Discovery of the real and complex triplet models at the LHC and future colliders

Yong Du

based on arXiv: 2003.07867,

and JHEP 01(2019)101

email: yongdu@umass.edu

CLHCP2020, November 6, Tsinghua University

Disclaimer: Apologize for missing your work here

The real triplet model

In collaboration with Cheng-Wei Chiang, Giovanna Cottin, Kaori Fuyuto, Michael Ramsey-Musolf

based on arXiv: 2003.07867,

Dark matter: Background

<u>Yong Du</u>, F. Huang, H.L. Li, J.H. Yu, arXiv: 2005.01717

(SIDM from freeze-in)

Klasen et al, arXiv: 1507.03800

Yong Du

Dark matter: Background

K A V L I PMU

The real triplet model!

new sociology

- WIMP should be explored at least down to the neutrino floor
 - heavier? e.g., wino @ 3 lev \Rightarrow CIA
- dark matter definitely exists
 - hierarchy problem may be optional?
- need to explain dark matter on its own
- perhaps we should decouple these two
- do we really need big ideas like SUSY?
- perhaps not necessarily heavier but rather lighter and weaker coupling?

Slide from H. Murayama

$$\Sigma := \text{Real triplet (1, 3, 0)}$$

$$\boldsymbol{\Sigma} = \frac{\mathbf{1}}{\mathbf{2}} \begin{pmatrix} \Sigma^0 & \sqrt{2}\Sigma^+ \\ \sqrt{2}\Sigma^- & -\Sigma^0 \end{pmatrix}$$

$$\Sigma := \text{Real triplet (1, 3, 0)}$$

$$\boldsymbol{\Sigma} = \frac{\mathbf{1}}{\mathbf{2}} \begin{pmatrix} \Sigma^0 & \sqrt{2}\Sigma^+ \\ \sqrt{2}\Sigma^- & -\Sigma^0 \end{pmatrix}$$

$$\begin{split} \mathbf{V}(\mathbf{H}, \mathbf{\Sigma}) &= -\mu^{2} \mathbf{H}^{\dagger} \mathbf{H} + \lambda_{0} (\mathbf{H}^{\dagger} \mathbf{H})^{2} \\ &- \frac{1}{2} \mathbf{M}_{\Sigma}^{2} \mathbf{F} + \frac{\mathbf{b}_{4}}{4} \mathbf{F}^{2} + \frac{\mathbf{a}_{2}}{2} \mathbf{H}^{\dagger} \mathbf{H} \mathbf{F} \\ \mathbf{F} &= (\mathbf{\Sigma}^{0})^{2} + 2 \mathbf{\Sigma}^{+} \mathbf{\Sigma}^{-} \end{split}$$

Yong Du

Collider phenomenologies?

$$\mathbf{\Sigma} = \frac{\mathbf{1}}{\mathbf{2}} \begin{pmatrix} \Sigma^0 & \sqrt{2}\Sigma^+ \\ \sqrt{2}\Sigma^- & -\Sigma^0 \end{pmatrix}$$

J. Alimena et al., 2019; T. Hambye et al, 2009; R. Mahbubani et al 2017 Q.H. Cao et al., 2018; L.D. Luzio et al. 2018; Abe et al. 2018; Kuramotoa et al 2019;

Reproduction of ATLAS result

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Yong Du

Reproduction of ATLAS result

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Yong Du

ITP

What we find... Collider part

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

(HL-)LHC exclusion from cross section

Yong Du

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

FCC-pp discovery with different pileup control

M. Saito, R. Sawada, K. Terashi and S. Asai, 2019

Benchmark	$\sigma ~[{ m pb}]$	ϵ	S	В	S/\sqrt{B}
$m_{\Sigma^{\pm}} = 1.1 \mathrm{TeV}, \overline{\mu} = 200$	5.8×10^{-2}	3.17×10^{-4}	553	673	21.3
$m_{\Sigma^{\pm}} = 1.1 \mathrm{TeV}, \overline{\mu} = 500$	5.8×10^{-2}	3.17×10^{-4}	553	8214	6
$m_{\Sigma^{\pm}} = 3.1 \mathrm{TeV}, \overline{\mu} = 200$	9.4×10^{-4}	4.69×10^{-4}	13.3	1.9	9.6
$m_{\Sigma^{\pm}} = 3.1 \mathrm{TeV}, \overline{\mu} = 500$	9.4 × 10 ⁻⁴	4.69×10^{-4}	13.3	27	2.6

3TeV triplet DM could be discoverable at FCC-pp

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

FCC-pp discovery with different pileup control

M. Saito, R. Sawada, K. Terashi and S. Asai, 2019

Benchmark	$\sigma ~[{ m pb}]$	ϵ	S	B	S/\sqrt{B}
$m_{\Sigma^{\pm}} = 1.1 \mathrm{TeV}, \overline{\mu} = 200$	5.8×10^{-2}	3.17×10^{-4}	553	673	21.3
$m_{\Sigma^{\pm}} = 1.1 \mathrm{TeV}, \overline{\mu} = 500$	5.8×10^{-2}	3.17×10^{-4}	553	8214	6
$m_{\Sigma^{\pm}} = 3.1 \mathrm{TeV}, \overline{\mu} = 200$	9.4×10^{-4}	4.69×10^{-4}	13.3	1.9	9.6
$m_{\Sigma^{\pm}} = 3.1 \mathrm{TeV}, \overline{\mu} = 500$	9.4×10^{-4}	4.69×10^{-4}	13.3	27	2.6

3TeV triplet DM could be discoverable at FCC-pp

Collider searches are a2 insensitive!

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Colliders+relic abundance

Yong Du

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Colliders+relic abundance

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Colliders+relic abundance

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

The complex triplet model

In collaboration with Aaron Dunbrack, Michael Ramsey-Musolf, Jiang-Hao Yu

Based on JHEP 01(2019)101

The Complex triplet model

(1) Neutrino masses (type-II seesaw); (2) BAU (EWBG)

The Complex triplet model

Yong Du

ITP

Higgs portal parameter determination

Summary

***** The real triplet (1,3,0) model in the dark matter scenario:

- 1. could be discovered up to ~(300) 800GeV at (HL-)LHC. FCC-pp could discover 3 TeV triplet depending on pileup control.
- 2. XENON1T rules out 1~2TeV triplet (depending on a2), XENON20T would cover almost the entire parameter space.
- 3. Collider and dark matter direct detection are complementary.
- ***** The complex triplet (1,3,2) model:
 - 1. FCC-pp could cover a significant portion of its parameter space up to 4TeV.
 - 2. Precision measurements of $h > \gamma \gamma$ help indirectly the Higgs portal parameter determination.

Backup

Production cross section: a2 dependence

Cuts applied for the (HL-)LHC

- Trigger : $p_T > 140 \,\text{GeV}$
- Lepton veto : no electrons or muons
- Jet $p_T/\Delta\phi$: at least one jet with $p_T > 140 \,\text{GeV}$, and $\Delta\phi$ between the p_T vector and each of the up to four hardest jets with $p_T > 50 \,\text{GeV}$ to be bigger than 1.0
- Tracklet selection : at least one tracklet (generator-level chargino) with :

 $- p_T > 20 \,\text{GeV}$ and $0.1 < |\eta| < 1.9$

- 122.5 mm < decay position $< 295 \ \rm{mm}$
- ΔR distance between the tracklet and each of the up to four highest- p_T jets with $p_T>50\,{\rm GeV}$ to be bigger than 0.4
- we apply the tracklet acceptance \times efficiency map⁶ provided by ATLAS, which is based on the decay position and η . This is applied to selected tracklets passing the above selections.
- Tracklet p_T : Select tracklets with $p_T > 100 \text{ GeV}$.

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Cuts applied for a 100TeV collider

- Trigger : $p_T > 1$ TeV or $p_T > 4$ TeV depending on the benchmark as discussed below.
- Lepton veto : no electrons or muons.
- Jet p_T/Δφ : at least one jet with p_T > 1 TeV, and Δφ between the p_T vector and each of the up to four hardest jets with p_T > 50 GeV to be bigger than 1.0.

C.W. Chiang, G. Cottin, <u>Yong Du</u>, K. Fuyuto, M.J. Ramsey-Musolf arXiv: 2003.07867

Constraints w/o including the Sommerfeld

Constraints from perturbativity and perturbative unitarity

Bell et al, arXiv: 2001.05335

Complex triplet

$\Delta(1,3,2)$

$$V(\Phi, \Delta) = -m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_2 \Delta^{\dagger} \Phi + \mathrm{h.c.} \right] + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 \left[\operatorname{Tr}(\Delta^{\dagger} \Delta) \right]^2 + \lambda_3 \operatorname{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$$

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{1 + \frac{2v_\Delta^2}{v_\Phi^2}}{1 + \frac{4v_\Delta^2}{v_\Phi^2}}$$
$$\rho = 1.0006 \pm 0.0009$$
PDG, 2016
$$0 \leq v_\Delta \lesssim 3.0 \text{ GeV}$$

 $v_\Delta \ll v_\Phi \simeq v$

 $v = \sqrt{v_{\Delta}^2 + v_{\Phi}^2} = 246 \,\mathrm{GeV}$

$$\sin\beta_{\pm} \sim \sin\beta_0 \sim \sin\alpha \sim \frac{v_{\Delta}}{v_{\Phi}} \sim 0$$

$$\begin{split} \Delta m &= |m_{H^{\pm\pm}} - m_{H^{\pm}}| \approx |m_{H^{\pm}} - m_{H,A}| \approx \frac{|\lambda_5|v_{\Phi}^2}{8m_{\Delta}} \approx \frac{|\lambda_5|v^2}{8m_{\Delta}} \\ & \\ \textbf{Determined by mass splitting} \\ & \\ m_h^2 \simeq 2v_{\Phi}^2 \lambda_1 \simeq 2v^2 \lambda_1, \quad m_H \simeq m_{\Delta} \simeq m_A, \quad m_{H^{\pm}}^2 \simeq m_{\Delta}^2 - \frac{\lambda_5}{4}v_{\Phi}^2, \quad m_{H^{\pm\pm}}^2 \simeq m_{\Delta}^2 - \frac{\lambda_5}{2}v_{\Phi}^2 \\ & \\ \textbf{Fixed by SM} \\ & \\ \textbf{Higgs mass} \\ \lambda_1 \simeq 0.129 \end{split}$$

$$\lambda_5 \le 0: \ m_h < m_H \simeq m_A \le m_{H^{\pm}} \le m_{H^{\pm\pm}}$$

$$Br(A \to hZ, H \to ZZ, H \to W^+W^-, H^{\pm} \to hW^{\mp}) = F(\lambda_4, \lambda_5, ...)$$

Brief summary

Model discovery

$$\lambda_1 = 0.129, \lambda_2 = 0.2, \lambda_3 = 0, \lambda_4 = 0, \lambda_5 = -0.1$$

Model discovery

$$pp \to H^{++}H^{--} \text{ and } pp \to H^{\pm\pm}H^{\mp}$$
$$H^{\pm\pm} \to \ell^{\pm}\ell^{\pm} (W^{\pm}W^{\pm}) \text{ and } H^{\mp} \to hW^{\mp}$$
$$small v_{\Delta} \qquad large v_{\Delta}$$

Model discovery

Higgs portal parameter determination

$$\Delta m = |m_{H^{\pm\pm}} - m_{H^{\pm}}| \approx |m_{H^{\pm}} - m_{H,A}| \approx \frac{|\lambda_5|v_{\Phi}^2}{8m_{\Delta}} \approx \frac{|\lambda_5|v^2}{8m_{\Delta}}$$

Upon discovery, λ_5 can be determined readily by the mass splitting.

Can determine λ_4 from precise measurements on Br($H^\pm \to h W^\pm$) after discovery.

Parameter scan on the v_{Δ} - m_{Δ} plane and BDT analysis for

$$pp \to H^{\pm\pm}H^{\mp} \to \ell^{\pm}\ell^{\pm}hW^{\mp}/W^{\pm}W^{\pm}hW^{\mp}$$