第六届中国LHC物理研讨会(CLHCP2020), 2020/11/06

Leading penguin amplitude at NNLO in QCD Factorization

李新强

xqli@mail.ccnu.edu.cn

Outline

Introduction

D Theoretical framework

Leading penguin amplitudes at NNLO

□ Summary

G. Bell, M. Beneke, T. Huber and Xin-Qiang Li, "Two-loop current-current operator contribution to the non-leptonic QCD penguin amplitude," Phys. Lett. B **750** (2015) 348-355 [arXiv:1507.03700 [hep-ph]].

G. Bell, M. Beneke, T. Huber and Xin-Qiang Li, "Two-loop non-leptonic penguin amplitude in QCD factorization," JHEP **04** (2020) 055 [arXiv:2002.03262 [hep-ph]].

Classification of B decays

D Purely leptonic decays: decay constant **Semi-leptonic decays:** transition form factors $\langle D | \bar{c} \gamma^{\mu} b | \bar{B} \rangle \equiv f_{+}(q^{2})(p_{B} + p_{D})^{\mu}$ $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle = ip_\mu f_P$ $+ [f_0(q^2) - f_+(q^2)] \frac{m_B^2 - m_D^2}{q^2} q^\mu$ $\wedge \wedge \wedge \wedge \wedge \wedge$ В B SZW. **Hadronic decays:** hadronic matrix elements Lattice QCD or LCSR et al. π multi-scale problem with highly hierarchical scales! EW interaction scale \gg ext. mom'a in B rest frame \gg QCD-bound state effects $m_W \sim 80 \text{ GeV}$ $m_b \sim 5 \text{ GeV}$ $\Lambda_{\rm OCD} \sim 1 \, {\rm GeV}$ \gg \gg $m_Z \sim 91 \text{ GeV}$ \overline{B}^0 D^+ 00000 How to deal with hadronic decays?

Why hadronic B decays

 $(\overline{\rho},\overline{\eta})$

 $\alpha = \phi_{\alpha}$

 $\gamma = \phi_{\alpha}$

(0.0)

http://ckmfitter.in2p3.fr/; frequentist

http://utfit.org/UTfit; Bayesian

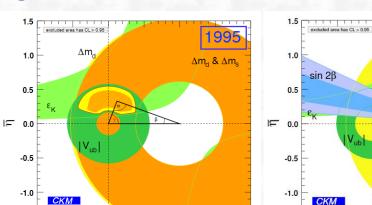
□ Test the (C)KM mechanism of quark flavor mixings and CP violation;

 $\alpha = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$

 $R_{t} \equiv \left| \frac{V_{td} V_{tb}^{*}}{V_{cd} V_{cb}^{*}} \right|$

 $\beta = \phi_1$

(1,0)



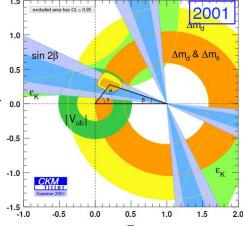
1.0

0.5

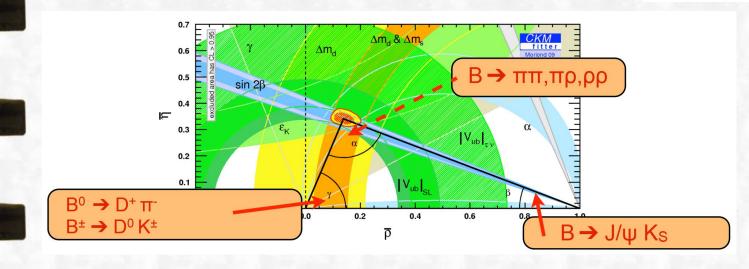
 $\overline{\rho}$

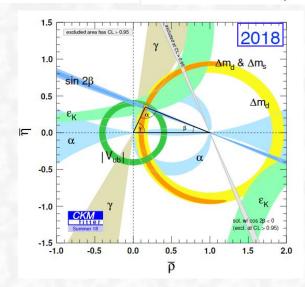
1.5

2.0



[J. Zupan, 1903.05062]





 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

 $\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} + 1 + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = 0$

 $\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$

 $\mathcal{O}(\lambda^3)$

 $\mathcal{O}(\lambda^3)$ $\mathcal{O}(\lambda^3)$

 $R_u \equiv \left| \frac{V_{ud} \, V_{ub}^*}{V_{cd} \, V_{cb}^*} \right|$

 $\beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$

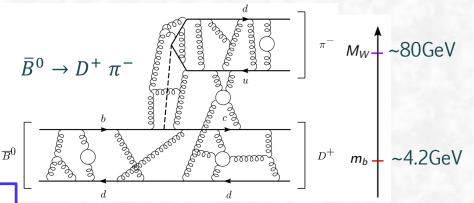
CLHCP2020

Why hadronic B decays

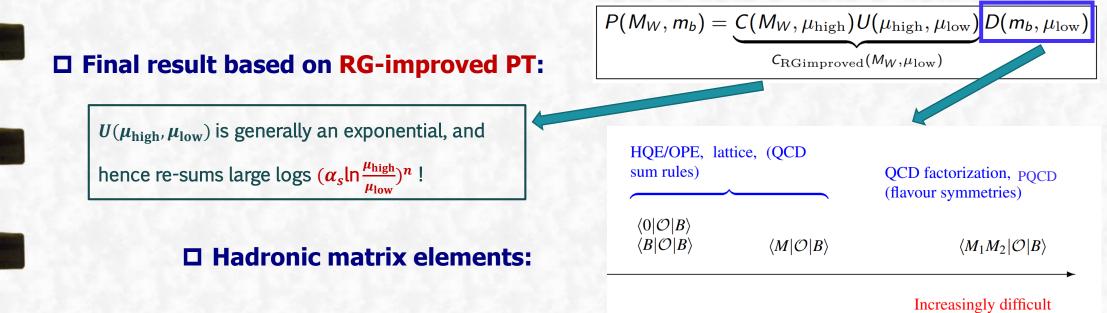
□ Understand various aspects of strong interactions;

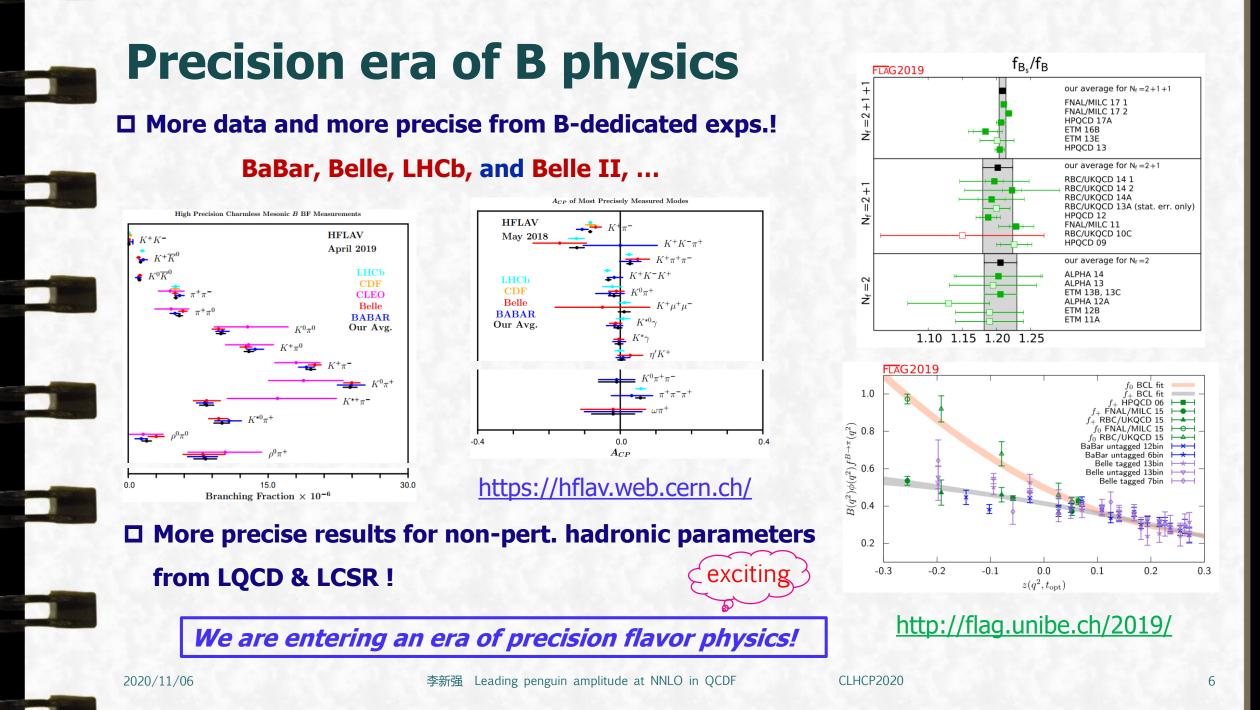
Problem: multiple scales spoil PT convergence due to large logs;

$$P(M_W, m_b) = 1 + \alpha_s \left(\# \ln \frac{M_W}{m_b} + * \right) + \alpha_s^2 \left(\# \ln^2 \frac{M_W}{m_b} + * \right) + \dots$$



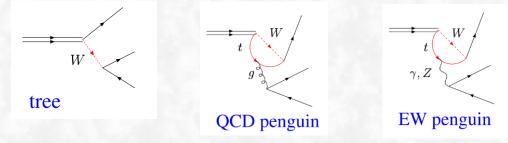
Solution: perturbative series should be re-organized, and all $(\alpha_s \ln \frac{m_W}{m_h})^n$ should be re-summed!





Effective Hamiltonian for B decays

The starting point $\mathcal{H}_{eff} = -\mathcal{L}_{eff}$: obtained by integrating out heavy d.o.f. $(m_{W,Z,t} \gg m_b)$;



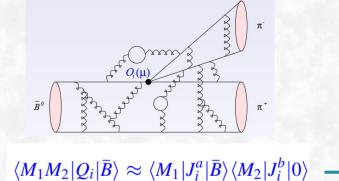
□ Decay amplitude for a given decay:

$$\mathcal{A}(\bar{B} \to f) = \sum_{i} \left[\lambda_{\text{CKM}} \times C \times \langle f | \mathcal{O} | \bar{B} \rangle_{\text{QCD} + \text{QED}} \right]_{i}$$

$$\mathcal{L}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pb} V_{pD}^* \Big(C_1 \mathcal{O}_1 + C_2 \mathcal{O}_2 + \sum_{i=\text{pen}} C_i \mathcal{O}_{i,\text{pen}} \Big)$$

 Wilson coefficients C_i: all physics above m_b; perturbative calculable, NNLL program complete;
 [Gorbahn,Haisch '04; Czakon,Haisch,Misiak '06]

\Box Hadronic matrix elements $\langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle$:



- Dynamical approaches based on factorization theorems: PQCD, QCDF, SCET, · · · [Keum, Li, Sanda, Lü, Yang '00;

Beneke, Buchalla, Neubert, Sachrajda, '00;

[BBL '96; CMM '98]

Bauer, Flemming, Pirjol, Stewart, '01; Beneke, Chapovsky, Diehl, Feldmann, '02]

- Symmetries of QCD: Isospin, U-Spin, V-Spin, and flavour SU(3) symmetries, · · ·

[Zeppenfeld, '81;

London, Gronau, Rosner, He, Chiang, Cheng et al.]

2020/11/06

新强 Leading penguin amplitude at NNLO in QCDF

QCD factorization

[BBNS, '99-'03]

QCDF for $\langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle$: systematic framework to all orders in α_s , but limited by $1/m_b$ corrections.

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle = F^{BM_1}(0) \int_0^1 du \, T_i^I(u) \Phi_{M_2}(u) \\ + \int_0^\infty d\omega \int_0^1 du dv \, T_i^{II}(\omega, u, v) \, \Phi_B(\omega) \Phi_{M_1}(v) \Phi_{M_2}(u)$$
+ Higher-order pert. corrections in α_s could be calculated systematically.
+ Factorization generally broken at higher-order power in $1/m_b$.
• Factorization generally broken at higher-order power in $1/m_b$.

reduces $\langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle$ to simpler $\langle M | j_\mu | \overline{B} \rangle$ (form factors), $\langle 0 | j_\mu | \overline{B} \rangle$, $\langle M | j_\mu | 0 \rangle$ (decay constants & light-cone distribution amplitudes), all can be obtained from exp. data, lattice-QCD, or LCSR.

2020/11/06

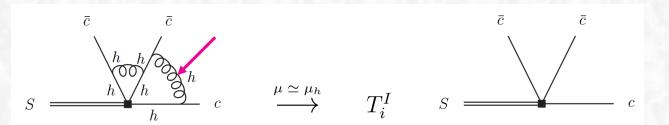
李新强 Leading penguin amplitude at NNLO in QCDF

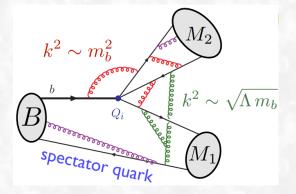
CLHCP2020

Soft-collinear factorization from SCET

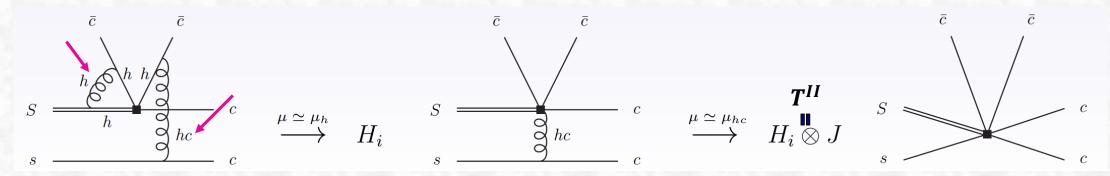
SCET: a suitable framework for studying factorization and re-summation for processes involving light energetic particles;
 [Bauer etal. '00; Beneke etal. '02; Becher, Broggio, Ferroglia '14]

□ For hard kernel T^{I} : one-step matching, QCD \rightarrow SCET_I(hc, c, s)!





□ For hard kernel T^{II} : two-step matching, QCD \rightarrow SCET_I(hc, c, s) \rightarrow SCET_{II}(c, s)!



CET result exactly the same as QCDF, but more apparent & efficient; [Beneke, 1501.07374]

2020/11/06

李新强 Leading penguin amplitude at NNLO in QCDF

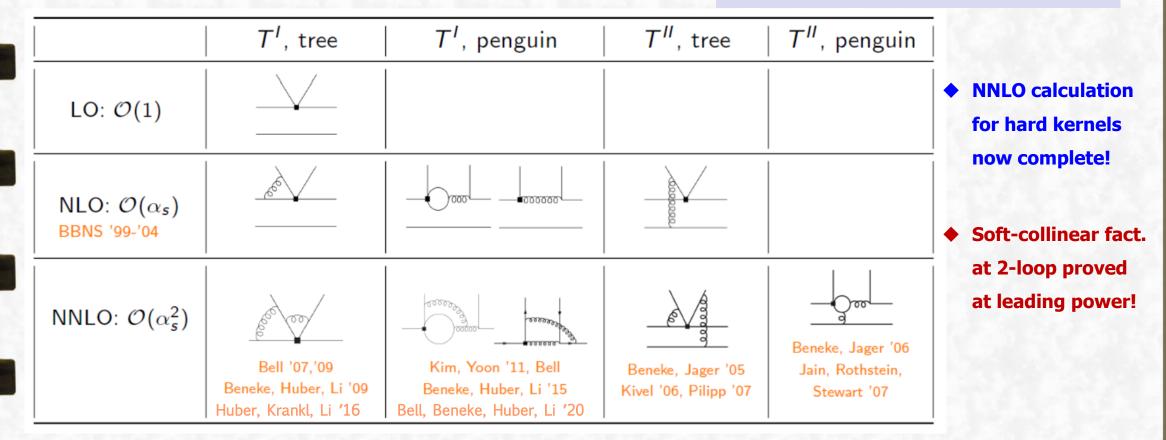
CLHCP2020

Status of the calculation of T^{I} and T^{II}

 \Box For each Q_i insertion, both tree & penguin topologies, and contribute to both $T^I \& T^{II}$.

 $\langle M_1 M_2 | Q_i | B \rangle \simeq F^{BM_1} T_i^{\prime} \otimes \phi_{M_2} + T_i^{\prime \prime} \otimes \phi_B \otimes \phi_{M_1} \otimes \phi_{M_2}$

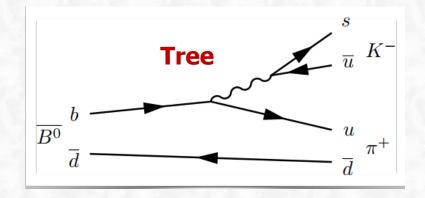
vertex corrections: $T^{I} = 1 + \mathcal{O}(\alpha_{s}) + \cdots$ spectator scattering: $T^{II} = \mathcal{O}(\alpha_{s}) + \cdots$



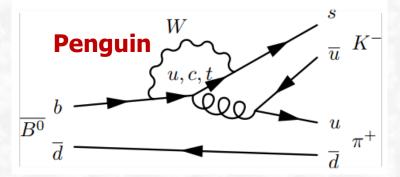
2020/11/06

QCD penguin amplitudes

 \Box Hadronic decays mediated by $b \rightarrow sq\overline{q}$ transitions:



$$\lambda_u = V_{ub} V_{us}^* \sim \mathcal{O}(\lambda^4)$$



$$\lambda_c = V_{cb} V_{cs}^* \sim \mathcal{O}(\lambda^2)$$

□ Interference between tree and penguin: main source of direct CPV;

$$\left[\frac{P^c}{T}\right]_{\pi\pi}, \quad \left[\frac{T}{P^c}\right]_{\pi K} \quad \longrightarrow \quad$$

$$C_{\pi^+\pi^-} = -0.32 \pm 0.04$$

 $\mathcal{A}_{\overline{B}{}^0 \to K^-\pi^+} = -0.084 \pm 0.004$

Why NNLO QCD penguin amplitudes

 \Box At LP in QCDF, strong phases generated only via hard loops with virtuality m_b^2 (not $m_b\Lambda$);

$$A_{\rm CP} = [c \times \alpha_s]_{\rm NLO} + \mathcal{O}(\alpha_s^2, \Lambda/m_b)$$

NNLO is only NLO for direct CPV, and large effects still possible.

□ To predict accurately direct CPV, we need calculate both tree and penguin to NNLO;

Driven by the exp. data;

$$\sqrt{2} \mathcal{A}_{B^- \to \pi^0 K^-} = A_{\pi \overline{K}} [\delta_{pu} \alpha_1 + \hat{\alpha}_4^p] + A_{\overline{K}\pi} [\delta_{pu} \alpha_2 + \delta_{pc} \frac{3}{2} \alpha_{3, \text{EW}}^c]$$
$$\mathcal{A}_{\overline{B}{}^0 \to \pi^+ K^-} = A_{\pi \overline{K}} [\delta_{pu} \alpha_1 + \hat{\alpha}_4^p],$$

Mode	$BR[10^{-6}]$	A_{CP}	S_{CP}	
$B^+ \to \pi^+ K^0$	23.79 ± 0.75	-0.017 ± 0.016		
$B^+ \to \pi^0 K^+$	12.94 ± 0.52	0.040 ± 0.021		
$B^0_d \to \pi^- K^+$	19.57 ± 0.53	-0.082 ± 0.006		
$B^0_d \to \pi^0 K^0$	9.93 ± 0.49	-0.01 ± 0.10	0.57 ± 0.17	

$$A_{CP} = A_{CP}(\pi^{0}K^{-}) - A_{CP}(\pi^{+}K^{-})$$

= (12.2 ± 2.2)%
differs from 0 by 5.5σ

How about the situation @ NNLO?

2020/11/06

Penguin topologies & various insertions

Effective Hamiltonian including penguin operators:

[BBL '96; CMM '98]

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} \sum_{p=u,c} V_{pD}^* V_{pb} \left(C_1 Q_1^p + C_2 Q_2^p + \sum_{i=3}^{10} C_i Q_i + C_7 \gamma Q_7 \gamma + C_{8g} Q_{8g} \right) + h.c.$$

$$Q_1^p = (\bar{p}_L \gamma^\mu T^A b_L) (\bar{D}_L \gamma_\mu T^A p_L),$$

$$Q_2^p = (\bar{p}_L \gamma^\mu b_L) (\bar{D}_L \gamma_\mu p_L),$$
current-current operators
$$Q_3 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\nu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_6 = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_{6} = (\bar{D}_L \gamma^\mu \gamma^\mu \gamma^h \gamma^h \gamma^h \gamma^h b_L) \sum_q (\bar{q} \gamma_\mu \gamma_\mu \gamma_q),$$

$$Q_{7} = (\bar{Q}_{1,2} \sqrt{\frac{1}{2}})$$

$$Q_{9} = (\bar{Q}_{1,2} \sqrt{\frac{1}{$$

Matching procedure

 \Box Hard kernels $T^{I,II}$ by QCD \rightarrow SCET_I matching;

 $Q = \int d\hat{t} \,\tilde{T}^{\mathrm{I}}(\hat{t})O^{\mathrm{I}}(t) + \int d\hat{t}d\hat{s} \,\tilde{H}^{\mathrm{II}}(\hat{t},\hat{s})O^{\mathrm{II}}(t,s)$

\Box QCD matched onto SCET_I :

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pD}^* V_{pb} \left(\delta_{pu} \left\{ T_1^{\text{I}} * O_L^{\text{I}} ([\bar{q}_s u][\bar{u}D]) + H_1^{\text{II}} * O_L^{\text{II}} ([\bar{q}_s u][\bar{u}D]) \right. \\ &+ T_2^{\text{I}} * O_L^{\text{I}} ([\bar{q}_s D][\bar{u}u]) + H_2^{\text{II}} * O_L^{\text{II}} ([\bar{q}_s D][\bar{u}u]) \right\} \\ &+ \sum_{k=L,R} \left\{ T_{3k}^{1,p} * \sum_q O_k^{\text{I}} ([\bar{q}_s D][\bar{q}q]) + H_{3k}^{\text{II},p} * \sum_q O_k^{\text{II}} ([\bar{q}_s D][\bar{q}q]) \right. \\ &+ T_{3k,\text{EW}}^{1,p} * \sum_q \frac{3}{2} e_q O_k^{\text{I}} ([\bar{q}_s D][\bar{q}q]) + H_{3k,\text{EW}}^{\text{II},p} * \sum_q \frac{3}{2} e_q O_k^{\text{II}} ([\bar{q}_s D][\bar{q}q]) \right\} \\ &+ \sum_{k=L,R} \left[T_{4k}^{1,p} * \sum_q O_k^{\text{II}} ([\bar{q}_s q][\bar{q}D]) + H_{4k}^{\text{II},p} * \sum_q O_k^{\text{II}} ([\bar{q}_s q][\bar{q}D]) \right] \\ &+ T_{4k,\text{EW}}^{1,p} * \sum_q \frac{3}{2} e_q O_k^{\text{II}} ([\bar{q}_s q][\bar{q}D]) + H_{4k,\text{EW}}^{\text{II},p} * \sum_q O_k^{\text{II}} ([\bar{q}_s q][\bar{q}D]) \right\} \end{aligned}$$

[see Beneke, Jager '06]

□ Matrix elements of SCET_I operators:

□ SCET_I matched onto SCET_{II}:

SCET_I form factor

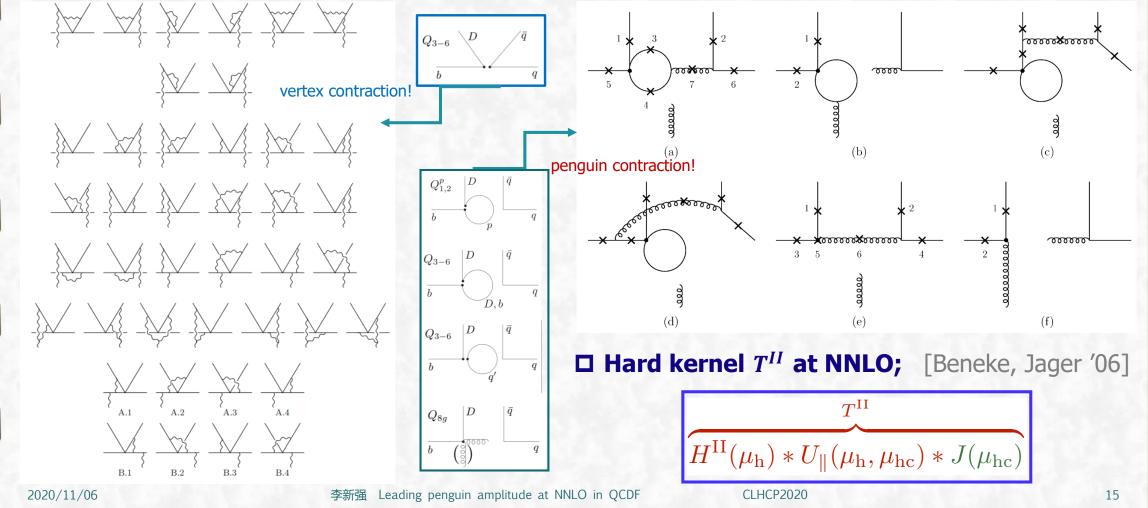
$$\hat{\Xi}(\tau) = \frac{m_B}{4m_b} \int_0^\infty \frac{d\omega}{\omega} \hat{f}_B \phi_{B+}(\omega) \int_0^1 dw f_{M_1} \phi_{M_1}(w) J(\tau; w, \omega)$$

Hard kernel T^{II} at NNLO

\Box Final results for hard kernels $T^{I,II}$:

□ Hard function $H^{II} = H_V^{II} + H_P^{II}$; [Beneke, Jager '06]

 $T_i^{\mathrm{II}} \sim H_i \star J$ $\sim \left(1 + h_i \,\alpha_s + \mathcal{O}(\alpha_s^2)\right) \left(j^{(0)} \alpha_s + j^{(1)} \alpha_s^2 + \mathcal{O}(\alpha_s^3)\right)$



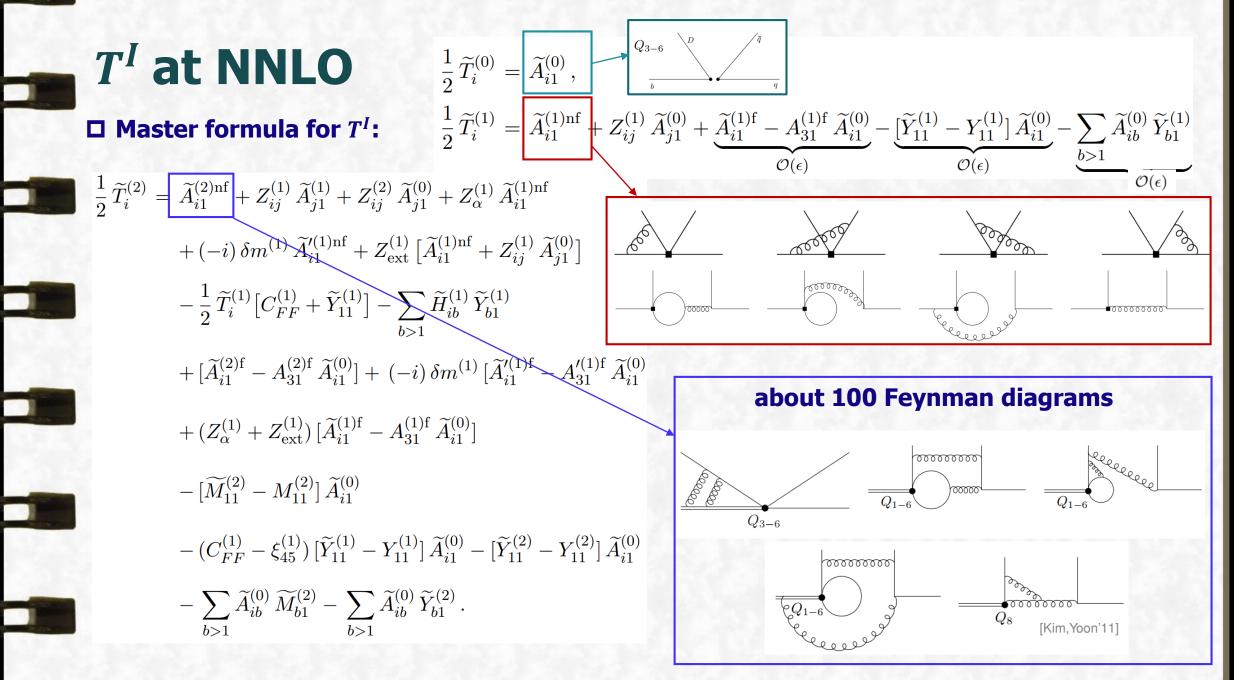
Hard keenel f at NNLO
$$Q_{1ab} = \int_{a} \int_$$

SCET side

$$\langle \widetilde{O}_a \rangle = \left\{ \delta_{ab} + \frac{\hat{\alpha}_s}{4\pi} \, \widetilde{Y}^{(1)}_{ab} + \left(\frac{\hat{\alpha}_s}{4\pi}\right)^2 \left[\widetilde{M}^{(2)}_{ab} + \widetilde{Y}^{(2)}_{ab} \right] + \mathcal{O}(\hat{\alpha}_s^3) \right\} \langle \widetilde{O}_b \rangle^{(0)}$$

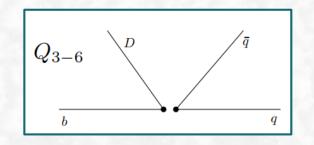
2020/11/06

李新强 Leading penguin amplitude at NNLO in QCDF

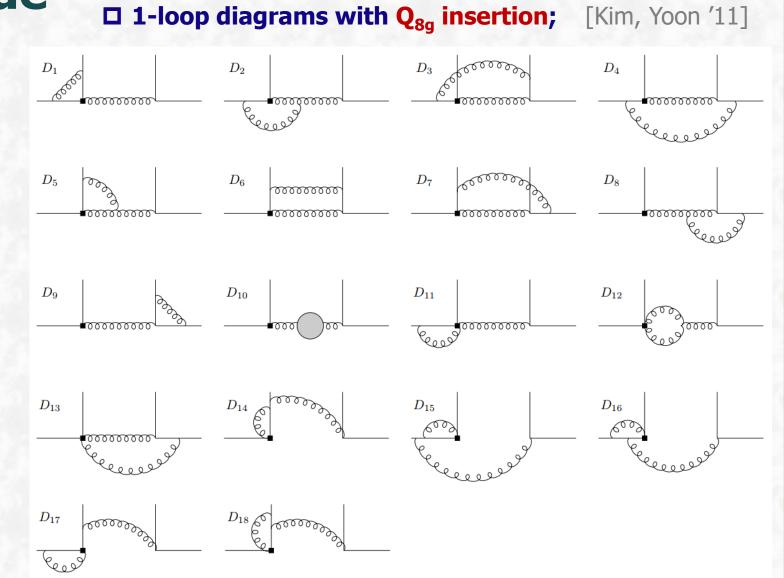


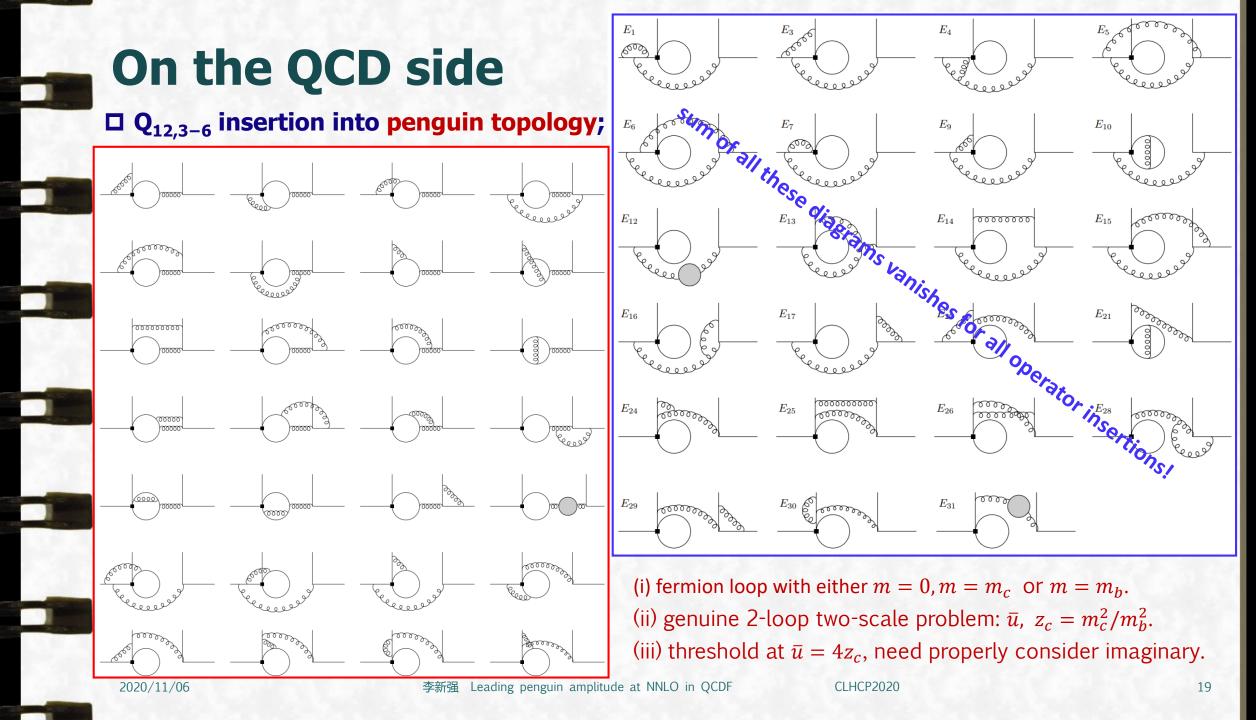
On the QCD side

□ For $\widetilde{A}_{i1}^{(2)nf}$, need consider Q₃₋₆ insertion into tree topology (66 diagrams);



- Similar to color-suppressed tree amplitude, but with more complicated Dirac structures!
 - Relatively simpler since just 1-loop!





Techniques for 2-loop 2-scale diagrams

- Dimensional regularisation with $D = 4 2\epsilon$ regulates UV and IR. Poles up to $1/\epsilon^4$.
- Passarino-Veltman reduction of tensor integrals to scalar integrals
- Reduction of scalar integrals to a small set of master integrals
 - Integration-by-parts and Lorentz-invariance identities

[Tkachov'81; Chetyrkin, Tkachov'81; Gehrmann, Remiddi'99]

[Henn'13]

- System of equations solved by Laporta algorithm [Laporta'01;Anastasiou,Lazopoulos'04;Smirnov'08]
- Use differential equations in canonical form

$$d \vec{M}(\epsilon, x_n) = \epsilon d\vec{A}(x_n) \vec{M}(\epsilon, x_n)$$

• Found canonical basis for all masters, including boundary conditions [Bell,TH'14]

- First example of canonical basis in case of 2 different internal masses
- Analytic solution in terms of iterated integrals (GPLs) over alphabet

$$\left\{0\;,\;\pm 1\;,\;\pm 3\;,\;\pm i\sqrt{3}\;,\;\pm r\;,\;\pm \frac{r^2+1}{2}\;,\;\pm (1+2\sqrt{z_c})\;,\;\pm (1-2\sqrt{z_c})\right\}$$

2020/11/06

CLHCP2020

additional 36 MIs!

Get totally

All MIs computed analytically in terms of iterated integrals

over generalized weight functions!

[Passarino, Veltman'79]

thousands of scalar integrals

Final results for a_4^p

\Box Leading penguin amplitude a_4^p up to NNLO;

$$\begin{split} a_4^p &= \frac{C_3}{N_c} + \frac{C_F}{N_c} C_4 + \frac{16C_5}{N_c} + \frac{16C_F}{N_c} C_6 \\ &+ \frac{\alpha_s}{4\pi} \frac{C_F}{N_c} \left[\left(C_3 - \frac{C_4}{2N_c} + 16C_5 - \frac{8C_6}{N_c} \right) \left(-6L + I_t^{(1)} \right) \right. \\ &+ \left(C_{8g} + C_3 - \frac{C_4}{2N_c} + 20C_5 - \frac{10}{N_c} C_6 \right) \left(-2 \right) I_{8g}^{(1)} \\ &+ \left(C_2 - \frac{C_1}{2N_c} \right) \left(-\frac{2}{3} L + \frac{2}{3} - \delta_{pu} I_0^{(1)} - \delta_{pc} I_c^{(1)} \right) \\ &+ \left(C_3 - \frac{C_4}{2N_c} + 16C_5 - \frac{8C_6}{N_c} \right) \left(-\frac{4}{3} L + \frac{4}{3} - I_0^{(1)} - I_b^{(1)} \right) \\ &+ \left(C_4 + 10C_6 \right) \left(-\frac{2}{3} n_f L - n_0 I_0^{(1)} - I_c^{(1)} - I_b^{(1)} \right) \\ &- N_c C_4 + \frac{16}{3} C_5 - 4 \left(10N_c + \frac{2}{3N_c} - n_f \right) C_6 \right] \\ &+ \left(\frac{\alpha_s}{4\pi} \right)^2 \left[C_1 \left(\delta_{pu} I_{1u}^{(2)} + \delta_{pc} I_{1c}^{(2)} \right) + C_2 \left(\delta_{pu} I_{2u}^{(2)} + \delta_{pc} I_{2c}^{(2)} \right) \\ &+ \sum_{i=3}^6 C_i I_i^{(2)} + C_{8g} I_{8g}^{(2)} \right]. \end{split}$$

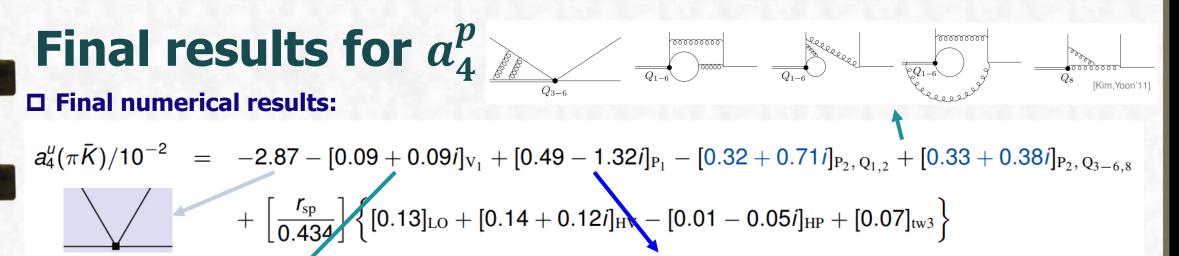
Convolution with light-meson LCDA;

$$\int_0^1 du \; \widetilde{T}_i(u) \; \phi_M(u) = \int_r^{+i\infty} ds \; \frac{2s(r^2 - 1)}{(1 - s^2)^2} \, \widetilde{T}_i(u(s)) \; \phi_M(u(s))$$

• Expand LCDA of light meson in Gegenbauer polynomials

$$\phi_M(u) = 6u\bar{u} \left[1 + \sum_{n=1}^{\infty} a_n^M C_n^{(3/2)}(2u-1) \right]$$

- Re-write in terms of $s = \sqrt{1 4z_c/\bar{u}}$ and $r = \sqrt{1 4z_c}$ • Integrate from $s = r \dots + i\infty$
- ♦ all terms that involve powers of $L = \ln \mu^2 / m_b^2$ completely analytically.
- in L^0 pieces a few terms are obtained only as an interpolation in z_c .
- for a_4^u completely analytic, for a_4^c a few terms as an interpolation in $z_c = m_c^2/m_b^2$.



$$= (-2 + 2^{+0.48}_{-0.29}) + (-1.56^{+0.29}_{-0.15})i,$$

$$= (-2 + 2^{+0.48}_{-0.29}) + (-1.56^{+0.29}_{-0.15})i,$$

$$= -2.87 - [0.09 + 0.09i]_{V_1} + [0.05 - 0.62i]_{P_1} - [0.77 + 0.50i]_{P_2, Q_{1,2}} + [0.33 + 0.38i]_{P_2, Q_{3-6,8}}$$

$$+ \left[\frac{r_{sp}}{0.434}\right] \left\{ [0.13]_{LO} + [0.14 + 0.12i]_{HV} + [0.01 + 0.03i]_{HP} + [0.07]_{tw3} \right\}$$

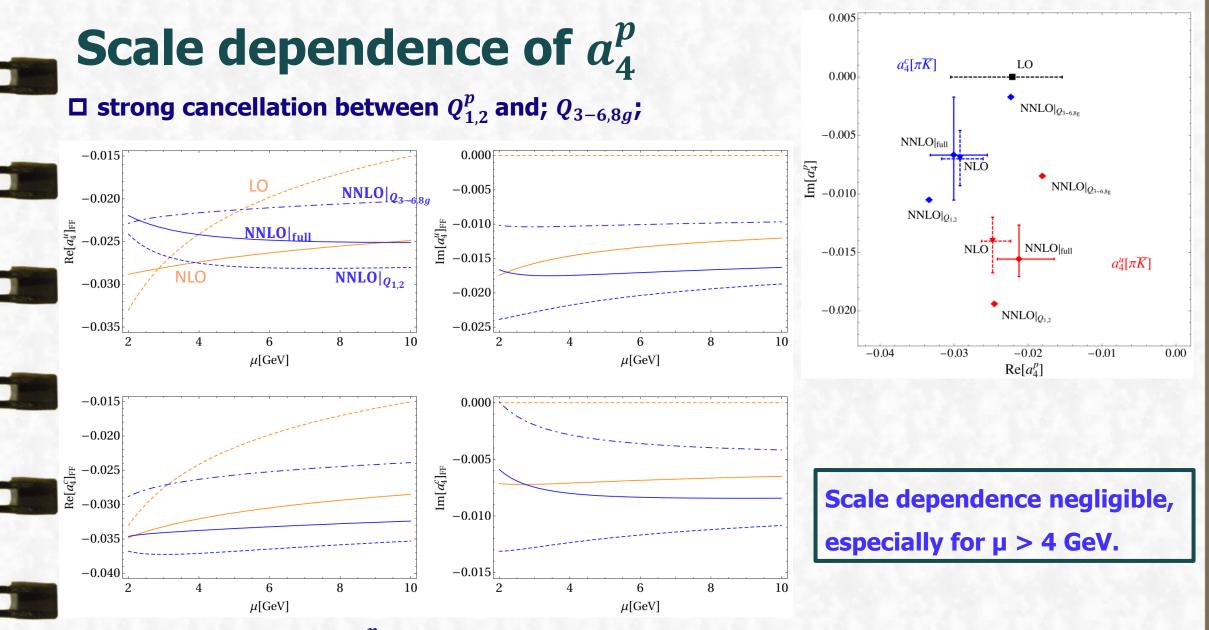
$$= (-2 + 2^{+0.48}_{-0.29}) + (-0.67^{+0.50}_{-0.15})i$$

$$= (-3.00^{+0.45}_{-0.32}) + (-0.67^{+0.50}_{-0.39})i.$$

 spectator-scattering has only a small effect.

- NNLO real part constitutes a (10 15)% correction relative to LO.
- NNLO imaginary part represents a -27% correction for a_4^u and reaches -54% for a_4^c .
- Strong cancellation between NNLO correction from $Q_{1,2}^p$ and from $Q_{3-6,8g}$ observed!

李新强 Leading penguin amplitude at NNLO in QCDF



\Box Scale dependence of a_4^p : only form-factor term;

2020/11/06

李新强 Leading penguin amplitude at NNLO in QCDF

CLHCP2020

colour-allowed tree α_1

colour-suppressed tree α_2

QCD penguins α_4

- NNLO corrections to color-allowed, color-suppressed tree & leading penguin amplitudes now complete.
- Individual contributions sizeable, but tend to cancel each other among them, and thus NNLO shift in amplitudes is rather small.
- □ Updated phen. analyses including these NNLO corrections and progress from other sides are work in progress.

Thank You for your attention!

For questions, email me: xqli@mail.ccnu.edu.cn