- Experimental Progress at the LHC

Yusheng Wu (吴雨生)

University of Science and Technology of China

CLHCP2020, Nov. 6-9, 2020, Virtual World

Caution: with personal selection of materials and biases

Higgs boson

Central place in the SM: Generation of masses for elementary particles

Lastly observed SM particles Remain mysterious

Higgs boson

Key answers lie in property measurements of the observed new particle H

Properties: mass, J^{CP}, total width, couplings
 → being studied via all possible H production and decay channels

WW, ZZ fusion

VBF

Often referred to as **precision Higgs channels**

2012

for VV channels

The measurement channels

The measurement channels

Detectors

Optimized for Higgs studies at EW scale and searches at TeV

Path to success required dedication in <u>detector design</u>, <u>construction</u>, <u>operation</u>, <u>reconstruction</u>, and <u>calibration</u>

Performance (Selected)

11/7/2020

Data and Modelling

Both ATLAS and CMS accumulated about 150 fb⁻¹ 13 TeV data

CMS Integrated Luminosity, pp, $\sqrt{s}=$ 7, 8, 13 TeV

With high data-taking quality

State of art modelling used for signal and backgrounds

QCD: NLO \rightarrow NNNLO+ PS, multi-leg EW: NLO correction often applied

The Flow

Measurements: WW

Differential measurements of inclusive

events for critical variables, such as p_T^H 137 fb⁻¹ (13 TeV) 10 E CMS $d\sigma/dp_{ m T}^{ m H}$ (fb/GeV) ggF Observed VBF Statistical ZH+WH Experimental ttH Theoretical Uncertainty HH MG5 aMC@NLO arXiv:2007.01984v1 10^{-1} ┞┼┼┼┼┼┟╞╋╧┨┼┼┼┼ 10^{-2} Ratio to σ_{POWHEG}^{SM} 1.5 **I** 0.5 0 0 50 100 150 200 250 $p_{\tau}^{\mathrm{H}}(\mathrm{GeV})$

Reasonable precision achieved (down to 20% per bin)

Y. Wu

Observation of VBF H \rightarrow WW $\sigma_{meas}/\sigma_{pred}$ = 0.9 \pm 0.2

11/7/2020

Measurements: γγ

CMS-PAS-HIG-19-015

Machine learning for purity and S/B separation

Can be combined for coupling measurements or interpretation With sufficient statistics, more refined phase space categorization (*STXS framework*) to increase the physics precision/potentials

Measurements: $\gamma\gamma$

STXS Phase space measurement correlation matrix

Complex methodology successful

ATLAS-CONF-2020-026

11/7/2020

Measurements: ZZ

With about 200 signal events and clean 4-lepton final state, inclusive **measurement unc. < 10%**

Differential measurement

Combined

VV channels key for ggF and VBF modes

ATLAS Prelimina	ary H Total	Stat.	Syst.	SM
<i>Vs</i> = 13 TeV, 24.5 - 139 fl	25			
$p_{SM} = 87\%$	2.0	т	otal Stat.	Syst.
ααΕγγ		1.03	±0.11 (±0.08,	+0.08
ggF ZZ		0.94	+0.11 (±0.10 ,	± 0.04)
ggF WW		1.08	+0.19 -0.18 (±0.11,	± 0.15)
ggFττ ι	₽	1.02	+0.60 +0.39	+0.47
ggF comb.		1.00	± 0.07 (± 0.05 ,	± 0.05)
VBF γγ	H	1.31	+0.26 +0.19	+0.18 -0.15)
VBF ZZ	-	1.25	+0.50 +0.48 ,	+0.12 -0.08)
VBF WW		0.60	+0.36 (+0.29 , -0.27 ,	± 0.21)
VBF ττ μ	-	1.15	+0.57 (+0.42 -0.53 (-0.40 ,	+0.40 -0.35)
VBF bb		3.03	+1.67 (+1.63 -1.62 (-1.60 ,	+0.38 -0.24)
VBF comb.		1.15	+0.18 -0.17 (±0.13,	+0.12 -0.10)
VH γγ 🛏	•	1.32	+0.33 (+0.31 -0.30 (-0.29 ,	+0.11 -0.09)
VH ZZ		1.53	+1.13 (+1.10 -0.92 (-0.90 ,	+0.28 -0.21)
VH bb 📥		1.02	+0.18 -0.17 (±0.11,	+0.14 -0.12)
VH comb. 🖷		1.10	+0.16 -0.15 (±0.11,	+0.12 -0.10)
ttH+tH γγ 💼		0.90	+0.27 -0.24 (+0.25 -0.23 ,	+0.09 -0.06)
ttH+tH VV		1.72	+ 0.56 - 0.53 (+ 0.42 - 0.40 ,	+0.38 -0.34)
ttH+tH ττ +		1.20	+ 1.07 - 0.93 (+ 0.81 - 0.74 ,	+0.70 -0.57)
ttH+tH bb	4	0.79	$^{+0.60}_{-0.59}$ (± 0.29 ,	+0.52 -0.51)
ttH+tH comb.		1.10	+0.21 (+0.16 -0.20 (-0.15 ,	+0.14 -0.13)
-2 0	2 4	ŀ	6	8
ATLAS-CONF-2020-027 $\sigma \times B$ normalized to SM				

Attempt to measure Higgs couplings: simplified κ -framework

Cross-section of each measured phase space can be parametrized as functions of K

 κ measurements

Couplings

Higgs total width is uncertain (provided there might be unknown channels)

VV couplings known to great precision

Total width via off-shell

 $\Gamma_{\rm H}$ is crucial: BSM sensitivity, coupling determination

Predicted at 4 MeV, but direct probe (detector H mass) has much larger resolution

With assumptions, ratio of off-shell and on-shell Higgs production provides $\Gamma_{\rm H}$ measurement

Higgs boson mass

11/7/2020

Y. Wu

Spin/CP

Effective Field Theories

EFTs have their virtues in consistently describing modifications to properties

Limited precision in EFT interpretation; no obvious deviation so far

Constraining EFT operators relating to CP and loop BSM through $H\rightarrow$ 4l events

Rare Processes

Rare Processes

$H \rightarrow Jpsi/Upsilon + \gamma$

$H \rightarrow Z + rho/phi$

Complementary, but far away from sensitivity measurements

Prospect

ATL-PHYS-PUB-2014-016

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

Relative conservative projection

Real precision regime expected for $H \rightarrow VV$ channels:

- Potentials with upgraded detectors (larger coverage, better resolution, more exclusive triggering, timing, ...)
- More precise theory predictions desired

Y. Wu

24

Bosonic channels serve for precision measurements, already entering 10% regime

Thorough investigation of Higgs boson properties have been conducted, often further insights being established

No beyond-the-SM effects observed so far : - (

Quest is to increase the precision, not only via increasing luminosities, but also requiring further insights in **physics**, **detector**, and **analysis techniques**

