

Xiao Liu (Peking University)

Based on:

Xin Guan, Xiao Liu and Yan-Qing Ma, Chin.Phys.C 44 (2020) Xiao Liu and Yan-Qing Ma, in preparation

The 6th China LHC Physics Workshop (CLHCP2020) 6/11/2020

- I. Introduction
- **II. Reduction of Feynman integrals**
- **III. Calculation of master integrals**
- IV. Summary and outlook

Era of precision physics

> Physics at Large Hadron Collider Amoroso et al, 2003.01700

- Increasing integrated luminosity \rightarrow decreasing statistical errors
- Better understanding of detectors \rightarrow decreasing systematic errors
- Improving requirements on theoretical predictions

State-of-the-art

• $2 \rightarrow 2$ processes

06/11/2020

 $pp \rightarrow \gamma\gamma \text{ at NNLO}_{QCD}$ Catani et al, JHEP (2018); Cieri et al, JHEP(2015); Campbell et al, JHEP(2016) $pp \rightarrow t\bar{t} \text{ at NNLO}_{QCD}$ Czakon et al, Phys.Rev.Lett.(2016); Czakon et al, JHEP(2016) $pp \rightarrow \gamma + j \text{ at NNLO}_{QCD}$ Campbell, Phys.Rev.Lett.(2017)
...

• 2 \rightarrow 3 process at NNLO_{QCD}: $pp \rightarrow \gamma\gamma\gamma$ (leading color) Chawdhry et al, JHEP(2020)

Scattering amplitudes

Scattering amplitudes

• amplitudes generation

Feynman diagrams, unitarity cuts

Ossola et al, Nucl.Phys.B(2007) Giele et al, JHEP(2008) Kosower, Larsen, Phys.Rev.D 85(2012)

• scalar integrals reduction

$$I_i = \sum_{j=1}^{\mathcal{O}(10^2)} c_{ij} \times \mathcal{I}_j$$

 $\mathcal{M} = \sum_{i=1}^{\mathcal{O}(10^4)} f_i \times I_i$

integration-by-parts

Chetyrkin and Tkachov, Nucl.Phys.B (1981) Laporta, Int.J.Mod.Phys.A(2000)

• master integrals calculation

$$\mathcal{I} = \sum_{n=-2L}^{n_0} a_n \, \epsilon^n$$

sector decomposition, differential equation Binoth, Heinrich, Nucl.Phys.B(2000)

Kotikov, Phys. Lett. B(1991) Henn, Phys.Rev.Lett. (2013)

Feynman integrals

> Multiloop multiscale Feynman integrals

• prohibitive algebraic complexity

non-planar contribution of $pp \rightarrow \gamma\gamma\gamma$ missed Chawdhry et al, JHEP(2020)

• "basis" of special functions not fully known

elliptic sectors in H+jet production in QCD

Bonciani et al, JHEP(2016) Bonciani et al, JHEP(2020) Frellesvig et al, JHEP(2020)

> Two new methods

- search algorithm for integrals reduction
- auxiliary-mass-flow method for masters calculation

Massless two-loop five-point integrals

> Topologies

- 5 mass scales $\vec{s} = \{s_1, s_2, s_3, s_4, s_5\}$ and dimensional regulator ϵ
- degree-5 irreducible numerators

Reduction: overview

Gaussian Elimination

> Integration-by-parts reduction

Chetyrkin and Tkachov, Nucl.Phys.B (1981) Laporta, Int.J.Mod.Phys.A(2000)

 $\mathbf{Q}\cdot\mathbf{I}=0$

$$T_i = \sum_{j=1}^{108} C_{ij} \times \mathcal{I}_j$$

100

- $Q(\epsilon, \vec{s})$: $O(10^5)$ equations, coupled
- difficult to obtain

06/11/2020

• *C_{ij}*: huge expression size and hard to use

>Block-triangular relations

 $\mathbf{Q} \cdot \mathbf{I} = \text{simpler integrals}$

- much smaller size: $O(10^2)$ in each block and $O(10^3)$ in total
- much better structure: each block can be solved independently

Reduction

Search algorithm XL, Ma, Phys.Rev.D (2019) Guan, XL, Ma, Chin.Phys.C (2020)

1. use IBP system to express numerically all target integrals to master integrals

$$I_i \quad \longleftrightarrow \quad \{C_{i,1}, \ldots, C_{i,108}\}$$

2. search for relations among integrals

$$\sum_{i=1}^{N} Q_i(\epsilon, \vec{s}) I_i(\epsilon, \vec{s}) = 0, \quad Q_i(\epsilon, \vec{s}) = \sum_{\kappa=0}^{\epsilon_{\max}} \sum_{\vec{\lambda} \in \Omega_{d_i}} \tilde{Q}_i^{\kappa \lambda_1 \dots \lambda_5} \epsilon^{\kappa} s_1^{\lambda_1} \cdots s_5^{\lambda_5}$$

• number of unknowns: finite

06/11/2020

- numerical IBP at 1 point \rightarrow at most 108 constraints
- $\tilde{Q}_{i}^{\kappa\lambda_{1}...\lambda_{5}}$ can be determined after finite number of numerical IBP evaluations

Equipped with a carefully designed reduction scheme, block-triangular relations can be obtained finally.

Results

top.	#int.	#MIs	$t_{\rm search}$ (h)	$t_{\rm solve}$ (s)	size(MB)
(a)	3914	108	112	0.17	66
(b)	3584	73	31	0.090	40
(c)	3458	61	56	0.075	31
(d)	2634	28	8	0.035	11

• explicit result:

06/11/2020

topology (a) up to degree-4, 2GB; Bendle et al, JHEP(2020) topology (b) up to degree-4, 0.8GB; Böhm et al, JHEP(2018) all integrals in topology (c), over 20GB. Chawdhry et al, Phys.Rev.D(2019)

• much more efficient for practical usage

Results

Xiao Liu, Peking University

Master integrals

Auxiliary mass flow

XL, Ma, Wang, Phys.Lett.B(2018) XL, Ma, in preparation

• the red line:
$$\frac{1}{(\ell_1 + p_1 + p_2)^2} \to \frac{1}{(\ell_1 + p_1 + p_2)^2 + \eta}$$

•
$$\vec{s} \to \vec{s}_0 = \{4, -\frac{113}{47}, \frac{281}{149}, \frac{349}{257}, -\frac{863}{541}\}$$

• set up differential equation with respect to η

$$\frac{\partial}{\partial \eta} \vec{\mathcal{I}}(\epsilon, \vec{s}_0, \eta) = A(\epsilon, \eta) \vec{\mathcal{I}}(\epsilon, \vec{s}_0, \eta)$$

• boundary condition: $\eta \to \infty$

06/11/2020

• numerically solve via power series to obtain: $\eta = i 0^+$

Master integrals

> Auxiliary mass flow

- master integrals: $108 \rightarrow 176$
- set up differential equation (finite field interpolation): 70 CPU hours
- numerical solution: 9 CPU hours
- $I_{1111111000}(\epsilon, \vec{s}_0) = -0.06943562517263776 \epsilon^{-4}$ + $(1.162256636711287 + 1.416359853446717 i) \epsilon^{-3}$ + $(37.82474332116938 + 15.91912443581739 i)\epsilon^{-2}$ + $(86.2861798369034 + 166.8971535711277 i)\epsilon^{-1}$ +(-4.1435965578662 + 333.0996040071305 i)+ $(-531.834114822928 + 1583.724672502141 i) \epsilon + O(\epsilon^2)$
- fully agreement with analytic results Chicherin, Gehrmann, Henn et al. Phys.Rev.Lett.123(2019) Chicherin, Sotnikov, 2009.07803
- sector decomposition: cannot obtain results within reasonable time

Master integrals

> Other examples

06/11/2020

Abreu, Ita, Moriello et al. 2005.04195

Xiao Liu, Peking University

Summary and outlook

- We present search algorithm to reduce multiloop multiscale integrals to master integrals and auxiliarymass-flow method to calculate these master integrals.
- These methods are systematic and efficient by definition.
- > In future, we will apply these methods to more physically interesting processes: $pp \rightarrow t\bar{t}H, pp \rightarrow t\bar{t}j, ...$

Feynman integrals

Dimensional regulated integral family

$$I(\epsilon, \vec{s}, \boldsymbol{\eta}) \equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{4-2\epsilon} \ell_i}{\mathrm{i}\pi^{2-\epsilon}} \prod_{\alpha=1}^{N} \frac{1}{(\mathcal{D}_{\alpha} + \boldsymbol{\eta})^{\nu_{\alpha}}}$$

•
$$\{D_1, \dots, D_N\}$$
 with $N = \frac{L(L+1)}{2} + L E$

- $\vec{s} = \{p_i^2, p_i \cdot p_j, m_i^2\}$
- η : the auxiliary mass parameter

$$I_{\rm phy}(\epsilon, \vec{s}) \equiv \lim_{\eta \to i0^+} I(\epsilon, \vec{s}, \eta)$$

Xiao Liu, Peking University

Expansion

Expansion near $\eta = \infty$

- integration region: $\ell_i \sim \sqrt{\eta}$
- $\frac{1}{(\ell+p)^2 m^2 + \eta} = \frac{1}{\ell^2 + \eta} + \cdots$

06/11/2020

Smirnov, Commun. Math. Phys. 134(1990) Smirnov, Mod. Phys. Lett. A 10 (1995)

$$I(\epsilon, \vec{s}, \eta) = \eta^{(2-\epsilon)L-\sum \nu_{\alpha}} \sum_{n=0}^{\infty} M_n(\epsilon, \vec{s}) \eta^{-n}$$

XL, Ma, Phys. Rev. D 99 (2019) Wang, Li, Basat, Phys.Rev.D 101(2020)

Davydychev, Tausk, Nucl. Phys. B 397(1993) Broadhurst, Eur. Phys. J. C8 (1999) Kniehl, Pikelner, Veretin, JHEP 08(2017) Pikelner Comput. Phys. Commun. 224 (2018) **Auxiliary mass flow**

> Differential equation method

Kotikov, Phys. Lett. B 254 (1991) Bern, Dixon, Kosower, Phys.Lett.B302(1993)

$$\frac{\partial}{\partial \eta} \vec{\mathcal{I}}(\epsilon, \vec{s}_0, \eta) = A(\epsilon, \eta) \vec{\mathcal{I}}(\epsilon, \vec{s}_0, \eta)$$

- $\vec{s} = \vec{s}_0$
- power series expansion near singular and regular points

$$\mathcal{I}_{i}(\epsilon, \vec{s}_{0}, \eta) = \sum_{\mu \in S} (\eta - \eta_{0})^{\mu} \sum_{k=0}^{k_{\mu}} \log(\eta - \eta_{0})^{k} \sum_{n=0}^{\infty} c_{i,\mu,k,n} (\eta - \eta_{0})^{n}$$

- regular: $S = \{0\}, k_0 = 0$
- singular: $S = \{-2\epsilon, 1 + \epsilon, \cdots\}, k_{\mu} \ge 0$
- only valid locally

Auxiliary mass flow

Example: one-loop four-point integral

$$s = 10, t = -3, m^2 = 1$$

• η reg: -0.1309 i $\sqrt{\eta}$ + (0.0665971 - 0.101394 i) log(η) - (0.29347 - 0.0201092 i)

Infrared Divergences

- dim-reg: $\eta^{-\epsilon} f_1(\epsilon) + f_2(\epsilon) + \eta^{\frac{1}{2}-\epsilon} f_3(\epsilon)$
- $f_1(\epsilon) = (-0.0665971 + 0.101394 i)\epsilon^{-1} + (-0.280099 0.267748 i)$
- $f_2(\epsilon) = (0.0665971 0.101394 i)\epsilon^{-1} + (-0.0133705 + 0.287857 i)$
- $f_1(\epsilon) = -0.1309$ i

06/11/2020

• take $\eta \to 0$, only $f_2(\epsilon)$ survives

Discussion

>Advantages

- extremely systematic
- precision is totally proportional to time consumption
- not sensitive to the choice of \vec{s}_0

> Problems

- effect of extra mass scale: many more master integrals, hard to set up differential equation for complicated problems
- develop much more powerful integral reduction method
- reduce the effect of extra mass scale

vemple: two lean deuble nentegen

Example: two-loop double-pentagon

Strategy to introduce η

- before introducing η : 108
- all: 476
- loop: 305, 319
- branch: 233, 234

- propagator: 176, 178, 220
- propagator mode seems to be the cheapest