Standard model electroweak measurements

Zhijun Liang (IHEP, Chinese Academy of Sciences)

The 6th China LHC Physics Workshop (CLHCP 2020) Nov 6-9, 2020

Introduction

- Is it the only Higgs boson?
 (or are there more?)
- Are multi-<u>bosons</u>
 interactions SM?
- Are there more states involved in electroweak symmetry breaking?
- Is the Higgs potential SM?

Introduction

Rarer events

.....

deserve DD seve les surses surselles

Multi-boson processes

Single boson results Electroweak Z+dijets

Diboson results
 Vector boson scattering
 yy-WW measurement

Tri-boson results
 Three massive boson productions

Outline

Electroweak Z+dijets (Vector boson fusion) arXiv:2006.15458

Syst. Unc dominated by QCD Z+jets modelling Herwig7+VBFNLO agrees with data \triangleright PoweHeg +Pythia8 overestimates at high m_{ii}, high $|\Delta y_{ii}|$,

> Differential measurements of electroweak Z+dijets events by ATLAS with full run 2 data

Measurements: 37.4 ± 3.5 (stat.) ± 5.5 (syst.) fb

Herwig7+VBFNLO :39.5 \pm 3.4 (scale) \pm 1.2 (PDF) fb

W+W-production **CMS-PAS-SMP-18-004** Systematics dominated by jet energy scale unc. and higher order QCD corrections unc.

CMS: W+W- measurements with run || 36fb⁻¹ > Two random forest classifier for Drell-Yan and top background.

σ_{fid} (measured)= 1.529± 0.020 (stat)± 0.069 (syst)± 0.028 (theo) pb σ_{fid NNLO} (predicted)= 1.531 ± 0.043 pb

Uncertainty source	(%)	
Statistical uncertainty	1.2	
tt normalization	2.0	Nb/R
Drell-Yan normalization	1.4	β L I
W γ^* normalization	0.4	×
Nonprompt leptons normalization	1.9	
Lepton efficiencies	2.1	
b-tagging (b/c)	0.4	0.5
b-tagging (light)	1.0	-
Jet energy scale and resolution	2.3	-
Pileup	0.4	-
Simulation and data control regions sample size	1.0	_
Total experimental systematic uncertainty	4.6	
QCD factorization and renormalization scales	0.4	
Higher-order QCD corrections and p_{T}^{WW} distribution	1.4	Ψ Ω 1 F + Theo. predic
PDFs	0.4	
Underlying event modeling	0.5	
Total theoretical systematic uncertainty	1.6	
Luminosity	2.7	
Total uncertainty	5.7	

Number of jets

Di-lepton $\Delta \phi_{II}$

> Higgs Boson alone responsible for Electroweak Symmetry Breaking (EWSB)? \rightarrow additional Higgs bosons may still play a role in the EW symmetry breaking. Vector boson scattering (VBS) processes \rightarrow Key process to probe nature of EWSB Second states and the second states are as a second state of the second states are as a second state are as

> W and Z gauge bosons acquire longitudinal polarization via the Brout-Englert-Higgs mechanism: \rightarrow 3 goldstone bosons H[±] and H⁰ "eaten up" by W and Z

\<u>/</u>± Same-sign turns LHC into a Higgs collider! *\W±*

Motivation of Vector Boson Scattering

Polarization of WW pairs

Two longitudinal polarized W pairs (W_1, W_1) > W pairs with one transversed (longitudinal) polarized, $W_T W_X (W_L W_X)$ Two transversed polarized W pairs $(W_T W_T)$

Unpolarized WW/WZVBS Full Run II An observation of electroweak production of WZ boson pairs by CMS

Event selection highlight 2 same-sign leptons (WW) □ 3 leptons (WZ) □ Dijet mass m_{ii} >500GeV

Observed (expected) Significance EWK WZ: 6.8 (5.3)σ EWK WW: far above 5 σ

Phys. Lett. B 809 (2020) 135710

First measurements of EW production cross sections of polarized W±W± $> 1^{st}$ Goal : measure two longitudinal polarized W pairs (W W W) $> 2^{nd}$ goal: W pairs with at least one longitudinal polarized, $W_1 W_X$

Event selection highlight 2 same-sign leptons □ Dijet mass m_{ii} >500GeV

$\Delta \phi$ between leptons

Process

 $\mathrm{W}_{ extsf{ iny I}}^\pm\mathrm{W}_{ extsf{ iny I}}^\pm$

 $\mathrm{W}_{ extsf{T}}^{\pm}\mathrm{W}_{ extsf{T}}^{\pm}$

 $\mathrm{W}_{\mathrm{T}}^{\pm}\mathrm{W}_{\mathrm{T}}^{\pm}$

Polarized W[±]W[±] VBS Full Run II <u>CMS PAS-SMP-20-006</u> **Multivariate Analysis**

Two Signal BDTs

measure W_LW_L and W_XW_T

 \bullet measure $W_L W_X$ and $W_T W_T$

Yields in $W^{\pm}W^{\pm}SR$ 16.0 ± 18.3 63.1 ± 10.7 110.1 ± 18.1

Polarized W[±]W[±] VBS Full Run II <u>CMS PAS-SMP-20-006</u> First measurements of EW production cross sections of polarized W±W± \triangleright need more data to observe two longitudinal polarized W pairs, W₁W₁

 \triangleright Expected significance for W₁W_x is around 3 σ

□ W[±]W[±] center-of-mass Frame: Observed (expected) significance: $(W_{L}W_{X})$: 2.3 (3.1) σ

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction
$W_L^{\pm}W_L^{\pm}$	$0.32\substack{+0.42 \\ -0.40}$	0.44 ± 0.05
$\mathrm{W}_X^{\pm}\mathrm{W}_\mathrm{T}^{\pm}$	$3.06\substack{+0.51\\-0.48}$	3.13 ± 0.35
$\mathrm{W}^\pm_\mathrm{L}\mathrm{W}^\pm_X$	$1.20\substack{+0.56 \\ -0.53}$	1.63 ± 0.18
$W_T^\pm W_T^\pm$	$2.11\substack{+0.49 \\ -0.47}$	1.94 ± 0.21

China CMS(PKU) team is playing a leading role

CMS Collaboration Highlight Boson-boson collider hiding inside proton-proton collisions "These heavy boson-boson collisions inside the LHC provide physicists with a unique view of the subatomic world."

Zv VBS CMS: Observation of Zy VBS processes (36 fb⁻¹), JHEP 06 (2020) 076 \rightarrow Observed (expected) significance: 5.5 (4.7) σ \rightarrow China CMS team (PKU) plays a leading role • ATLAS: Evidence of Zy VBS processes (36 fb⁻¹), Phys. Lett. B 803 (2020) 135341 \rightarrow Observed (expected) significance: 4.1 (3.8) σ , → China ATLAS team (TDLI) plays an important role

CMS: Observation of Wy VBS processes (run II 36 fb⁻¹) \rightarrow Observed (expected) significance: 5.3 (4.8) σ , \rightarrow use dijet mass(m_{ii}) and lepton+photon mass (m_{iv}) to extract signal \rightarrow use Wy mass (m_{Wy}) to search for anomalous quartic gauge couplings (aQGCs) → China CMS team (PKU) plays a leading role

Wy VBS **CMS-PAS-SMP-19-008**

1000 1200 m_{Wγ} [GeV]

Anomalous quartic gauge couplings(aQGCs) W/Z**Combination on aQGCs limits with ATLAS/CMS results** W/ZCMS ATLAS Limits Channel WWW *L*dt 13 Te\ 1.2e+00, 1.2e+00 35.9 fb⁻¹ 19.7 fb⁻¹ 35.9 fb⁻¹ 8 TeV 13 TeV 8 TeV 8 TeV 13 TeV 8 TeV -3.8e+00, 3.4e+00] -7.4e-01, 6.9e-01] -3.4e+00, 2.9e+00] 29.2 fb⁻¹ 19.7 fb⁻¹ 35.9 fb⁻¹ $\mathcal{L}_{aQGC} = \sum_{i=1}^{2} \frac{f_{S_i}}{\Lambda^4} O_{S_i} + \sum_{i=1}^{\prime} \frac{f_{M_j}}{\Lambda^4} O_{M_j} +$ 4e+00. 5.6e+00 0e-01, 6.0e-011 ss WW ss WW 2e+00, 4.6e+00 19.4 fb 13 TeV 13 TeV , 3.1e-01 8e-01. 37 fb WZ .2e-01, 6.5e-01 137 fb 13 TeV ŻŻ WV ZV WWW , 2.2e-01 137 fb⁻ 2.4e-01 13 TeV .2e-01 1.1e-01 35.9 fb⁻ CMS 137 fb⁻¹ (13 TeV) 13 TeV 3.3e+00, 3.3e+0(35.9 fb / bin 19.7 fb 35.9 fb 19.7 fb 8 TeV .4e+00.4.4e+00 .2e+00, 1.1e+00 13 TeV Data 7e+00, 4.0e+00 8 TeV 4.0e-01] 13 TeV 10⁴ 35.9 fb⁻ Z+X ss WW ss WW 8 TeV 1e+00 2.4e+00 Events 19.4 fb] 13 TeV 1.5e-01 .2e-01. 137 fb⁻ tTZ, VVZ m_{ii} > 100 GeV 13 TeV 13 TeV 13 TeV 13 TeV 13 TeV WZ ZZ WV ZV WWW 137 fb 7e-01. . 4.1e-01 3.1e-01 137 fb⁻ qq→ZZ 1.3e-01 10^{3} 35.9 fb⁻ 2.6e+00 35.9 fb⁻ 7e+00. gg→ZZ 8 TeV 19.7 fb 9.9e+00. 9.0e+00 Ζγ Ζγ Wγ Wγ 35.9 fb⁻¹ 19.7 fb⁻¹ 13 TeV 2.0e+00, 1.9e+00 1.2e+01 8 TeV EW ZZjj 13 TeV 8 TeV 1.2e+00 35.9 fb 0e+00, 10² ss WW ss WW WZ ZZ WV ZV ZYY ZY WY 9e+00, 7.1e+00 $[f_{T9} / \Lambda^4 = 2 TeV^{-4}]$ 19.4 fb 8.8e-01, 5.0e-01] 137 fb 13 TeV .0e+00. 1.3e+00 13 TeV 137 fb[·] -6.3e-01, 5.9e-01] 137 fb 13 TeV 13 TeV 8 TeV 2.8e-01 35.9 fb -2.8e-01 10 0.3e+00, 9.1e+00] 7.0e-01, 7.4e-01] 20.3 fb⁻ 13 TeV 35.9 fb⁻ 8e+00. 3.8e+00 8 TeV 19.7 fb⁻ 13 TeV 13 TeV 5.0e-01. 5.0e-01 35.9 fb⁻ .6e+00. 1.7e+00 35.9 fb⁻ 8 TeV 2.8e+00, 3.0e+00 19.7 fb .0e-01, 4.0e-01] <u>13 TeV</u> 13 TeV 35.9 fb⁻ 2.6e+00, 2.8e+00 Zγ ₩ 35.9 fb 19.7 fb⁻¹ 35.9 fb⁻¹ 19.7 fb⁻¹ 7.3e+00, 7.7e+00] 9.0e-01, 9.0e-01] 8 TeV 13 TeV 8 TeV **10**⁻¹ .8e+00, 1.8e+00 . 4.7e-011 13 TeV .7e-01. 35.9 fb⁻ .8e+00, 1.8e+00 8 TeV 20.2 fb -4.3e-01. 4.3e-011 <u>13 TeV</u> 137 fb⁻ -7.4e+00, 7.4e+00 -4.0e+00, 4.0e+00 -1.3e+00, 1.3e+00 -3.9e+00, 3.9e+00 20.3 fb⁻¹ 19.7 fb⁻¹ 35.9 fb⁻¹ 8 TeV 8 TeV 10⁻² 13 TeV 8 TeV 20.2 fb⁻¹ 137 fb⁻¹ 1000 1200 1400 200 400 600 800 0 HH 13 TeV [-9.2e-01, 9.2e-01] 20 40 aQGC Limits @95% C.L. [TeV⁻⁴]

$\gamma\gamma \rightarrow WW$ measurement in ATLAS Rare electroweak process that probes SM yyWW vertex Key signature: No tracks near lepton vertex \triangleright Event selection highlight : 1 electron + 1 μ , no additional tracks in primary vertex

$\gamma\gamma \rightarrow WW$ measurement in ATLAS (2) ation of $\gamma\gamma \rightarrow WW$ with a significance of 8.4 σ (6.7 σ expected

> First observation of $\gamma\gamma \rightarrow WW$ with a significance of 8.4 σ (6.7 σ expected) > Event selection highlight : $p_T(e\mu)>30GeV$ ($p_T(e\mu)$ as a Missing ET proxy)

p_T(eµ)

Number of additional tracks in vertex

Tri-boson measurements

Tri-boson measurements PRL 125 (2020) 151802

tons	5 leptons	6 leptons
+ /v	$V \rightarrow I v$	$Z \rightarrow II$
+ /v	$Z \rightarrow II$	$Z \rightarrow II$
→ //	$Z \rightarrow II$	$Z \rightarrow II$
	-	CMS full runII ana

Five lepton events

ysis

Tri-boson measurements

 \rightarrow Observed expected significance 5.7 σ (5.9 σ), PRL 125 (2020) 151802 • ATLAS : Evidence for VVV in 13 TeV 80 fb⁻¹:

CMS: First observation of three massive boson productions with full run II data

- \rightarrow Observed expected significance 4.1 σ (3.1 σ), Phys. Lett. B 798 (2019) 134913

CMS Tri-boson combination

Summary • New observations in Vector Boson Scattering and Tri-Bosons productions

• Many measurements are becoming systematic limited with the full run II data > Theory uncertainty on W/Z+jets and diboson +jets became an important systematics More differential measurements to improve MC modelling of VBF observations.

Single boson(W/Z)

Introduction

Signal extraction of EWK Z+dijets > EW Zjj is extracted by using different QCD Zjj generators: > Different mismodelling before fits, but reach good data/MC agreement after fits

