

LHCb中国组2020年研究进展

何吉波(中国科学院大学) 代表LHCb中国组 CLHCP2020, 2020年11月6日

- LHCb实验概况
- LHCb中国组人员
- 2020年度中国组科研成果
- 探测器硬件、软件和服务工作
- 总结与鸣谢

LHC和LHCb实验

1HC 27 km

SUISS

FRANCE

CMS

ATLAS

7 km

CERN Meyrin

ALICE

LHCb实验及其主要科学目标

• LHCb成员: 18个国家, 87家单位, 1434名成员

- 间接寻找新物理:稀有衰变、CP破坏
- 理解强相互作用:强子性质、新强子态
- 其它: 电弱, 重离子物理

• LHCb实验采集了目前世界上最大的底/粲强子样本

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

5

对撞	对撞类型	年份	能量(√ <i>s_{NN}</i>)	积分亮度
	<i>p</i> Pb/Pb <i>p</i>	2013	5.02 TeV	1.6 nb^{-1}
	PbPb	2015	5.02 TeV	10 μb ⁻¹
	pPb/Pbp	2016	8.16 TeV	34 nb ⁻¹
	XeXe	2017	5.44 TeV	$0.4 \ \mu b^{-1}$
	PbPb	2018	5.02 TeV	~ 200 μb ^{−1}

LHCb中国组人员

中国组人员

单位	教师	博士后	博士生	硕士生	单位小计	作者数*
清华大学	5	1	15	4	25	20
华中师范	3	1	7	11	22	9
国科大	5	9	7	4	25	18
武汉大学	3	1	3	3	10	7
高能所	2	4	3	2	11	8
华南师范	3		2	6	11	4
北京大学	2		8		10	6
湖南大学	4		1	3	8	1
总数	27	16	46	33	122	73

* 据文章LHCb-Paper-2020-020作者列表,中国组占比73/991=7.4%

中国组教师

- 清华大学 杨振伟,张黎明,朱相雷,龚光华,曾鸣
- 华中师范 谢跃红,尹航,张冬亮
- 国科大 郑阳恒,吕晓睿,何吉波,钱文斌,刘倩
- 武汉大学 孙亮, 蔡浩, 王纪科
- 高能所 王建春,李一鸣
- 华南师范 李衡讷, 刘国明, 胡继峰
- 北京大学 高原宁,张艳席
- 湖南大学 俞洁晟,张书磊,戴凌云,陈卓俊

LHCb国际合作组任职

• 报告人委员会 (Speakers' Bureau)

- 张黎明 (2019.10-2021.9) - 杨振伟 (2017.10-2019.9)
- 编委会 (Editorial Board) - 何吉波 (2020.12-2022.11)
- ・物理工作组召集人
 - 何吉波 (2019.1-2021.3) 心场度
 - 张艳席 (2018.1-2021.3)
 - 钱文斌 (2018.1-2020.3)
 - 张黎明 (2016.1-2018.3)
 - 杨振伟 (2015.1-2017.3)
 - 谢跃红 (2014.1-2016.3)

2020年度中国组物理成果

中国组主要物理成果

• 五夸克态

- 双重味重子
- B⁺介子研究
- 强子谱
- 强子产生
- 稀有衰变
- CKM相角γ
- $\Lambda_h^0 \to \eta_c p K^ \Lambda_h^0 \to \Lambda_c^+ K^+ K^- \pi^ P_{CS}^0 \to J/\psi \Lambda$ E_{cc}⁺⁺质量精确测量 *E*⁰_{bc}首次搜寻 B⁺质量精确测量 D*激发态 E°激发态 pPb对撞中DPS η_c 强产生 $B^0 \rightarrow J/\psi\phi$ $B_{c}^{0} \rightarrow D^{(*)0} \phi$ 灵敏度

arXiv:2007.11292 LHCb-Paper-2020-028 LHCb-Paper-2020-039 JHEP 02 (2020) 049 arXiv:2009.02481 JHEP 07 (2020) 123 LHCb-Paper-2020-034 PRL 124 (2020) 022001 arXiv:2007.06945 EJPC 80 (2020) 191 LHCb-Paper-2020-033 arXiv:2008.00668

- 双重味重子
- *B*⁺介子研究
- 强子谱
- 强子产生
- 稀有衰变
- CKM相角γ
- HF/HI分会 $\Lambda_h^0 \to \eta_c p K^-$ 王梦臻,06/11,14h18 $\Lambda_h^0 \to \Lambda_c^+ K^+ K^- \pi^ P_{cs}^0 \to J/\psi \Lambda$ 方勃, 06/11, 14h00 *E*⁺⁺质量精确测量 周亦雄, 06/11, 14h54 *E*⁰_{hc}首次搜寻 项治宇, 06/11, 14h36 B⁺质量精确测量 范艳婷, 06/11, 16h38 D÷激发态 陈晨, 06/11, 15h32 E_c^0 激发态 许智豪, 06/11, 16h20 pPb对撞中DPS η_c 强产生 徐庆年,06/11,16h56 $B^0 \rightarrow J/\psi\phi$ 胡文华,07/11,16h38 $B_{c}^{0} \rightarrow D^{(*)0} \phi$ 灵敏度 周晓康, 07/11, 16h56

- 2015, $\Lambda_b^0 \rightarrow J/\psi p K^-$ 衰变中发现五夸克态
- 2019, 10倍数据样本, 观测到3个新五夸克态
- 理解五夸克态本质
 - 寻找新成员

五夸克态: $\Lambda_h^0 \to \eta_c p K^-$

- 寻找可能衰变到 $\eta_c p$ 的新五夸克态 $c\bar{c}uud$
- 分子态模型预言 $\frac{\mathcal{B}(P_c(4312) \rightarrow \eta_c p)}{\mathcal{B}(P_c(4312) \rightarrow J/\psi p)} \approx 3$

首次发现 $\Lambda_h^0 \rightarrow \eta_c p K^-$ 衰变

[arXiv:2007.11292]

五夸克态: $\Lambda_h^0 \to \Lambda_c^+ K^+ K^- \pi^-$

- 寻找可能衰变到 $\Lambda_c^+ K^+$ 的新五夸克态 $c\bar{s}uud$
- 分支比 $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = (9.26 \pm 0.29 \pm 0.46 \pm 0.26) \times 10^{-2}$

五夸克态: $P_{cs}^0 \rightarrow J/\psi\Lambda$ 迹象 • $\Sigma_b^- \rightarrow J/\psi \Lambda K^-$ 全谱分析,首次发现含有奇 异夸克隐粲五夸克态*cīuds*的迹象 $- 显著度: 4.3\sigma(统计), 考虑系统误差后为3.1\sigma$ $-P_{cs}(4459)^0$ $M_0 = 4458.8 \pm 2.9^{+4.7}_{-1.1}$ MeV *Ξ_c⁰D̄*^{*0}阈值下19 MeV $\Gamma = 17.3 \pm 6.5^{+8.0}_{-5.7}$ MeV

[LHCb-Paper-2020-039]

17

 $m(\Xi_{cc}^{++}) = 3621.55 \pm 0.23 \pm 0.30 \text{ MeV}/c^2$ c.f., 3620.6 ± 0.65 ± 0.31 MeV/c²

[arXiv:2009.02481]

B ⁺ 介子	b···ē	B_c^+ $I(J^P) = 0(0^-)$ <i>l, J, P</i> need confirmatio Quantum numbers shown are quark-model p	n. predictions.	
_		B ⁺ _c MASS	$6274.9\pm0.8~\textrm{M}$	eV
		B_c^+ MEAN LIFE	(0.510 ± 0.009)	$\times 10^{-12}$ s
B^{\pm} $I(J^{P}) = 0(0^{-})$		$POLARIZATION IN B_{c} DECAT$ $\Gamma T = D D D D D D D D D D D D D D D D D D$	0.54 ± 0.15	
<i>C I</i> , <i>J</i> , <i>P</i> need confirmation.		$A_P(B_c^+)$	-0.010 ± 0.010	
	山国纪作屮重更き			Expand all decays
الالد (10%) 50% 10		^{™→} 2020粒子表	velow. $Fraction (\Gamma_i / \Gamma)$	Scale Factor/ P Conf. Level (MeV/c)
6.22 ± 0.06 ³ ACKERSTAFF 90 OPAL $e^+e^- \rightarrow Z$		 The following quantities are not pure bran Bc). 	ching ratios; ratherthe frac	tion $\Gamma_i/\Gamma \times \mathbf{B}(b \rightarrow b)$
² ABE 98M observed 20.4 ± 6.2 events in the $B_c \rightarrow J/\psi \pi$. > 4 BE traduct deviations. The mass value is criticated from $\psi(L/\psi S)$		$\Gamma_1 \qquad J/\psi(1S)\ell^+\nu_\ell$ anything	$(8,1+1,2) \times 10^{-5}$	
> 4.8 standard deviations. The mass value is estimated from $m(J)\psi(15)x$? ³ ACKERSTAFF 980 observed 2 candidate events in the $B_c \rightarrow J/\psi(15)\pi^+$ channel with an estimated background of 0.63 + 0.20 events.		$\Gamma_2 \qquad J/\psi(1S)\mu^+\nu\mu$		2372
		$\Gamma_3 \qquad J/\psi(1S)\tau^+\nu_{\tau}$	soon	1932
		$\Gamma_5 \qquad J/\psi(1S)\kappa^+$	seen	2341
UALUE (10 ⁻¹² 5) DOCUMENT ID TECN COMMENT		$\Gamma_6 \qquad J/\psi(1S)\pi^+\pi^+\pi^-$	seen	2350
0.463 ^{+0.073} ±0.036 ⁴ ABULENCIA 060 CDF pp at 1.96 TeV 0.46 ^{+0.065} ±0.036 ⁴ ABE 004 CDF pp at 1.96 TeV		$\Gamma_7 \qquad J/\psi(1S)a_1(1260)$ $\Gamma_8 \qquad I/\mu(1S)K^+K^-\pi^+$	< 1.2 × 10 ⁻³	CL=90% 2169
4 The lifetime is measured from the $J/\psi(1S)e$ decay vertices.		$\frac{1}{19} \frac{3}{J/\psi(1S)\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}}$	seen	2309
		$\Gamma_{10} \qquad \psi(2S)\pi^+$	seen	2052
B_{c}^{-} modes are charge conjugates of the modes helps	$2^{43}E$ LHCh Dup 1 Dup 2 \rightarrow Data	$\Gamma_{11} = J/\psi(1S)D^{*}K^{+}$ $\Gamma_{12} = J/\psi(1S)D^{*}(2007)^{0}K^{+}$	seen	1539
B_c modes are charge conjugates of the modes below.	20E LHCD Kun I+Kun 2 Total fit	$\Gamma_{12} = J/\psi(1S)D(2007) R^{-1} R^{-1} T_{13} = J/\psi(1S)D^{*}(2010)^{+} R^{*0}$	seen	920
Mode Fraction (Γ_i/Γ) Confidence level	$\mathbb{Z}_{35} \mathbb{E}_{c(25)^+}$	$\Gamma_{14} \qquad J/\psi(1S)D^+K^{*0}$	seen	1123
The following quantities are not pure branching ratios; rather the fraction $\Gamma_I/\Gamma \times B(\overline{b} \rightarrow B_r)$.	$B_c(2S)^r$	$\Gamma_{15} = J/\psi(15)D_{\overline{s}}^{*+}$	seen	1822
$\Gamma_1 = J/\psi(1S)\ell^+ \nu_\ell$ anything $(5.2^{+2.4}_{-2.1}) \times 10^{-5}$		$\Gamma_{17} = J/\psi(1S)p_{\overline{p}\pi}^{*}$	seen	1792
$\Gamma_2 = J/\psi(1S)\pi^+ < 8.2 \times 10^{-5} = 90\%$ $\Gamma_2 = J/\psi(1S)\pi^+\pi^+\pi^- < 5.7 \times 10^{-4} = 90\%$	S 25 E Same-sign	$\Gamma_{18} \chi_{c0} \pi^+$	$(2.4^{+0.9}_{-0.8}) \times 10^{-5}$	2205
$\Gamma_4 = \frac{J/\psi(1S) a_1(1260)}{\Gamma_4 = 0}$ < 1.2 × 10 ⁻³ 90%		$\Gamma_{19} pp\pi'$	(2.8 +12) ×10 ⁻⁷	2970
15 D (2010) D < 0.2 × 10 - 90%		$\Gamma_{21} D_{\pi}^{0}$	< 1.6 × 10 ⁻⁷	CL=95% 2858
		$\Gamma_{22} D^{*0}\pi^+$	$< 4 \times 10^{-7}$	CL=95% 2815
	─────────────────────────────────────	$1_{23} D^{*}K^{+}$	$< 4 \times 10^{-7}$	CL=95% 2793
	5 ∰ [™] † ¹ † † ¹ † † ¹ ↓ ¹ ↓ ¹ ₩ ↓ ¹ ↓ ¹ ↓ ¹ ↓ ¹ ↓ ¹ ↓ ¹	$\begin{array}{c} \downarrow \downarrow$	$< 6 \times 10^{-3}$	CL=90% 2484
		$\Gamma_{26} D^+ \overline{D}^0$	$< 3.0 \times 10^{-6}$	CL=90% 2521
	500 550 600 650	700 Γ_{28} $p^* \overline{p}^0$	< 1.9 × 10 ⁻⁶	2425
	ΔM [MeV]	$/c^2$] $\Gamma_{29}^{29} D_{SD}^{SD} (2007)^0$		2427
		$\Gamma_{30} \qquad D_s^* \overline{D}^0$ $\Gamma_{31} \qquad D_t^* \overline{D}^0$		2425
一次里取相划	用沙里	$\Gamma_{32} D^{*}(2010)^{+}\overline{D}^{0}$	$< 6.2 \times 10^{-3}$	CL=90% 2467
		124 ptp //00/20	2	2467 2467
$M(B_c(2^3S_1)^+)_{\rm rec}$	$= 6841.2 \pm 0.6(\text{stat}) \pm 0.6(\text{stat})$	$1.1(\text{syst}) \pm 0.8(B_c^+)$	MeV/c^2	2467 CL=90% 2366 CL=90% 2366
$M(B_c(2S)^+) = 68$	872.1 ± 1.3 (stat) ± 0.1 (s	yst) $\pm 0.8(B_c^+)$ MeV	/c ²	CL=90% 2410 CL=90% 2410 CL=90% 2783 CL=90% 2783 CL=90% 2751
		$\Gamma_{44} D_{K}^{+} V$	$< 0.4 \times 10^{-6}$	CL=90% 2751
		$\Gamma_{45} \qquad D_{5}^{*}\phi$ $\Gamma_{46} \qquad K^{+}K^{0}$	$< 0.32 \times 10^{-6}$	CL=90% 2727 CL=90% 3098
		$\Gamma 47 \qquad B_{S}^{0}\pi^{+} / B(\overline{b} \to B_{S})$	(2.37 ⁺⁰³⁷	02-0070 0000

- •利用所有数据,8个衰变道
- 被评价为 B_c^+ 介子质量的 "终极测量"

稀有衰变 $B^0 \rightarrow J/\psi\phi$ 的寻找

・稀有衰变

 $\mathrm{BR}ig(B^0 o J/\psi\phiig) < 1.1{ imes}10^{-7}$ at 90% CL

[LHCb-Paper-2020-033]

CKM相角γ

- 研究了 $B_s^0 \rightarrow D^{(*)0} \phi$ 测量CKM- γ 的灵敏度
 - ·利用现有数据,统计误差8-19°

• 物理分析正在进行中

[arXiv:2008.00668]

新的分波分析工具: TF-PWA

- 基于TensorFlow开发,具有如下特点
 - GPU based

- Fast
- General

• Easy to use

• Automatic differentiation

Vectorized calculation

- Quasi-Newton Method: scipy.optimize
- Custom model available
- Simple configuration file (example provided)
- Automatics process
- All necessary functions implemented (details later)
- Open access and well supported

https://gitlab.com/jiangyi15/tf-pwa

• 已用于LHCb/BES3分析,欢迎使用和参与研发

- 1. 王梦臻(清华), Exotic hadrons: experimental, Implications of LHCb measurement and Future prospects, CERN, 2020-10-28
- 2. 张黎明(清华), Spectroscopy of hadron states with heavyquarks at LHCb, QCD 2020, Montpellier (France), 2020-10-26
- 3. Biplab Dey(华中师范), LHCb: status, highlights and prospects, Beauty 2020, Japan, 2020-09-21
- 4. Ina Carli(高能所), The silicon strip tracking detector for the LHCb Upgrade, ICHEP 2020, Prague (Czech), 2020-07-28
- 5. 周亦雄(国科大), Charmed hadron properties and spectroscopy at LHCb, ICHEP 2020, Prague (Czech), 2020-07-28
- 6. 项治宇(国科大), Studies of quarkonia and doubly-heavy hadrons at LHCb, ICHEP 2020, Prague (Czech), 2020-07-28
- 7. 王剑桥(清华), Open heavy flavor production in pA collision, Hard Probes, Austin (US), 2020-05-31
- 8. 李衡讷(华南师范), Z production in pPb collisions at LHCb, Hard Probes, Austin (US), 2020-05-31

- 9. Mark Tobin (高能所), LHCb upgrades, LHCP, Paris (France), 2020-05-25
- 10. 徐梦琳(华中师范), EWK physics: Measurements and prospects from LHCb, LHCP, Paris (France), 2020-05-25
- 11. 李衡讷(华南师范), Strong physics at LHCb: probing nuclear matter effects in small system, CERN Seminar, 2019-12-10
- Maitreyee Mukherjee(华中师范), Probing small-x gluons with gamma+hadron correlations in the forward rapidity with the LHCb detector, Quark Matter 2019, Wuhan (China) 2019-11-03
- 13. 王剑桥(清华), Results from open charm production at LHCb in pPb, Quark Matter 2019, Wuhan (China), 2019-11-03
- 14. 李衡讷(华南师范), Quarkonium production in Pb-Pb ultra-peripheral collisions (UPC) and Z production in pPb collisions, Quark Matter 2019,

Wuhan (China), 2019-11-03

李衡讷(华南师范)在 CERN Seminar现场

探测器硬件、软件和服务工作

探测器硬件、软件相关工作

Detector分会

- 实验运行 - 核心软件
 - 亮度测量
 - 网格计算
- 升级
 - 上游径迹探测器
 - 闪烁光纤径迹探测器
 - 实时物理数据分析
- 二期升级
 - 电磁量能器
 - 穿越辐射探测器

周亦雄,06/11,17h32 姜晓巍,06/11,17h50

I. Carli, 08/11, 14h00 项治宇, 08/11, 15h30

M. Saur, 08/11, 16h20

LHCb核心软件

- 一名博士后全职开发 LHCb软件性能分析和 回归系统
 - 监测软件性能变化 – 提供技术分析大数据

软件触发系统能处理的事例率趋势图

 投入0.5FTE负责管理 与维护存储LHCb探测 器信息的条件数据库

测量一小时间段的绝对亮度,给出标度因子。其 它时间段的亮度由亮度计数器来确定

• 研究了不同亮度计数器的稳定性

网格计算Tier-2

- LHCb中国组整合资源, 依托高能所计算中心, 2018年建成了Tier-2节 点,并入LHCb网格计 算网络,长期稳定运行
 - 1008 CPU核
 - 375 TB存储

- -期升级:中国组参与闪烁光纤径迹探测器(SciFi)电子学

 +上游硅微条径迹探测器(UT)
- 二期升级:希望对探测器有更大贡献

上游径迹探测器(UT)升级

- UT是基于硅微条技术的径迹探测器,对 保证动量分辨、提高触发速度至关重要, 高能所成员从UT早期设计开始深度参与
- 前端读出芯片SALT是UT关键部件,高能 所团队领导、参与多次束流辐照测试,验 证SALT在强辐照条件下的表现
 - 2019年3月在美国费米实验室
 - 2019年8月在美国麻省综合医院
 - 2019年11月在瑞士PSI
 - 2020年11月计划在北京原子能院测试

高能所内为束流测试搭建 的SALT芯片读出测试系统

上游径迹探测器(UT)升级

- 代表UT在多个国际会议做报告
 - M. Tobin @ LHCC open session (2019.11)
 - M. Tobin @ LHCP (2020.05)
 - I. Carli @ ICHEP (2020.07)
- 2020年起基金委NSFC-CERN项目支持

				•••		X Stave5: TOP (UTSLICETEST - UTSLICETEST; #2)				
14					System		State			Mon 07-Sep-2020 12:04:27
					Stave5		READY - 🔡 🛆			
·				Sub System	State					
				JUTELICE ATL DOBO	DEADY		Configuration sequence	Data type (hybrids)	Hybrid temperatures	
				UTSLICE_AT1_DCB4	READY	- 7	Stop Monitoring	Pattern Counter (+1)	Front M	
				UTSLICE_STAVE5T_S7	READY	- ×	Recet all SCAr	Counter (-1)		
				UTSLICE_STAVE5T_S6	READY	- 🗸	Nesec an Juna	Pseudorandom 0	Back K	
				UTSLICE_STAVEST_S5	NOT_READY	- ×	Configure all SCAs	TFC loopback		
	STATE OF			UTSLICE_STAVE5T_S4	READY	- 🗸		DSP data	Show Salt Settings	
				UTSLICE_STAVE5T_S3	ERROR	- ×	Reset all GPIO	NZS mode (hybrids)		
	Car Mar			UTSLICE_STAVE5T_S2	READY		Start Monitoring	Masked ADC	Show GBTx Phases	
		- OCAL		UTSLICE_STAVE5T_S1	ERROR	- ×		Synced raw ADC	Cherry Data Links	
				UTSLICE_STAVE5B_S1	READY	- 🗸	Configure all GBTx	After pedestals	Show Data Chiks	
				UTSLICE_STAVE5B_S2	ERROR	- ×	Configure all Hybrids	After MLMS	Exclude All Hybrids	
·				UTSLICE_STAVE5B_S3	READY			txTestMode (DCBs)		
	Y			UTSLICE_STAVE5B_S4	NOT_READY	- ×	Scans	Default	Include All Hybrids	
V			5 March	UTSLICE_STAVE5B_S5	READY	- 🗸	Scan all DLL/PLL	Test	SEU Counters	
				UTSLICE STAVE5B S6	ERROR	- X		Counting		
				UTSLICE_STAVE5B_S7	NOT_READY	- ×		PRBS	TFC Counters	
	The second second			UTSLICE_AB1_DCB0	READY	- 🗸	Scan Salt Phases			
	H ANDREAD			UTSLICE_AB1_DCB4	READY	- 🗸			Dump configuration	
							Temporary			
							Load TrimDAC files 4	00V 5C Search Pat (e.g. TrimD	ttern / file prefix AC_400V_m25C) MCM	4ZS
1							Reset Button Colours	Reset baselines_cfg	PRBS	

IHEP驻CERN成员参与搭建的slice测试系统,和开发的控制软件

闪烁光纤径迹探测器SciFi

- 承担了SciFi前端电子学板的研制、读出芯片与前端电子学测 试与定标系统等
- 束流测试数据分析、在线监控系统的研发、寻迹与准直算法
- 参与了前端电子学的测试(30%)

实时物理数据分析(RTA) 实时物理数据分析(Real Time Analyais) –参与了寻迹、标定、触发算法(第一级基于 GPU)、测试框架等

二期升级: 电磁量能器

搭建独立于LHCb软件的模拟框架

W-Si层状量能器的Geant4模拟

二期升级: 电磁量能器

Readout pad or strips (~ 1mm)

- 提出气体TRD,开_③ 展可行性研究。

2020年总结

- LHCb中国组影响力逐步增强
 - 8家单位,27名教师,总人数122人
 - 多人担任物理工作组召集人等职务
- 物理成果突出
 - QCD(论文10篇),五夸克态、双重味强子、重离子等
 - 间接寻找新物理(论文2篇), CP破坏+稀有衰变
- 探测器方面贡献稳步上升
 - 上游径迹探测器、SciFi径迹探测器、实时分析(RTA)– 积极开展二期升级探测器研发工作

致谢与希望

- 科技部
 - 国家重点研发计划"大科学装置前沿研究"
 - 752万(LHCb物理)+205万(LHC升级项目的小部分) ◆远低于对LHC其它实验的支持水平
- 国家自然科学基金委
 - NSFC-CERN国际合作项目:硬件升级,物理(申请中)
 - 积极争取竞争性项目: 重点、面上、人才项目
- 中国科学院
 - 前沿科学重点研究计划项目
- 成员单位和其他渠道的人才项目

【希望】与团队规模、承担的任务和取得的成绩相匹配的稳定支持