sup>(\*)</sup> ~ 0/180 degree
- For  $rB^{(*)} = 0.4(0.22), \sigma_{\gamma} \sim 10^{\circ} (15^{\circ})$

#### Effect of the time acceptance parameters

 Test the time acceptance is taken into account or not (With γ =1.146 rad, rB<sup>(\*)</sup>=0.4, δB<sup>(\*)</sup>=1.0 rad)



• For B/A $\approx$ 1.6, as opposed to B/A $\approx$ 1.6, the impact of the first term in equation of P5, which is directly proportional to cos( $\delta$ B+2 $\beta$ s- $\gamma$ ), is amplified with respect to the second term, for which the sensitivity to  $\gamma$  is more diluted.

# Effect of the time acceptance parameters (II) Overall efficiency is constant, the shape of the acceptance varied, so α, β and ξ changes

| α   | β                                                     | ξ                                                                                                                                                                                                                                               | $\mathcal{A}$                                         | B                                                     | $\mathcal{B}/\mathcal{A}$                             | fitted $\gamma$ (°)                                   |
|-----|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 1.0 | 2.5                                                   | 0.01                                                                                                                                                                                                                                            | 0.367                                                 | 0.671                                                 | 1.828                                                 | $66.5^{+13.8}_{-40.1}$                                |
| 1.5 | 2.5                                                   | 0.01                                                                                                                                                                                                                                            | 0.488                                                 | 0.773                                                 | 1.584                                                 | $65.3^{+14.3}_{-38.4}$                                |
| 2.0 | 2.5                                                   | 0.01                                                                                                                                                                                                                                            | 0.570                                                 | 0.851                                                 | 1.493                                                 | $65.3^{+13.2}_{-37.8}$                                |
| 1.5 | 2.0                                                   | 0.01                                                                                                                                                                                                                                            | 0.484                                                 | 0.751                                                 | 1.552                                                 | $65.9^{+13.2}_{-39.0}$                                |
| 1.5 | 3.0                                                   | 0.01                                                                                                                                                                                                                                            | 0.491                                                 | 0.789                                                 | 1.607                                                 | $66.5^{+13.2}_{-38.4}$                                |
| 1.5 | 2.5                                                   | 0.02                                                                                                                                                                                                                                            | 0.480                                                 | 0.755                                                 | 1.573                                                 | $66.5^{+13.8}_{-39.5}$                                |
| 1.5 | 2.5                                                   | 0.005                                                                                                                                                                                                                                           | 0.492                                                 | 0.783                                                 | 1.591                                                 | $65.3^{+13.8}_{-36.7}$                                |
|     | lpha<br>1.0<br>1.5<br>2.0<br>1.5<br>1.5<br>1.5<br>1.5 | $\begin{array}{c ccc} \alpha & \beta \\ \hline 1.0 & 2.5 \\ \hline 1.5 & 2.5 \\ \hline 2.0 & 2.5 \\ \hline 1.5 & 2.0 \\ \hline 1.5 & 2.0 \\ \hline 1.5 & 3.0 \\ \hline 1.5 & 2.5 \\ \hline 1.5 & 2.5 \\ \hline 1.5 & 2.5 \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

• α increases, A and B turn larger, but B/A decreases

- $\beta$  or  $\xi$  decreases, A, B and B/A increase.
- Effect of changing β or ξ alone is small
- All have weak impact on precision of γ

# Effect of using or not the $Bs \rightarrow D^*\phi$ decays

there is a relative loss on precision to the unfolded value of γ of about 10 (25)%, when the Bs→D\*φ decay are not used. For future datasets the improvement obtained by including Bs→D\*φ modes is less significant, but not negligible and helps to improve the measurement of γ.



#### Prospective for Run 1-3 and HL-LHC

 According to LHCb-PUB-2018-009, ~23fb<sup>-1</sup> by 2025 (run1~3), ~300fb<sup>-1</sup> by 2035 (HL-LHC)

Fitted resolution of  $\gamma$ , uncertainties are statistical only, with rB<sup>(\*)</sup>=0.4



# Conclusion

More details in https://arxiv.org/abs/ 2008.00668

- Untagged Bs $\rightarrow D^{(*)}\phi$  provide another theoretically clean path to measure  $\gamma$ .
- By using expected event yields for 5 D sub-modes(3 flavor and 2 CP), we have shown that a precision on γ of about 8~19° with LHCb Run1&2 data
- With more data 3-8° with Run 1-3(~23fb<sup>-1</sup>) and 2-7° with HL-LHC(~300fb<sup>-1</sup>)
- The asymptotic sensitivity is anyway dominated by the possibly large correlations of  $\gamma$  with respect to the nuisances parameters  $\delta B^{(*)}$  and  $rB^{(*)}$
- This method will improve our knowledge of γ from Bs decays & help understand the discrepancy of γ between measurements with B<sup>+</sup> and Bs modes.

# Thank you!

# backup

# About Time acceptance

$$\begin{split} \frac{q}{p} &\approx 1, y^2 << 1 \text{ and } x >> 1, \\ \int_0^{\infty} \Gamma_{B_s^0 \to f}(\tau) \cdot \epsilon(\tau) d\tau &= |A_f|^2 \int_0^{\infty} e^{-\tau} \left[ (1+|\lambda|^2) \cosh y\tau - 2Re(\lambda) \sinh y\tau \right] \cdot \frac{\alpha \tau^{\beta}}{1+(\alpha \tau)^{\beta}} \cdot (1-\xi \tau) d\tau \\ &= |A_f|^2 (1+|\lambda|^2) - 2y|A_f|^2 Re(\lambda) \\ &- |A_f|^2 \int_0^{\infty} e^{-\tau} \left[ (1+|\lambda|^2) \cosh y\tau - 2Re(\lambda) \sinh y\tau \right] \cdot \frac{1+\xi \tau(\alpha \tau)^{\beta}}{1+(\alpha \tau)^{\beta}} d\tau. \\ &= (|A_f|^2 (1+|\lambda|^2) \left( 1 - \frac{f(1-y) + f(1+y)}{2} \right) - 2y|A_f|^2 Re(\lambda) \left[ 1 - \frac{f(1-y) - f(1+y)}{2y} \right] \\ f(x) &= \int_0^{\infty} \frac{e^{-x\tau} (1+\xi \tau(\alpha \tau)^{\beta})}{1+(\alpha \tau)^{\beta}} d\tau, \\ &\Gamma(B_s^0 \to [f]_D \phi) \propto |A_B f|^2 \left[ (1+|\lambda_f|^2) \mathcal{A} - 2y \operatorname{Re}(\lambda_f) \mathcal{B} \right], \\ \text{With } y = (0.128 \pm 0.009)/2 \text{ for } B_s \text{ meson, one gets} \\ A = 0.488 \pm 0.005 \text{ and } B = 0.773 \pm 0.008 \end{split}$$

## Normalization factor

• Consider Bs $\rightarrow$ Dphi, D $\rightarrow$ Kpi,

 $|A_{B\to D\phi}^{K^-\pi^+}|^2 = |A_B|^2 |A_f|^2 |A_{\phi}|^2 \left[1 + r_B^2 + 4r_B r_D^{K\pi} \cos \delta_B \cos(\delta_D^{K\pi} + \gamma) - 2yr_B \cos(\delta_B + 2\beta_s - \gamma)\right]$ • Then

$$d\Gamma(B_s^0 \to D(K^-\pi^+)\phi(K^+K^-)) = \frac{(2\pi)^4}{2M_{B_s}} |A_{B\to D\phi}^{K^-\pi^+}|^2 d\Phi_4(P, p1, p2, p3, p4),$$

Integrating,

$$\Gamma(B_s^0 \to D(K^-\pi^+)\phi(K^+K^-)) = C \left[ 1 + r_B^2 + 4r_B r_D^{K\pi} \cos \delta_B \cos(\delta_D^{K\pi} + \gamma) - 2yr_B \cos(\delta_B + 2\beta_s - \gamma) \right]$$
  
where  $C = \frac{(2\pi)^4}{2M_{B_s}} \int |A_B|^2 |A_f|^2 |A_\phi|^2 d\Phi_4(P, p_1, p_2, p_3, p_4)$ 

 $Br(B_s^0 \to D(K^-\pi^+)\phi(K^+K^-)) = \frac{C}{\Gamma(B_s^0 \to all)} \left[ 1 + r_B^2 + 4r_B r_D^{K\pi} \cos \delta_B \cos(\delta_D^{K\pi} + \gamma) - 2yr_B \cos(\delta_B + 2\beta_s - \gamma) \right],$ 

The bracket ~1 and have

$$\frac{C}{\Gamma(B_s^0 \to all)} \simeq Br(B_s^0 \to D(K^-\pi^+)\phi(K^+K^-)):$$

# Observables for D<sup>0</sup> decay

$$N\left(B_{s}^{0}\rightarrow\left[f^{-}\right]_{D}\left[K^{+}K^{-}\right]_{\phi}\right)=C_{K\pi}F_{f}\left[-2\mathcal{B}yr_{B}\cos\left(\delta_{B}+2\beta_{s}-\gamma\right)\right.\\\left.\left.\left.\left.\left.\left(1+r_{B}^{2}+4r_{B}r_{D}^{f}R_{D}^{f}\cos\delta_{B}\cos\left(\delta_{D}^{f}+\gamma\right)\right)\right.\right]\right]\right]$$

$$\begin{split} N\left(B_s^0 \to \left[f^+\right]_D \left[K^+K^-\right]_\phi\right) &= C_{K\pi}F_f \left[-2\mathcal{B}yr_B\cos\left(\delta_B - 2\beta_s + \gamma\right)\right. \\ &\quad + \mathcal{A}\left(1 + r_B{}^2 + 4r_Br_D^f R_D^f\cos\delta_B\cos\left(\delta_D^f - \gamma\right)\right)\right], \\ F_f &= \frac{C_f}{C_{K\pi}} = \frac{\varepsilon(D \to f)}{\varepsilon(D \to K\pi)} \times \frac{\left[Br(D^0 \to f) + Br(\overline{D^0} \to f)\right]}{\left[Br(D^0 \to K^-\pi^+) + Br(\overline{D^0} \to K^-\pi^+)\right]}. \end{split}$$

$$N\left(B_s^0 \to \left[h^+h^-\right]_D \left[K^+K^-\right]_\phi\right) = 4C_{K\pi}F_{hh}\left[\mathcal{A}\left(1+r_B^2+2r_B\cos\delta_B\cos\gamma\right) - \mathcal{B}y \times \left(\cos 2\beta_s + r_B^2\cos 2\left(\beta_s - \gamma\right) + 2r_B\cos\left(2\beta_s - \gamma\right)\cos\delta_B\right)\right].$$
$$F_{hh} = \frac{C_{hh}}{C_{K\pi}} = \frac{\varepsilon(D \to hh)}{\varepsilon(D \to K\pi)} \times \frac{Br(D^0 \to hh)}{[Br(D^0 \to K^-\pi^+) + Br(\overline{D}{}^0 \to K^-\pi^+)]}$$

#### **Other external parameters**

| Parameter                                | Value                       |
|------------------------------------------|-----------------------------|
| $-2\beta_S \text{ [mrad]}$               | $-36.86 \pm 0.82$ [35]      |
| $y = \Delta \Gamma_s / 2 \Gamma_s ~(\%)$ | $6.40 \pm 0.45$ [21]        |
| $r_D^{K\pi}$ (%)                         | $5.90^{+0.34}_{-0.25}$ [21] |
| $\delta_D^{K\pi}$ [deg]                  | $188.9^{+8.2}_{-8.9}$ [21]  |
| $r_D^{K3\pi}$ (%)                        | $5.49 \pm 0.06$ [36]        |
| $R_D^{K3\pi}$ (%)                        | $43^{+17}_{-13}$ [36]       |
| $\delta_D^{K3\pi}$ [deg]                 | $128^{+28}_{-17}$ [36]      |
| $r_D^{K\pi\pi^0}~(\%)$                   | $4.47 \pm 0.12$ [36]        |
| $R_D^{K\pi\pi^0}$ (%)                    | $81 \pm 6$ [36]             |
| $\delta_D^{K\pi\pi^0}$ [deg]             | $198^{+14}_{-15}$ [36]      |
| Scale factor (wrt $K\pi$ )               | (stat. uncertainty only)    |
| $F_{K3\pi}$ (%)                          | $37.8 \pm 0.1$ [22]         |
| $F_{K\pi\pi^{0}}$ (%)                    | $10.0 \pm 0.1$ [23]         |
| $F_{KK}$ (%)                             | $14.2 \pm 0.1$ [22]         |
| $F_{\pi\pi}$ (%)                         | $4.2 \pm 0.1$ [22]          |

 Scale factor are calculated according to *Phys. Lett.* **B 760**(2016) 117 and *Phys. Rev.* **D 91**(2015) 112014

## 2-D p-value profile distribution



• With  $\gamma = 1.146$ rad, rB<sup>(\*)</sup>=0.4,  $\delta B = 1.0$  rad,  $\delta B^* = 5.0$  rad

#### Fitting distributions

- Fit to the distributions of the nuisance parameters obtained from 4000 pseudo-experiments
- With  $\gamma = 1.146$  rad, rB<sup>(\*)</sup>=0.4(left) and 0.22(right),  $\delta B=3.0$  rad,  $\delta B^*=2.0$  rad



## Prospective

Fitted resolution of  $\gamma$ , uncertainties are statistical only, with rB<sup>(\*)</sup>=0.22

> Run1&2 Run1~3 HL-LHC



#### Discussion about $D \rightarrow Kspipi/KsKK$

- Only ~50(8) events expected for Kspipi(KsKK) mode in Run1&2
- 16 bins in Dalitz plot for the analysis
- Not consider now, but leave it to Run3 (~340 signals)

# Effect of $D \rightarrow pipi$ or $D \rightarrow Kpipi0$

- Low statistics from scaling the  $B^+ \rightarrow DK/Dpi$  modes
- The expected yields may be underestimated
- D $\rightarrow$ pipi is a CP mode
- R(Kpipi0)=(81+-6)% large coherence factor
- 3~15% precision loss if not use  $D \rightarrow pipi$  mode
- 3~22% precision loss if not use  $D \rightarrow Kpipi0$  mode

# Effect of a new binning scheme for $D \rightarrow K3\pi$ decay

 According to *Phys. Lett.* **B 802** (2020) 135188, averaged values of the K3π input parameters over phase space defined as

$$R_D^{K3\pi} e^{-i\delta_D^{K3\pi}} = \frac{\int A^*_{\overline{D}{}^0 \to K3\pi}(x) A_{D^0 \to K3\pi}(x) dx}{A_{\overline{D}{}^0 \to K3\pi} A_{D^0 \to K3\pi}},$$

- A more attractive approach could be to perform the analysis in disjoint bins of the phase space. → The parameters are redefined within each bin.
- No noticeable change on  $\gamma$  and  $rB^{(*)}$  were seen, but it is possible that some fold-effects on  $\delta B^{(*)}$  become less probable
- Also  $D \rightarrow K3\pi$  is not the dominant decay & new measurements in each bin still have large uncertainties

# Effect of the strong parameters

## from D meson and of y

 Improvement of these parameters from BESIII or future super τ-charm factory

| uncertainties on $D$ -meson parameters          | s. Nov         | x                 | $\times 1/5$  | $\times 1/10$ |
|-------------------------------------------------|----------------|-------------------|---------------|---------------|
| Run 1 & 2 $(r_B^{(*)} = 0.4)$                   | $8.8 \pm 0.1$  | $2 8.1 \pm 0.3$   | $8.0\pm0.3$   | $7.8 \pm 0.2$ |
| Run 1 & 2 $(r_B^{(*)} = 0.22)$                  | $12.9 \pm 0.1$ | $3  13.2 \pm 0.5$ | $13.1\pm0.5$  | $12.8\pm0.9$  |
| full HL-LHC $(r_B^{(*)}=0.4)$                   | $2.6 \pm 0.$   | $1  2.5 \pm 0.1$  | $2.5\pm0.1$   | $2.5\pm0.1$   |
| full HL-LHC $(r_B^{(*)} = 0.22)$                | $5.4 \pm 0.$   | $1  5.3 \pm 0.1$  | $5.2 \pm 0.1$ | $5.1\pm0.1$   |
| uncertainty on $y\!=\!\Delta\Gamma_s/2\Gamma_s$ | Now            | $\times 1/2$      | $\times 1/5$  | $\times 1/10$ |
| Run 1 & 2 $(r_B^{(*)} = 0.4)$                   | $8.8\pm0.2$    | $8.3\pm0.2$       | $8.2\pm0.2$   | $8.1\pm0.3$   |
| Run 1 & 2 $(r_B^{(*)} = 0.22)$                  | $12.9\pm0.3$   | $12.6\pm0.4$      | $12.5\pm0.5$  | $12.5\pm0.5$  |
| full HL-LHC $(r_B^{(*)} = 0.4)$                 | $2.5\pm0.1$    | $2.5\pm0.1$       | $2.5\pm0.1$   | $2.5\pm0.1$   |
| full HL-LHC $(r_B^{(*)}{=}0.22)$                | $5.3\pm0.1$    | $5.3\pm0.1$       | $5.2\pm0.1$   | $5.2\pm0.1$   |

 With much more data, future improvements on the parameters from D meson don't seem to impact much the sensitivity to γ in this mode