Search for $B^0 \to J/\psi \phi$ decay

LHCb-PAPER-2020-033

Wenhua Hu

Central China Normal University

The 6th China LHC Physics Workshop

1

Experimental measurements

> B(B⁰ → J/ψK⁺K⁻) = (2.53 ± 0.31 ± 0.19) × 10⁻⁸ [3]
> Upper limits of B⁰ → J/ψφ at 90% CL

Motivation

 $\geq B^0 \rightarrow J/\psi \phi(\phi \rightarrow K^+K^-)$ is a rare decay

✓ OZI and CKM suppressed, possible contributions [PLB677 (2009) 278]

Under the assumption of $\omega - \phi$ mixng dominance, branch ratio is predicted as (1.0 ± 0.3) × 10⁻⁷ [PLB666(2008)185188, PRD88 (2013) 072005]

WenhuaHu (CCNU)

Search for $B^0 \to J/\psi \phi$ decay

LHCb detector

> Designed for beauty and charm physics, $2.0 < \eta < 5.0$

Analysis strategy

→ Use the full Run 1 and Run 2 data to search $B^0 \rightarrow J/\psi\phi$ ✓ $B_s^0 \rightarrow J/\psi\phi$ is used as normalisation channel

$$N_{B^{0}}^{\phi} = N_{B_{S}^{0}}^{\phi} \times \frac{\mathcal{B}(B^{0} \to J/\psi\phi)}{\mathcal{B}(B_{S}^{0} \to J/\psi\phi)} \times \frac{1}{f_{s}/f_{d}} \times \frac{\varepsilon_{B^{0}}}{\varepsilon_{B_{S}^{0}}}$$

• $\mathcal{B}(B_{s}^{0} \to J/\psi\phi) = (10.50 \pm 0.13 \pm 0.64 \pm 0.82) \times 10^{-3} \text{ [PRD87.072004]}$
• $f_{s}/f_{d} = 0.259 \pm 0.015 \text{ [JHEP04(2013)001]}$
• $\varepsilon_{B^{0}}/\varepsilon_{B_{S}^{0}}$, efficiency ratio

- Use multivariate analysis techniques to select signal and suppress background
- ► Use sequential fits to $m(J/\psi K^+K^-)$ and $m(K^+K^-)$ to distinguish signal and background

Use full Run 1+Run 2 data, 9 fb^{-1}

Run 1 ($2011 \sim 2012$) 1.0 fb⁻¹ of *pp* collisions at 7 TeV 2.0 fb⁻¹ of *pp* collisions at 8 TeV

Run 2 (2015~2018) 5.7 fb⁻¹ of *pp* collisions at 13 TeV

Trigger and preselection

- ✓ Trigger system : L0 (hardware) + HLT1, 2 (software)
- $\checkmark J/\psi \rightarrow \mu^+\mu^-$
 - **LOMuon** : at least one muon has p_T larger than a given threshold
 - **L0Dimuon** : sum of the two largest p_T of muons is larger than a given threshold
- ✓ Requirements on particle identification, p_T ,

mass

Training samples and variables

- > MC sample as signal, data sideband as background
- ➤ Training variables
 - $\checkmark\,$ minimum particle identification probabilities of μ^{\pm} and K^{\pm}
 - ✓ minimum track-fit χ^2 of μ^{\pm} and K^{\pm}
 - $\checkmark p_T$ of ϕ and B_s^0

TMVA overtraining check and optimisation

- Trained with BDT (Boosted Decision Tree) method
- > The output response has better ability to suppress background

▶ Optimise the significance for $B^0 \rightarrow J/\psi K^+ K^-$ signal

F.O.M =
$$\epsilon/\sqrt{N}$$

 ϵ = signal efficiency for a specific MVA requirement

 $N = total events in B^0 mass window$

9

Fit results of $m(J/\psi K^+K^-)$

- $\geq B_{(s)}^0 \rightarrow J/\psi K^+ K^-$ & Combinatorial background & $\Lambda_b^0 \rightarrow J/\psi p K^-$
- > Estimate yields in ± 15 MeV of B^0 and B_s^0 peak

Run 1, $\sigma = 7.67 \pm 0.03$ MeV

Data	Category	Full	B_s^0 region	B^0 region
Run 1	$B^0_s ightarrow J\!/\!\psi K^+K^-$	$55498 \ \pm 238$	51859 ± 220	35 ± 6
	$B^0 \rightarrow J/\psi K^+ K^-$	$127\ \pm 19$	0	$119\ \pm 18$
	$\Lambda_b^0 \to J/\psi p K^-$	$407\ \pm 26$	55 ± 8	61 ± 8
	Combinatorial background	$758\ \pm 55$	85 ± 11	$94\ \pm 11$
Run 2	$B^0_s ightarrow J\!/\!\psi K^+K^-$	249670 ± 504	233663 ± 472	153 ± 12
	$B^0 \rightarrow J/\psi K^+ K^-$	$637\ \pm 39$	0	$596\ \pm 38$
	$\Lambda_b^0 \to J/\psi p K^-$	$1943\ \pm 47$	$261\ \pm 16$	$290\ \pm 17$
	Combinatorial background	$2677 \ \pm 109$	303 ± 20	$331\ \pm 21$

Run 2, $\sigma = 7.64 \pm 0.01$ MeV

$m(K^+K^-)$ fit model for each component

Component	Model			
Signal				
$B^0_{s/d} \to J/\psi\phi$	Breit-winger [4]			
Background				
$B^0_{s/d} \to J/\psi K^+ K^-$	Flatte for $f_0(980) / a_0(980)$ [5] PHSP for nonresonance			
B_s^0 tail shape under B^0 peak	modified Breit-winger			
$\Lambda_b^0 \to J/\psi p K^-$	extracted shape from MC			
Combinatorial background	extracted shape from data			

[4] [<u>PRL115 (2015) 072001</u>]

[5] [<u>PLB63 (1976) 228</u>]

$m(K^+K^-)$ shape of backgrounds

- → Use MC events for $\Lambda_b^0 \to J/\psi p K^-$ and B_s^0 tail shape under B^0 peak
- > Use the events in B^0 signal region, applied with inverse BDT, for comb. Bkg.

WenhuaHu (CCNU)

Fit results

► $\mathcal{B}(B^0 \rightarrow J/\psi\phi) = (6.8 \pm 3.0) \times 10^{-8}$, significance ~ 2.3σ

Multiplicative uncertainties	Value $(\%)$	_
$\mathcal{B}(B^0_s \to J/\psi\phi)$	6.2	
Scaling factor for f_s/f_d	3.4	
$\varepsilon_{B^0}/\varepsilon_{B^0_s}$	1.8	
Total	7.3	
Additive uncertainties	Value (10^{-8})	_
$m(J/\psi K^+K^-)$ model of combinatorial background	0.03	-
Fixed yields of Λ_b^0 in $m(K^+K^-)$ fit	0.05	(1) m($J/\psi K^+K^-$) model
Fixed yields of combinatorial background in $m(K^+K^-)$ fit	0.61	(2) Yields of background
Fixed yields of B_s^0 contribution in $m(K^+K^-)$ fit	0.24	
Constant d	0.01	
$m(K^+K^-)$ shape of B_s^0 contribution	0.29	\rightarrow m(K ⁺ K ⁻) shapes
$m(K^+K^-)$ shape of Λ_b^0	0.28	
$m(K^+K^-)$ shape of combinatorial background	0.16	Compared to statistical
$m(K^+K^-)$ shape of non- ϕ	0.06	$\frac{10^{-8}}{10^{-8}}$
Total	0.80	uncertainty 3.0×10^{-6} ,
		they are small

Upper limit including systematics

▶ PLS (Profile Likelihood Scan) on $\mathcal{B}(B^0 \to J/\psi\phi)_{(EPJC71 (2011) 1554)}$

Incorporate systematics by smearing PLS curve

- ► A search for $B^0 \rightarrow J/\psi\phi$ has been performed using the LHCb full Run 1 and Run 2 data sample (LHCb-PAPER-2020-033)
 - $\ensuremath{\boxtimes} \ \mathcal{B}(B^0 \to J/\psi\phi) = (6.8 \pm 3.0(stat.) \pm 0.9(syst.)) \times 10^{-8}$
 - ✓ $\mathcal{B}(B^0 \to J/\psi\phi) < 1.1 \times 10^{-7}$, which is improved compared with the previous limit using 1 fb⁻¹ data, 1.9×10^{-7}
 - \square The measurement is compatible with the theoretical prediction $(1.0 \pm 0.3) \times 10^{-7}$

Backup

WenhuaHu (CCNU)

$m(K^+K^-)$ fit model of resonance

Lineshape of resonance [JHEP08(2017)037]

$$\mathcal{A}_{R}(m) = \sqrt{P_{B}P_{R}}F_{B}^{(L_{B})}F_{R}^{(L_{R})}A_{R}(m)(\frac{P_{B}}{m_{B}})^{L_{B}}(\frac{P_{R}}{m_{R}})^{L_{R}}$$

- P_B , the momentum of J/ψ in the $B_s^0(B^0)$ rest frame
- P_R , is the momentum of either kaon in the K^+K^- rest frame
- $L_{B/R}$, is the orbital angular momentum between J/ψ and dikaon system or K^+ and K^-
- $F_{B/R}$, is Blatt-Weisskopf barrier factor [PRD5 (1972) 624]
- A_R , is a Breit-winger function for $\phi(1020)$ or a Flatte function for $f_0(980)/a_0(980)$
- $m_{B/R}$, the nominal/pole mass of $B_s^0(B^0)$ /resonance

Lineshape of ϕ resonance

$$S_{\phi}(m) \equiv P_{B}P_{R}F_{R}^{2}(P_{R}, P_{0}, d)(\frac{P_{R}}{m_{0}})^{2L_{R}}|A_{\phi}(m'; m_{0}, \Gamma_{0})|^{2} \otimes G(m - m'; 0, \sigma)$$
$$F_{R}(P_{R}, P_{0}, d) = \sqrt{\frac{1 + (P_{0}d)^{2}}{1 + (P_{R}d)^{2}}}$$

• A_{ϕ} is Breit-winger with gaussian constraint on

 $m_0 = 1019.461 \pm 0.016$ MeV and $\Gamma_0 = 4.249 \pm 0.013$ MeV [PDG]

- P_B , the momentum of J/ψ in the $B_S^0(B^0)$ rest frame
- $P_R(P_0)$, is the momentum of kaon in the $K^+K^-(\phi)$ rest frame
- L_R is the orbital angular momentum between K^+ and K^- , $L_R = 1$
- F_R is Blatt-Weisskopf barrier factor [PRD5 (1972) 624], d = 1.5 GeV⁻¹
- *G* is a Gaussian resolution function with floated σ

$$S_{non}(m) \equiv P_B P_R F_B^2 \left(\frac{P_B}{m_B}\right)^{2L_B} \left| A_R(m) \times e^{i\delta} + A_{NR} \right|^2$$

- L_B , the orbital angular momentum between J/ψ and dikaon system, $L_B = 1$
- m_B , the nominal mass of $B_s^0(B^0)$
- F_B , Blatt-Weisskopf barrier factor, $F_B = 3.0$
- A_R , a Flatte model for $f_0(980)/a_0(980)$
- A_{NR} , a constant for nonresonance
- δ , the relative phase, constrained to -255 ± 35 or 60 ± 26 degrees for $f_0(980)$ or $a_0(980)$,

according to the $B_{s/d}^0 \rightarrow J/\psi K^+ K^-$ amplitude analysis [PRD88.072005, PRD87.072004]

Flatte model[PLB63 (1976) 228.]

$$A_{f_0}(m) = \frac{1}{m_R^2 - m^2 - im_R(g_{\pi\pi}\rho_{\pi\pi} + g_{KK}\rho_{KK})}$$
$$A_{a_0}(m) = \frac{1}{m_R^2 - m^2 - i(g_{\eta\pi}^2\rho_{\eta\pi} + g_{KK}\rho_{KK})}$$

- m_R , the pole mass for the resonance
- ρ , the Lorentz-invariant phase space factor
- $g_{\pi\pi}(g_{\eta\pi})$ and g_{KK} , the coupling strengths of $f_0(980)$ ($a_0(980)$) to $\pi\pi(\eta\pi^0)$ and KK, fixed to their mean values according to the Run 1 $B_s^0 \to J/\psi\pi^+\pi^-(K^+K^-)$ analyses [PRD86.052006, PRD87.072004]

Profile Likelihood Scan

Relative uncertainties

$$\begin{aligned} \mathcal{B}(B_s^0 \to J/\psi \,\phi) &= \frac{N_{B_s^0}}{N_{B^+}} \times \frac{\varepsilon_{B_s^0}}{\varepsilon_{B^+}} \times \mathcal{B}(B^+ \to J/\psi \,K^+) \times \frac{1}{f_s/f_d} \\ &= (10.50 \pm 0.13[stat.] \pm 0.64[syst.] \pm 0.82[f_s/f_d]) \times 10^{-4} \end{aligned}$$

- ✓ $\mathcal{B}(B_s^0 \to J/\psi\phi)$ is measured with 2011 data [PRD.87.072004]
- ✓ $\mathcal{B}(B^0 \to J/\psi\phi)$ is proportional to $\mathcal{B}(B_s^0 \to J/\psi\phi) \times f_s/f_d$, third uncertainty is canceled with that of the f_s/f_d measurement at 7 TeV
- \checkmark scaling factor of 1.068 \pm 0.046 is needed for 13 TeV