

Search for heavy resonances decaying into VH in semi-leptonic final states with ATLAS

Tong Li Shandong University China LHC Physics Workshop, 7 Nov. 2020

Outline

- Introduction
- Data and MC samples
- Event selection
- Background estimation
- Statistical analysis and results

> Summary

Search for heavy resonances decaying into ZH or WH

- Predicted by several BSM theories
- > $H \rightarrow bb$ identified with observed SM Higgs boson (m_h=125GeV)

Two Higgs Doublet Model (2HDM)

> 5 Higgs bosons: H, h, H^{\pm} , A

Heavy Vector Triplet (HVT)

- Heavy vector bosons Z', W'
- Interpret of two benchmark models: Model A / Model B

Three channels according to the number of leptons (*el / mu*) in the final state:

> 0-, 1- (HVT only) and 2- lepton channel

Two regimes for event categorization:

- resolved (two small-R jets)
- merged (one large-R jet)

"Priority Resolved SR" scheme was used

Full Run2 dataset collected by ATLAS used

Process	Generator	Prediction order of $\sigma_{ m prod}$
$W \to \ell \nu, Z \to \ell \ell, Z \to \nu \nu$	$, Z \to \ell \ell, Z \to \nu \nu$ Sherpa 2.2.1	
tī	Powheg + Pythia8	NNLO+NNLL
single top (<i>s/t/Wt</i> -channel)	Powheg + Pythia8	NLO
$t\bar{t} + h$	MG5_AMC@NLO + Pythia8	NLO (QCD) and NLO (EW)
$t\overline{t} + V$	MG5_AMC@NLO + Pythia8	NLO
$qg/q\bar{q} \rightarrow VV \rightarrow \ell\ell/\ell\nu/\nu\nu + q\bar{q}$	Sherpa 2.2.1	NLO
$gg \rightarrow VV \rightarrow \ell\ell/\ell\nu/\nu\nu + q\bar{q}$	Sherpa 2.2.2	NLO
$qg/q\bar{q} \rightarrow \ell\ell \nu \nu$	Sherpa 2.2.2	NLO
$qq \rightarrow Wh \rightarrow \ell \nu + b\bar{b}$	Powheg + Pythia8	NNLO (QCD) and NLO (EW)
$qq \rightarrow Zh \rightarrow \ell\ell/\nu\nu + b\bar{b}$	Powheg + Pythia8	NNLO (QCD) and NLO (EW)
$gg \to Zh \to \ell\ell/\nu\nu + b\bar{b}$	Powheg + Pythia8	NLO+NLL

Event selection

Variable	Resolved	Merged	
	Common selection		
Number of ista	$\geq 2 \text{ small-} R \text{ jets } (0, 2\text{-lep.})$	>1 Jarga P ist	
Number of jets	2 or 3 $R = 0.4$ jets (1-lep.)	≥1 large-K jet	
Leading jet p_{T} [GeV]	> 45	> 250	
m_H [GeV]	110-140 (0,1-lep.), 100-145 (2-lep.)	75–145	
	0-lepton selection		
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	> 200	
H_T [GeV]	> 150 (120*)	_	
$\Delta \phi_{bb}$	$< 7\pi/9$	_	
$p_{\rm T}^{\rm mis}$ [GeV]	>	30^{\ddagger}	
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{mis}},\vec{p}_{\mathrm{T}}^{\mathrm{mis}})$	<	$\pi/2$	
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{mis}}, H)$	>	$2\pi/3$	
min $\Delta \phi(E_{\rm T}^{\rm miss}, R = 0.4 {\rm jet})$	> $\pi/9$ (2 or 3 jets), > $\pi/6$ (\geq 4 jets)		
$N_{ au_{\rm had}}$	0**		
	1-lepton selection		
Leading lepton p_{T} [GeV]	> 27	> 27	
$E_{\rm T}^{\rm miss}$ [GeV]	> 40 (80 [†])	> 100	
$p_{\mathrm{T},W}$ [GeV]	$> \max \left[150, 710 - (3.3 \times 10^5 \text{ GeV}) / m_{Vh} \right]$	> max [150, 394 $\cdot \ln(m_{Vh}/(1 \text{ GeV})) - 2350$]	
$m_{\mathrm{T},W}$ [GeV]	<	300	
	2-lepton selection		
Leading lepton p_{T} [GeV]	> 27	> 27	
Sub-leading lepton p_{T} [GeV]	> 20	> 25	
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [\sqrt{{ m GeV}}]$	$< 1.15 + 8 \times 10^{-3} \cdot m_{Vh} / (1 \text{ GeV})$		
$p_{\mathrm{T},\ell\ell}$ [GeV]	$> 20 + 9 \cdot \sqrt{m_{Vh}/(1 \text{ GeV}) - 320}^{\dagger\dagger}$		
$m_{\ell\ell}$ [GeV]	$[\max[40 \text{ GeV}, 87 - 0.030 \cdot m_{Vh}/(1 \text{ GeV})], 97 + 0.013 \cdot m_{Vh}/(1 \text{ GeV})]$		

Event selections in 3 channels

Event selection

Selection performance of signal in 0- and 2- lepton channel

Three different origins in the electron channel:

- At high momentum, non-prompt leptons from weak decays inside the jet parton shower dominate the multi-jet contribution
- At low momentum, the large number of light jets give rise to the possibility of jets mimicking the signature of electrons
- > Photons from pion decays can fake the electron signature

The origin in the muon channel is dominated by non-prompt muons from weak decays of heavy-flavor quarks in the parton shower

- The estimation is performed using data-driven method because MC samples suffer from limited statistics and difficult modeling
- Data-driven template method exploits the isolation of lepton to select a data sample enriched in multi-jet events
- Leptons from signal processes are expected to be well-isolated from hadronic activity while leptons in multi-jet events are located inside jets and thus not isolated from additional hadronic activity

	Criterion	isolated region	non-isolated region	
Electron	ID	TightLH	TightLH	
	Trk Isolation	ptvarcone20/pT < 0.06	ptvarcone20/pT < 0.06	
	Calo Isolation	topoetcone20/pT < 0.06	topoetcone20/pT > 0.06	
Muon	ID	TightLH	TightLH	
	Trk Isolation	ptvarcone30/pT < 0.06	0.06 < ptvarcone30/pT < 0.15	

Definition of isolated and non-isolated region

Multi-jet control region (MJCR)

mTW distributions in MJCR in muon and electron channel

- The MJ template is obtained by subtracting all EW backgrounds from data in MJCR, then fit the MJ template and EW background to data
- mTW was chosen as the discriminant variable
- Categories were separated into electron / muon channel and 1tag / 2tag region

Fit results and post-fit distributions

2000

100

-0.2

-0.4

(Data-Bkg)/Bkg

	Electron	Muon
MJ events	397.03 ± 476.44	3677.48 ± 435.72
MJ fraction	0.35% ± 0.42% 2.11% ± 0.25%	

Fit 2 components to data:

- MJ and sum of EW bkg
- both floating

Binning: 40 GeV / bin Fit range: 0 – 300 GeV Stable fit has been gotten

4000

2000

04

02

-0.2

-0.4

50

100 150 200 250 300 350

(Data-Bkg)/Bkg

W+I

Stat

Diboson

---- (Data-Bkg)/Bkg

Stat+Shape

Stat+Sys

200

250

300

m^w_T [GeV]

350

100 150

50

W+I

Diboson

Stat

400 450

E_T^{miss} [GeV]

500

---- (Data-Bkg)/Bkg

Stat+Shape

Stat+Sys

Statistical analysis

Fit Channel	Channel	Resolved	Merged	Resolved	Merged
	signal regions	signal regions	control regions	control regions	
aa A HVT	0-lepton	1, 2 <i>b</i> -tag	1, 2 <i>b</i> -tag	1, 2 <i>b</i> -tag <i>m</i> _{ij} sideband	1, 2 <i>b</i> -tag m_J sideband
ggA, П V I	2-lepton	1, 2 <i>b</i> -tag	1, 2 <i>b</i> -tag	1+2 <i>b</i> -tag $e\mu$	

- Control / signal regions and event yields for 0- and 2lepton channel
- Statistical and systematic uncertainties are combined
- The uncertainties in the individual background are larger than the total due to correlations

	Resolved		Merged	
0-lepton	1 <i>b</i> -tag	2 b-tag	1 <i>b</i> -tag	2 <i>b</i> -tag
Тор	38000 ± 500	9700 ± 110	1440 ± 80	55.9 ± 2.8
Diboson	420 ± 40	62 ± 5	252 ± 30	69 ± 8
Zl	1950 ± 130	7.6 ± 1.6	453 ± 40	0.9 ± 0.2
Z+hl	23100 ± 900	149 ± 14	3210 ± 150	18.4 ± 1.7
Z+hf	4730 ± 160	$3860~\pm~110$	810 ± 60	365 ± 18
Wl	$2170~\pm~160$	19.2 ± 2.6	223 ± 33	0.2 ± 0.1
W+hl	9300 ± 1000	76 ± 7	760 ± 120	5.7 ± 1.1
W+hf	970 ± 50	720 ± 40	175 ± 26	68 ± 13
SM Vh	190 ± 20	$252~\pm~26$	20.7 ± 2.8	12.7 ± 1.6
Total	80730 ± 180	$14850~\pm~70$	7340 ± 60	596 ± 13
Data	80798	14839	7351	590
2-lepton	1 <i>b</i> -tag	2 <i>b</i> -tag	1 <i>b</i> -tag	2 b-tag
Тор	7800 ± 40	5740 ± 60	34.3 ± 2.6	2.5 ± 0.3
Diboson	1820 ± 100	459 ± 29	115 ± 7	25.3 ± 1.7
Zl	9000 ± 700	17 ± 8	208 ± 15	0.5 ± 0.2
Z+hl	100700 ± 800	$490~\pm~28$	724 ± 21	$4.9~\pm~0.3$
Z+hf	23030 ± 300	$17300~\pm~110$	225 ± 8	106 ± 4
Wl	0.8 ± 0.1	_	0.3 ± 0.0	—
W+hl	13 ± 1.8	0.2 ± 0.1	1.2 ± 0.2	_
W+hf	1.6 ± 0.5	1.0 ± 0.1	0.2 ± 0.0	0.1 ± 0.0
SM Vh	308 ± 14	367 ± 16	5.3 ± 0.3	2.7 ± 0.2
Total	142710 ± 260	24400 ± 100	1313 ± 16	142 ± 5
Data	142713	24379	1307	142

Resolved signal region

- Post-fit distributions for 0-lepton and 2-lepton in resolved signal regions
- The signal for HVT Model A with mass 2 TeV is shown as a dashed red line and normalized to 20 times
- Statistical and systematic uncertainties are considered

Merged signal region

- Post-fit distributions for 0-lepton and 2-lepton in merged signal regions
- The signal for HVT Model A with mass 2 TeV is shown as a dashed red line and normalized to 20 times
- > Statistical and systematic uncertainties are considered

Results

No significant excess observed above SM predictions. Upper limits set on the cross section

> Z' masses below 2.9 TeV excluded for HVT Model A and 3.2 TeV excluded for Model B

> Search for heavy vector boson Z' and CP-odd Higgs boson A in the semi-leptonic final

states performed using full Run2 dataset collected by ATLAS

No significant excess observed above the SM predictions. Upper limits set on production cross sections

> 1-lepton ($W' \rightarrow WH$, $W \rightarrow Iv$, $H \rightarrow bb$) working towards unblinding approval

Back Up

Introduction

HVT search are interpreted in two benchmark models:

- Model A, the branching fractions to fermions and gauge bosons are comparable, as in some models with an extended gauge symmetry
- Model B, fermionic couplings are suppressed, as in strong dynamical models such as the minimal composite Higgs model

The search focuses on high resonance masses from 300 GeV up to 5 TeV

Search for A \rightarrow Zh uses a smaller mass window from 300 GeV to 2 TeV, as in the models, Higgs potential becomes unstable for too large A boson masses

Resolved control region

> Post-fit distributions of discriminant variable in mBB side-band for 0-lepton and ttbar CR for 2-lepton

- > Wider bins are used here
- > Both statistical and systematic uncertainties are included after the fit

Systematics of QCD estimation

 Systematic uncertainties of QCD estimation were derived by varying the MJCR selections to re-extract the MJ template

Systematic uncertainties

	1	1
Process	Quantity/source	Value
Signal	acceptance	2-7%
	PS, ISR/FSR, PDF	S
	$p_{\rm T}^{\rm miss}$ (0-lep.)	S
$t\bar{t}$ single top	0-lep. norm.	float
ii, single top	2-lep. norm.	float
	0-lep. resolved / merged	9–20%
	2-lep. resolved / merged	18%
	0-lep. m_{ii} SR / m_{ii} CR	2-12%
	2-lep. SR / <i>e</i> μ CR	1.2%
	PS, ISR/FSR, ME, PDF	S
	$p_{\rm T}^{\rm miss}$ (0-lep.)	S
7 thf	norm.	float
Z+m	resolved / merged	10%
	0-lep. SR / m _{jj} CR	5-12%
	0-lep. / 2-lep.	15%
	generator, PDF, scale	S
	$p_{\rm T}^{bb}$ reweight.	S
	$p_{\rm T}^{\rm miss}$ (0-lep.)	S
7.hl	norm.	float
Z+III	resolved / merged	20%
	0-lep. SR / m _{ii} CR	3–20%
	0-lep. / 2-lep.	12%
	generator, PDF, scale	S
	$p_{\rm T}^{bb}$ reweight.	S
	$p_{\rm T}^{\rm miss}$ (0-lep.)	S

	-	
Process	Quantity/source	Value
71	norm.	19%
Ζl	resolved / merged	8%
	0-lep. SR / m_{ii} CR	5-20%
	0-lep. / 2-lep.	8 %
	generator, PDF, scale	S
	$p_{\rm T}^{bb}$ reweight.	S
	$p_{\rm T}^{\rm miss}$ (0-lep.)	S
W+bf	norm.	20%
<i>w</i> +111	resolved / merged	46%
	0-lep. SR / m_{jj} CR	5-28%
	generator, PDF, scale	S
	$p_{\rm T}^{\rm miss}$ (0-lep.)	S
Wihl	norm.	30%
<i>w</i> +111	resolved / merged	35%
	0-lep. SR / m_{jj} CR	2-20%
	generator, PDF, scale	S
	$p_{\rm T}^{\rm miss}$ (0-lep.)	S
W/1	norm.	30%
VV L	resolved / merged	24%
	0-lep. SR / m_{jj} CR	4-20%
	generator, PDF, scale	S
	$p_{\rm T}^{\rm miss}$ (0-lep.)	S
SM Vh	0-lep norm.	32%
	2-lep norm.	32%
	$p_{\rm T}^{\rm miss}$ (0-lep.)	S
Diboson	0-lep norm.	50%
	2-lep norm.	20%
	$p_{\rm T}^{\rm miss}$ (0-lep.)	S

pTV mismodelling corrections

Systematics

Comparisons of ttbar template in 1- / 2- tagged merged SRs before and after pTV correction. The mismodelling was considered as a systematic uncertainty "MODEL_ttbar_pTVReweight__1up". Electrons are reconstructed from ID tracks that are matched to clusters in the EM calorimeter

- "Tight" working point
- Isolated: ptvarcone20/pt<0.06</p>

Muons are identified by matching tracks in ID to them reconstructed in MS ("combined muons"), or by stand-alone tracks in the MS

- "Tight" working point
- Isolated: ptvarcone30/pt<0.06</p>

Electrons and muons are required to have a minimum p_T of 7 GeV and to lie within $|\eta| < 2.5$ for muons and $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$ for electrons

Small-R jets are reconstructed from topological clusters in calorimeter using R = 0.4

Large-R jets are used to reconstruct Higgs with high momenta for which the b-quarks are emitted close to each other. They are built using R = 1.0 and track-calo clusters (TCCs) as inputs

VR track jets are clustered from ID tracks using a variable radius (VR), they are used for tagging b-jets from boosted Higgs decays. In this analysis, only Large-R jets with at least two ghost-associated VR track jets are retained