

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Search for pair- and singly-produced leptoquarks in the final states top tau nu b and top tau nu

T.Yu (IHEP) on behalf of CMS

7 November 2020 The 6th China LHC Physics Workshop

A. Gurrola (Vanderbilt), W. Johns (Vanderbilt), H. Liao (IHEP), F. Romeo (Vanderbilt), P. Sheldon (Vanderbilt), A. Spiezia (Emeritus/IHEP), T.Yu(IHEP)

Motivation

Several BSM ideas foresee new bosons that carry both lepton and baryon number

Can SU(3)×SU(2)×U(1) originate from a larger symmetry group? \rightarrow Grand Unified Theory

Can fermions be made of more fundamental objects?

 \rightarrow Compositeness

Can a symmetry exist between fermions and bosons?

 $\rightarrow \mathsf{Supersymmetry}$

Bound states of fundamental

 \rightarrow constituents may decay to a quark and a lepton

Possible decay of sparticles to a quark \rightarrow and a lepton (see e.g. R-parity violation scenario)

- Searches for leptoquarks (LQ) are well-motivated at the LHC
- Recent enhanced interest for LQ as a possible candidate to explain some anomalies in B-physics precision measurements

LQ relevant experimental features

• 2 production mechanisms considered(you can find them in paper here and here):

• Parameters determining the cross section(you can find paper here and here):

	Pair		Single	
Scalar: LQ_s	LQ mass	Lambda (λ) (co	upling of SM le	epton-quark to LQ)
Vector: LQ_v	k dimensionless coupling		Lambda (λ) ,	k
	k=0 minimal coupling			
	k=1 Yang-Mills			

• Decay channel (you can find paper <u>here</u> and <u>here</u>):

LQs->top tau or LQs->bottom nu LQv->bottom tau or LQv->top nu

- Final states top tau nu bottom (pair LQ) and top tau nu (single LQ) → 2 categories of events >= 2 b or = 1 b
- Fully hadronic decay of the top quark and tau lepton
- Top reconstruction

• ST = tauh p_T + top p_T + p_T^{miss} used for the signal extraction

Signal region

- (top tau nu bottom) + (top tau nu) selection
- P_T^{miss}>=200GeV, H_T^{miss}>=200GeV(= magnitude of the sum of pT of the AK4 jet)
- H_T >=300GeV ((H_T = scalar sum of the pT of all AK4 jets)
- 0 electron and muon
- 1 tauh
- massT(tau,P_T^{miss})>=300GeV
- >= 1 top candidate
 - Fully merged topology(1 merged top quark)
 - Partially merged topology(1 merged W boson + 1 b-jet)
 - Resolved topology(2 AK4 jets + 1 b-jet)

➤4 categories in total

>=2b or = 1b, boosted or resolved

AK4 jet: anti-kt jet with radius = 0.4

Data vs SM expectation in the signal region

Catagory	Boosted		Resolved	
Category	$N_{\text{b-jet}} = 1$	$N_{\text{b-jet}} \ge 2$	$N_{b-jet} = 1$	$N_{\text{b-jet}} \ge 2$
Misidentified τ	20.5 ± 2.1	14.4 ± 1.8	199 ± 13	170 ± 12
t production	7.8 ± 2.1	8.2 ± 1.9	59 ± 5	127 ± 9
Others	5.3 ± 2.0	1.6 ± 0.8	56 ± 25	23 ± 11
Total bkg	34 ± 4	24.2 ± 2.7	314 ± 29	320 ± 19
Data	39	25	332	316
$LQ_V LQ_V k=1$, M=1.7 TeV	4.6 ± 0.7	8.0 ± 1.2	3.1 ± 0.3	7.7 ± 0.7
τLQ_V k=1 λ =1.5, M=1.4 TeV	5.5 ± 0.4	4.8 ± 0.4	5.03 ± 0.22	6.6 ± 0.3
τLQ_V k=0 λ =1.5, M=1.1 TeV	10.1 ± 0.7	8.6 ± 0.7	13.4 ± 0.6	16.4 ± 0.8
$\nu LQ_S \lambda$ =1.5, M=0.5 TeV	13.5 ± 0.8	11.0 ± 0.8	52.7 ± 2.7	58 ± 3

- Misidentified tau main background →estimated from data
- top production relevant
 →estimated normalizing MC to data
- Others not dominant →taken from simulation

jet->tau misidentification background estimation method

- **Tight-to-loose ratio** used to estimate **fake tau events** (QCD, ttbar, Wjets, etc, without genuine taus)
- FR is the probability that a VLoose tau has to pass the Medium ID

 $FR = \frac{N_{Medium}}{N_{VLoose}}$, measured in a control region

• From number of events passing VLoose but not the Medium ID, $N_{VL,!M}$, estimate number of predicted events in the signal region with fake tau:

 $N_{fake\,tau}^{SR} = \sum_{pt,eta} N_{VL,!M}(pt,eta) \cdot \frac{FR(pt,eta)}{[1 - FR(pt,eta)]}$

Top background

- Normalize MC to data in signal-free region
 - massT(tauh,p_T^{miss}) < 80 GeV
 - N b-jet >= 2
- MC Scaled by 10%

Systematic uncertainties

Uncertainty	Background	Signal
Pileup	1-6%	1%
PDF	-	5%
Trigger	1-2%	1-2%
JES/JER	1-35%	2.5%
b-tag	3-10%	8-23%
Tauh scale	1-5%	1%
Tauh ID	5-13%	13-20%
W jet tag	2-11%	1-4%
top jet tag	3-15%	7-14%
Misidentified taus bkg	9-56%	-
Misidentified tau closure	12%	-
Luminosity	2.3-2.5%	2.3-2.5%
Background cross-section	5-30%	-

Exclusions for scalar LQ

- Scalar Pair LQ production does not depend from λ .
- LQsLQs: LQs masses below 0.95 (1.03) TeV are excluded
- vLQs : LQs masses below 0.55 (0.56) TeV and 0.75(0.81) TeV for λ of 1.5 and 2.5 are excluded.
- LQsLQs+vLQs : LQs masses below 0.98 (1.06) TeV and 1.02 (1.10) TeV for λ of 1.5 and 2.5 are excluded. 9

Exclusions for vector LQ(k=0)

- LQvLQv: LQv masses below 1.29 (1.39) TeV are excluded.
- τLQv : LQv masses below 1.03 (1.12) TeV and 1.25(1.35) TeV for λ of 1.5 and 2.5 are excluded.
- LQvLQv+ τ LQv : LQv masses below 1.34 (1.46) TeV and 1.41 (1.54) TeV for λ of 1.5 and 2.5 are excluded.

Exclusions for vector LQ(k=1)

Single LQ

Pair + Single LQ

- LQvLQv: LQv masses below 1.65 (1.77) TeV are excluded.
- *τ*LQv : LQv masses below 1.20 (1.29) TeV and 1.41(1.53) TeV for **λ** of 1.5 and 2.5 are excluded.
- LQvLQv+*τ*LQv: LQv masses below 1.69 (1.81) TeV and 1.73 (1.87) TeV for **λ** of 1.5 and 2.5 are excluded.

λ-Mass exclusion

- Values of λ up to 2.5 are constrained by electroweak precision measurements

• For LQv, the gray area(get from paper) shows the 95% CL band preferred by the B physics anomalies: $\lambda = \sqrt{0.7 \pm 0.2} \times m_{LQ}$ TeV. A relevant portion of this parameter space is excluded.

Summary

- We have presented a search for for LQ produced singly and in pairs in the final states t tau nu b and top tau nu
- We have use ST = tauh pT + top pT + pTmiss variable for the signal extraction
- The main background, due to jet->tau misidentification, is estimated from data
- Data are found to be in agreement with SM prediction
- We interpret the results considering simultaneously pair and single LQ and setting exclusion limits in the LQ lambda-mass plane

	LQ _S		$LQ_V k = 0$		$LQ_V k = 1$	
Pair	0.95 (1.03)		1.29 (1.39)		1.65 (1.77)	
λ	1.5	2.5	1.5	2.5	1.5	2.5
Single	0.55 (0.56)	0.75 (0.81)	1.03 (1.12)	1.25 (1.35)	1.20 (1.29)	1.41 (1.53)
Pair+Single	0.98 (1.06)	1.02 (1.10)	1.34 (1.46)	1.41 (1.54)	1.69 (1.81)	1.73 (1.87)

中國科學院為能物昭為完備 Institute of High Energy Physics Chinese Academy of Sciences

backup

Status of B-physics anomalies

Courtesy of Andreas Hoecker LHCP2020 Experimental highlights

Status of flavour anomalies:

$$R_{D^{(*)}} = \frac{B(B \to D^{(*)}\tau\nu)}{B(B \to D^{(*)}\ell\nu)}$$

Possible new physics in charged current in tree diagram

Tension reduced after 2019 Belle result [1904.08794] in agreement with SM

Remaining tension (HFLAV): 3.1 σ Corresponding $R_{J/\psi|\tau/\mu} \sim 2\sigma$ above SM [LHCb: 1711.05623]

 $R_{K^{(*)}} = \frac{B(B \to K^{(*)}\mu\mu)}{B(B \to K^{(*)}ee)} \stackrel{[SM]}{\cong} 1$

Experiments measure double ratio involving J/ ψ

 R_{K} : LHCb most precise, Run-2 ~SM, combination with Run-1: 2.5 σ < SM

 R_{K^*} : LHCb (most precise) low (2.3~2.5
ơ) at low q²

New results by LHCb:

$$R_{pK} = \frac{B(\Lambda_b^0 \to pK^-\mu\mu)}{B(\Lambda_b^0 \to pK^-ee)} \stackrel{[SM]}{\cong} 1$$

LHCb measures double ratios to ${\mathsf J}/\psi$

Result: $R_{pK} = 0.86^{+0.14}_{-0.11} \pm 0.05$ in agreement with SM (but also lower)

$B \rightarrow K^* \mu \mu$ angular analysis

New result from LHCb with 4.7 fb⁻¹ (Run 1 + 2016 data)

Full fit to all angular observables

Global fit by LHCb to SM model varying $Re(C_9)$ only gives 3.3σ discrepancy

- No firm conclusion, need more data!
- Possible to clarify anomalies within timescale of Phase 2((arXiv:1709.10308))

RK, RK*

B-physics anomalies and LQ

- Upper limit on new physics scale: 9 (80) TeV for $b \rightarrow clv$ ($b \rightarrow sll$) transition (arXiv:1706.01868)
- Couplings to 2nd, 3rd fermion generation favored
- LQ s (LQ v) \rightarrow t tau (t v), b nu (b tau) strong candidate to explain the anomalies arXiv:1808.02063 (arXiv:1706.07808)

Decay BR of 0.5 preferred case to explain the anomalies

 \rightarrow t tau nu b has x2 BR w.r.t. existing searches ttnunu (SUS-19-005) and bbtautau (EXO-17-016) 16

• Decay branching ratio of 0.5 to each leptonquark