# Search of 125 GeV Higgs boson decaying to two pseudo-scalars in four $\tau$ final state with the ATLAS detector

Xiaotong Chu

Institute of High Energy Physics, CAS (IHEP)

CLHCP2020

November 6, 2020

#### Motivation

- In searches of the 125 GeV Higgs boson to light pseudo-scalars, the  $4\tau$  decay channel is accessible in the range  $2m_{\tau} < m_a < m_H/2$ .
- Good sensitivity in this phase space.
  - $a \rightarrow \tau \tau$  channel is favored below the  $2m_b$  threshold in cases like Type I or II 2HDM+scalar,
  - Works even better in Type *III* with large *tan*β.
  - Other models: theories of supersymmetry, axions, electroweak baryogenesis, dark matter mediators,...



1 / 22

#### Analysis overview

- H $\rightarrow$ aa $\rightarrow$ 4 $\tau$  in final states with multiple electrons or muons.
  - Target on inclusive Higgs boson production.
- Focus on same-sign (SS) dilepton signature:  $H \rightarrow aa \rightarrow (e/\mu \tau_{had})(e/\mu \tau_{had})$ .
  - Clean signature with low background.
  - Resolved objects with standard ID sensitive to [15,60] GeV.
  - Merged regime needs dedicated ID sensitive to [3.5,15] GeV.



#### Content





#### Signal Selection



#### Analysis Strategy

- Focus on SS dilepton signature H $\rightarrow$ aa $\rightarrow$ (e/ $\mu \tau_{had}$ )(e/ $\mu \tau_{had}$ )
- Background largely dominated by tau and lepton fakes.
  - Most of the fakes in our 4τ final state are from Z+jets with subleading contributions from WZ+jets and tt
- High-level analysis strategy:



#### **Object Selection**

Select events passing single-/di-lepton triggers.

#### **Baseline Selection**

- **Muon**:  $p_T > 5$  GeV, Medium ID, d0sig<7.
- **Electron**:  $p_T > 7$  GeV, Loose ID, d0sig<5.
- Hadronic Tau: p<sub>T</sub>> 20 GeV, VeryLoose ID.
- Selection used to select a fake-dominated region to estimate background component using fake-rate method.

#### Signal Selection

- Baseline selection plus:
- **Muon**: FCTight isolation, d0sig<4.
- **Electron**: Medium ID, FCTight isolation.
- Hadronic Tau: Medium ID.
- Selection used for analysis.

#### Prompt-leptons Background

- Estimated from Monte-Carlo.
- Mainly diboson: ZZ in  $2l2\tau$  and ZZ/WZ in  $1l2\tau$ ,  $2l1\tau$  cases.
- H $\rightarrow$ ZZ $\rightarrow$ 4 $\tau$ , Z $\gamma$ \*, VVV, ttV, tt $\gamma$ \* have negligible contribution in all regions.



- Systematic uncertainties:
  - Object systematics: electrons, muons, taus, b-jets, etc.
  - Theory uncertainties following LHC Higgs XS WG recommendation.

#### Fake Background Estimation

- Fake (non-prompt) background:
  - Fake hadronic tau: light/heavy flavor quark jets, gluon jets
  - Fake electron: photon conversions; light/heavy-flavor hadrons
  - Fake muon: heavy-flavor hadrons with semi-leptonic decays, decays in flight.
- Estimate using a fake-rate method based on Z tag-and-probe:
  - Select Z+jets events pair of electrons or muons within Z mass window.
  - Select a 3rd electron/muon/tau jet to measure the fake rate.
  - Subtract contribution from processes with a prompt 3rd lepton.

#### Fake rate

 $= \frac{\text{additional lepton pass signal selection}}{\text{additional lepton pass baseline selection}}$ 

#### Converted to fake factor

additional lepton pass signal selection

additional lepton pass baseline but fail signal selection

#### Hadronic Tau Fake

- Fakes from several sources (light/heavy flavor quark jets, gluon jets, electrons mis-identified as 1-prong hadronic taus).
  - Reduce heavy flavor contribution by applying b-veto.
  - Electrons taken from simulation and applied scale factors.
  - Measure fake rates for main contributions  $\rightarrow$  light-quark jets and gluon jets.
- Fake rate estimated in different periods and 1-/3-prong tau.
  - $0.25 \sim 0.35$  for 1-prong tau.
  - $0.04 \sim 0.07$  for 3-prong tau.
- Systematic uncertainties:
  - Difference in quark-gluon composition assessed by track jet width variable.
  - Additional systematic uncertainties from statistics in Z+jets sample and from the subtraction of prompt lepton backgrounds using MC.

#### Electron & Muon Fake Rates



- Use  $Z(\rightarrow \mu\mu)$ +e events for electron and  $Z(\rightarrow ee)$ + $\mu$  for muon fake measurement.
- Parametrize in lepton  $p_T$  and  $|\eta|$ .
- Systematic uncertainties:
  - Composition uncertainty estimated by varying selection criteria.
  - Uncertainty in the subtraction of prompt lepton backgrounds using MC.

#### Result on Upper Limit



- Signal ragion (SR) in two regions of m<sub>T2</sub> improves sensitivity at lower m<sub>a</sub>.
- Other mass points: 15, 22.5, 30, 37.5, 52.5 and 60 GeV.

95% CL Upper Limit on BR(H $\rightarrow$ 2a $\rightarrow$ 4t)



#### Sub-channel Extension

- We have studied the gain of including 3lep1had and 4lep0had channels to enhance signal acceptance.
  - **311h** can improve the limits by a factor of 10 using exactly the same selection and background estimation method.
  - 410h may not improve the limits significantly, possibly because of smaller BR and smaller S/B.



#### Content





#### Analysis Strategy

- Signal mass range:  $4{\sim}15$  GeV.
- Selection:
  - The **a** boson decays to a pair of **leptonic** and **hadronic** *τ*.
  - SS di-lepton to reduce background.
- Only consider "had-mu" merged case: "μ<sub>τ</sub>" object with muon track inside of a tau-jet cone,
   ΔR(μ, τ<sub>had</sub>) < 0.4.</li>
- Di- $\tau$  identification algorithm.
  - Previous study of high-p<sub>T</sub> di-τ had-mu tagger shows good identification efficiency on low-mass sample.





## $\text{Di-}\tau$ Identification

Dedicated BDT training for **low**- $p_T$  had-mu di- $\tau$  objects.





 $\Delta R(\tau_{had}, \mu)$  distribution of signal and background as input to BDT.

background

#### **BDT** Result



• Good discrimination between signal and background.

#### **BDT** Result



- The ROC curve shows the low-p<sub>T</sub> tagger has better performance than the high-p<sub>T</sub> tagger on the low mass samples.
  - Increase background rejection by a factor of **5** when signal efficiency @ 80%.

#### Summary

- Search for  $H \rightarrow aa \rightarrow 4\tau$  in the SS dilepton  $2l2\tau$  channel is almost completed.
  - Good sensitivity in the mass range  $15 < m_a < 60$  GeV.
  - Channels for the H $\rightarrow$ aa $\rightarrow$ 4 $\tau$  analysis targeting signal scenarios where decays to  $\tau$ s are favored.
  - Will include  $3l1\tau$  and  $4l0\tau$  channels.
    - Promising increase in sensitivity due to increased acceptance.
- Search targeting the merged regime ( $m_a < 15 \text{ GeV}$ ) is on-going.
  - Dedicated study for low- $p_T$  had-mu di- $\tau$  identification.
  - The BDT result shows good discriminant power and the ROC curve shows it is worthy to train the low-p<sub>T</sub> tagger.

## Thanks for your attention!

#### Hadronic Tau Fake Rates



## Hadronic Tau Fake Systematics



- Small differences in quark-gluon composition assessed by track jet width variable.
- Reweight data in Z+jets region to match track jet width
- distribution in the 3I CRs.
- Use difference in measured fake-rates before and after reweighting as systematics.
- Additional systematic uncertainties from statistics in Z+jets sample and from the subtraction of prompt lepton backgrounds using MC.

## **Object Definition**

| Baseline lepton                                                                  |                                                                                                     | Baseline                                                                  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Muon                                                                             | Electron                                                                                            | (Hadronic) Tau                                                            |
| pT > 5 GeV,  eta  < 2.7                                                          | pT > 7 GeV,  eta  < 2.47, not in crack region                                                       | pT > 20 GeV,  eta  < 2.5, not in crack region                             |
| At least Medium ID                                                               | At LooseAndBLayerLH ID<br>Loose Charge ID                                                           | At least VeryLoose JETBDT ID<br>EleOLR                                    |
| z0sinTheta < 0.5 cm, d0sig < 7                                                   | z0sinTheta < 0.5 cm, d0sig < 5                                                                      | 1 or 3 prong                                                              |
| pass OLR                                                                         | pass OLR                                                                                            | pass OLR                                                                  |
| Signal lepton                                                                    |                                                                                                     | Signal                                                                    |
| Signal                                                                           | lepton                                                                                              | Signal                                                                    |
| Signal<br>Muon                                                                   | lepton<br>Electron                                                                                  | Signal<br>(Hadronic) Tau                                                  |
| Signal<br>Muon<br>same as baseline                                               | lepton<br>Electron<br>same as baseline                                                              | Signal<br>(Hadronic) Tau<br>same as baseline                              |
| Signal<br>Muon<br>same as baseline<br>At least Medium ID<br>FCTight isolation ID | lepton<br>Electron<br>same as baseline<br>At MediumLH ID<br>Loose Charge ID<br>FCTight isolation ID | Signal<br>(Hadronic) Tau<br>same as baseline<br>At least Medium JETBDT ID |

## CMS result at low mass

