Search for lepton flavor violation in pp collisions at $\sqrt{s} = 13$ TeV with ATLAS detector

Xiangke Zhang

The 6th China LHC Physics Workshop

Shanghai JiaoTong University

Nov 8, 2020

Outline

- Introduction
 - motivation and strategy
- Objects and events selection
- Background estimation
 - *W* + *jets* background estimation
 - multi-jets estimation
 - $t\bar{t}$ background estimation
- Statistical analysis
- Summary

Introduction: motivation & strategy

Direct charged-lepton flavor violation (LFV) is forbidden in the Standard Model But it's allowed in hypothetic new physics models

models Production & reason	\mathbf{SM}	models with additional gauge symmetries	R-parity violating(RPV) SUSY	quantum black hole QBH
lepton pairs with different flavor (LFV)	Not allowed	allowed	allowed	allowed
Reason	LFC	Z'	sneutrino τ resonance	$\begin{array}{l} pp \rightarrow QBH \\ \rightarrow l^{\mp}l'^{\pm} \end{array}$
Final state		еμ,	<i>eτ,</i> μτ	
		Z', QBH, ν _τ		

Introduction: motivation & strategy

- Aim of this analysis
 - search for a new resonance with two leptons of different flavor ($e\mu$, $e\tau$, $\mu\tau$) in high mass region
 - otherwise, set limits on the parameters of new physics models
- Clear experimental signature
 - Iow background from SM processes
 - the invariant mass of the heavy neutral particle can be reconstructed
- Previous publications
 - Phys. Rev. D 98 (2018) 092008
 - int. luminosity $36 f b^{-1}$

Objects & event selection

muon	electron	tau
▶ $p_T > 65 GeV$ and $ \eta < 2.5$	▶ $p_T > 65 GeV$ and $ \eta < 2.5$	▶ $p_T > 65 GeV$ and $ \eta < 2.5$
► ID: high-pT	ID: LHTight	> ID: RNN Medium
isolation: FixedCutLoose	isolation: FixedCutTight	track: 1 or 3 prongs
> track : $ d_0/\sigma_{d_0} < 3$ and $ \Delta z_0 sin\theta < 0.5mm$	> track : $ d_0/\sigma_{d_0} < 5$ and $ \Delta z_0 sin\theta < 0.5mm$	➤ charge: ±1

- exclude crack region $1.36 < |\eta| < 1.52$ for electron and tau

event selection

- > **pre-selection**: remove events with error status flag on detectors
- > trigger: pass single-electron or single-muon triggers & at least 1 trigger matched lepton
- > opposite charge
- > 3rd lepton veto: events with an additional good lepton are rejected
- b-veto: DL1r:FixedCutBEff_85
- $\succ \Delta \Phi_{ll} > 2.7$
- $\succ m_{ll} > 130 GeV$
- > select $e\mu$, $e\tau$, $\mu\tau$ pairs

Background estimation

Background contributions

- irreducible background
 - includes 2 prompt leptons in the final states
 - $t\bar{t}$: MC simulation + extrapolation (for high-mass)
 - di-boson: MC simulation
 - drell-yan: MC simulation
- reducible background
 - includes fake leptons in the final states
 - W+jets: MC simulation + data-driven
 - multi-jets: data-driven
 - fake estimation (W+jets and multi-jets)
 - $e\mu$ channel: estimated simultaneously with Matrix Method
 - $e\tau/\mu\tau$ channel: W+jets and multi-jets estimated separately

Irreducible backgrounds	Reducible backgrounds
SM Drell-Yan $(q\bar{q} \rightarrow Z/\gamma^* \rightarrow ll)$ $t\bar{t}$ & Single top Diboson	QCD W+jets
With two prompt leptons in the final state	Jets or non-prompt leptons are reconstructed as prompt leptons
MC simulation	Data-driven

Background estimation: fake in $e\mu$ channel

Estimated using the Matrix Method

- all events considered here pass at least loose selection
- muon fake rate found to be negligible
 - assume all selected muons are real muons
 - $\begin{bmatrix} N_{RR} & N_{RF} \\ N_{FR} & N_{FF} \end{bmatrix} \rightarrow \begin{bmatrix} N_{RR} \\ N_{FR} \end{bmatrix}$
 - $4 \rightarrow 2$ different kinds of events to be investigated
 - N_{FR} (one fake electron + one real muon) will be the number of reducible background events
- $\begin{bmatrix} N_{TT} \\ N_{LT} \end{bmatrix} = \begin{bmatrix} r_e & f_e \\ 1 & 1 \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{FR} \end{bmatrix}$
 - N_{xy}: number of events with x(electron) or y(muon) that
 - pass T(tight) or L(loose) ID
 - is R(real) or F(fake)
 - r_e : electron real efficiency
 - the probability of a "loose" electron(looser ID and without isolation requirement) matched to a generated electron to pass the full object selection
 - estimated by Zee MC samples
 - f_e : electron fake rate
 - the probability that a jet is misidentified as an electron
 - estimated in a multi-jet CR

data	di-boson	top	ZII	Wjets+ multi- jets	total MC
18832	7534.16	11062.8	455.32	1013.99 (5.1%)	20056.28

- the total electron fake rate after b-veto is 52.5%, close to the last run(56.4%)
- will be cross-checked with the IFF tool
- systematic uncertainty study and validation is ongoing

- Wjets is a reducible background
 - mainly jet misidentified as τ
- Wjets control region definition
 - only $e\tau/\mu\tau$ channel
 - $e\tau: E_{missing}^T > 40 GeV$
 - $\mu\tau$: no $E_{missing}^T$ cut
 - $130 GeV < m_{ll} < 600 GeV$
 - $\Delta \Phi_{\rm ll} < 2.7$
 - reverse the $\Delta \Phi_{ll}$ to ensure orthogonality with SR
 - B-jet veto
 - no more transverse mass cut
 - was $m_T(l_{lead}, E_{missing}^T) > 80 GeV$
 - compared with/without Tau ID requirement
- Estimation method

• tau fake rate as a function of tau p_T

$E_{missing}^{T}$ cut decision in Wjets CR

- Zll is the second large backgrounds except Wjets
 - need to be minimize for Wjets CR
- 1-prong tau is the major contribution of Zee/Zmumu
- different treatment for two channels
 - *eτ* channel
 - Zee is the major contribution
 - cut at 40 GeV to get rid of ZII
 - $\mu\tau$ cahnnel
 - Zmumu is the major contribution
 - not E^T_{missing} cut applied, otherwise will lose many Wjets events

	ετ	μτ
Z->ee(361106)	4915.9	0
Z->mumu(361107)	0	833.8
Z->tautau(361108)	454.3	288.9

 \uparrow fake rate with different m_T cut applied

 \uparrow fake rate with different $E_{missing}^T$ cut applied

- Define 3 study regions with respect to the signal selection
- Equations to estimate
 - $N_{multi-jet}^{region} = N_{data}^{region} N_{MC}^{region}$
 - $K_{multi-jet} = N_{multi-jet}^{region2} / N_{multi-jet}^{region1}$
 - $N_{multi-jet}^{SR} = N_{multi-jet}^{region3} \times K_{multi-jet}$

region	same/oppo charge	non/isolated e/μ	require $ au$ ID
1	same	non-isolated	no
2	same	isolated	yes
3	орро	non-isolated	no

ετ

Background estimation: top background estimation

- Top is an irreducible background
 - MC simulation + extrapolation estimation
- Top control region definition
 - same selection as SR except the following
 - final events have
 - one good e/μ + one good τ
- Extrapolation method
 - for high mass region top estimation
 - MC simulation statistically limited in high m_{ll} region
 - two functions were investigated

- di-jet function: $e^{-a}x^{b}x^{clnx}$, monomial: $\frac{a}{(x+b)^{c}}$
- multiple fitting ranges were investigated
 - find best fit among a few hundred fittings
 - criteria: mean, median and best chi2 (give similar results)
 - available MC statistics and extrapolation agree well beyond the stitching point

Unit: GeV	еµ	ετ	μτ
lower range	450, 470, … , 530,	300, 320, , 440,	450, 470, , 530,
	550	460	550
upper range	1000, 1025,,1175,	1000, 1025,,	1000, 1025,,
	1200	1475, 1500	1475, 1500
stitch point	1000	900	900

Statistical analysis: setup

- Signal samples considered
 - Zprime (500 GeV, 700 GeV, 1 TeV, 1.5 TeV, and 2 TeV)
- Framework: TRexFitter
 - binning:
 - 130,150,175,200,230,260,300,380,500,700,1000,1500,2000,2500
 - NPs considered (Instrumental):
 - histograms based experimental syst. on all the bkg/sig
 - theoretical systematics not included yet
 - one luminosity uncertainty (±0.017) on all the bkg/sig
 - QCD variation from data-driven
 - overall theory uncertainty on the background
 - samples with theory uncertainty is not ready yet

Statistical analysis: limit calculation ($e\mu$)

MP/GeV	XS*BR
500	0.00310
700	0.00132
1000	0.000530
1500	0.000208
2000	0.000107

Summary

Background estimation

- top background
 - extrapolation method was investigated and applied above stitch point
 - haven't be included in limit fitting yet
- Wjets and multi-jet background
 - Wjets fakes rates were estimated, and data/MC looks consistent in Wjets CR
 - multi-jet estimated with data-driven by fitting a constant $K_{multi-jet}$
- Limit fitting
 - setup using TRexFitter
 - experimental systematics were investigated, need to include theoretical systematics next
- Finalizing the analysis

Back up

Statistical analysis: experimental uncertainty

	up	down		up	down		up	down
leptonSF_MU_SF_lsol_STAT	0.36%	-9.62%	bTagSF_DL1r_85_eigenvars_B	-4.40%	6.08%	leptonSF_MU_SF_Isol_STAT	0.35%	-10.21%
bTagSF_DL1r_85_eigenvars_B	6.76%	-4.67%	GlobalReduction_JET_Pileup_RhoT opology	2.92%	-2.23%	bTagSF_DL1r_85_eigenvars_B	6.75%	-4.66%
GlobalReduction_JET_Pileup_RhoT opology	-2.46%	2.60%	GlobalReduction_JET_BJES_Resp onse	2.14%	-1.48%	GlobalReduction_JET_Pileup_RhoTo pology	-2.79%	-2.79%
GlobalReduction_JET_BJES_Resp onse	-1.87%	1.96%	tauSF_EFF_RNNID_SYST	-1.57%	1.57%	GlobalReduction_JET_BJES_Response	-1.73%	-1.73%
pileup	-1.27%	-0.92%	TAUS_TRUEHADTAU_SME_TES_ PHYSICSLIST	-1.14%	1.39%	tauSF_EFF_RNNID_SYST	1.57%	-1.57%
leptonSF_EL_SF_ID	1.09%	-1.09%	leptonSF_EL_SF_ID	-1.13%	1.13%	TAUS_TRUEHADTAU_SME_TES_P HYSICSLIST	1.37%	1.37%
GlobalReduction_JET_EffectiveNP_ 1	-0.96%	1.04%	tauSF_EFF_ELEOLR_TOTAL	-1.08%	1.08%	pileup	-1.39%	-1.07%
GlobalReduction_JET_EtaIntercalib ration_Modelling	-0.75%	0.92%	GlobalReduction_JET_EffectiveNP_ 1	1.08%	-0.89%	GlobalReduction_JET_EffectiveNP_1	-1.12%	-1.12%
GlobalReduction_JET_JER_Effectiv eNP_2	0.68%	0.68%	pileup	-0.60%	-1.11%	tauSF_EFF_ELEOLR_TOTAL	1.08%	-1.08%
leptonSF_MU_SF_ID_SYST	0.78%	0.00%	TAUS_TRUEHADTAU_SME_TES_ MODEL_CLOSURE	-0.74%	1.00%	TAUS_TRUEHADTAU_SME_TES_ MODEL_CLOSURE	1.05%	1.05%
total	7.86%	-11.47%	total	6.66%	-7.54%	total	8.38%	-12.26%

eμ

ετ

μτ

- IeptonSF_MU_SF_Isol_STAT is a tool issue happening on Loose Muon isolation WP
 - has submitted issue, not used in fitting right now
- > still need to consider Top quark theoretical uncertainties
- > for signals and other backgrounds, see backup slides

MVA optimization: pDNN to Boost the Sensitivity

- Use parameterized DNN (pDNN)
 - instead of training different NN classifier at different mass points we can combine all mass points samples together with
 - merge different mass points signal samples together with reasonable weight and normalize
 - certain input variable randomized to have same distribution between signals and backgrounds
 - expect the classifier will learn the trick between mass points
 - distance between mass points shouldn't be too large, otherwise will expect performance drop

MVA optimization: training set up

- Signal models
 - currently checking Zprime model, will check RPV & QBH
- Training variables
 - single lepton vars: p_T
 - lepton pair vars: $m, p_T, \Delta R$
 - other vars: $E_{missing}^T$, n_{jets}
- DNN setups
 - use Keras framework with TensorFlow backend
 - each mass point normed to unit and then merged to train against background
 - input variables normalized with mean & standard error
 - training-testing-validation ratio: 0.6-0.2-0.2
 - 5 hidden layers & 128 nodes per layer
 - hyperparameter: manual tune + Bayesian optimization
- Cut value
 - cut at 0.5 for now, need to check performance with different cut value

Statistical analysis: results

compare limits with/without DNN cut, DNN helps improve about 10~20% in different mass point

TopQuark sample (extrapolation)

E_pt > 65 GeV ; E_eta < 2.47 and can't at 1.37 < E_eta < 1.52 ; E_isElTight = 1.0 ; E_isolation_FixedCutTight = true; E_delta_z0_sintheta < 0.5 and E_d0sig < 5.0 ;	Mu_pt > 65 GeV; Mu_eta < 2.5; Mu_isHighPt = true; Mu_isolation_FixedCutLoose = true; Mu_delta_z0_sintheta < 0.5 and Mu_d0sig < 3.0;
Tau_pt > 65GeV; Tau_eta < 2.47 and can't at range 1.37< Tau_eta < 1.52; Tau_charge = 1.0; Tau_nTracks = 1.0 or 3.0; Tau ID =RNN Medium.	130 GeV < Invariant Mass; Final events have one good e or mu and one good tau; Charge are contrary; DeltaPhi >2.7; TopQuark signal region
	Take etau channel SR for an example: Propagator.Mag() >130 GeV; NumberGoodElectrons = 1; NumberGoodTaus = 1; NumberGoodMuons = 0; Charge_ele*Charge_tau == -1.0; fabs(DeltaPhi) >2.7;

Fit function

Dijet: TMath::Exp(-1.0*[0])*TMath::Power(x,[1])*TMath::Power(x,[2]*TMath::Log(x))

$$e^{-a}x^{b}x^{clnx}$$

Monomial:

[0]/pow(x+[1],[2])

	emu	etau	mutau
Lower range(step)	450-550(20)[GeV]	300-450(20)[GeV]	450-550(20)[GeV]
Upper range(step)	1000-1200(25)[GeV]	1000-1500(25)[GeV]	1000-1500(25)[GeV]
Stitch point	1000 GeV	900GeV	900GeV

 $\frac{a}{(x+b)^c}$

Take emu as an example:450-1000, 450-1025...450-1200, 470-1000, ... 450-1200 In total have 6*9=54 and have 2 functions, so will have 54*2= 108 fit.

Fit range variation

Central fit is the fit result which have the best chi2(minimum value).

	emu	etau	mutau	Can be used to
Total fit	108	378	252	check fit stability
Converged fit	92	303	252	
Percent	85%	80%	100%	23

Final fit result in emu channel

The final fit above stitch point which is determined to use according to mean, median or best chi2.

Final fit result in etau channel

mean

median

best chi2

Final fit result in mutau channel

In all three channels, the final fit result is similar no matter to use mean value, median value or best chi2 to determine it.

Cumulative integral bin-by-bin in etau channel

Cumulative integral bin-by-bin in mutau channel

m_T cut decision in Wjets CR

- transverse mass cut reduce similar percentage (roughly 50%) of events in different backgrounds
 - not helping enrich Wjets events or reduce other bkg (mainly ZII)
- decision: remove m_T cut

	no $m_T(l_{lead}, E_{missing}^T) > 80 GeV$				with $m_T(l_{lead}, E_{missing}^T) > 80 GeV$			
	CR (no tau ID)		CR (with tau ID)		CR (no tau ID)		CR (with tau ID)	
	ет	μτ	еτ	μτ	ет	μτ	еτ	μτ
Data	949724	715972	14638	6979	440913	347861	8553	4063
MC	823622.9	660736.4	14419.2	7103.8	389638	328893.4	8284.1	4006.8
Wjets	658321.3	531238.5	5392.7	3821.1	316040.1	263150.7	2977.6	1952.9
Тор	54730.2	42408	2069	1145.9	30182.2	23704.8	1367.4	763.9
ZII	82903.9	65534.1	5370.1	1122.7	29211.1	30740	2856.3	577.3
di-boson	16338.8	12775.8	1170.6	760.3	8336.1	6680.8	801.1	536.8
singleTop	11328.6	8780	416.8	253.9	5868.6	4617.1	281.7	175.8