Search for heavy resonances decaying into a pair of Z bosons in 4l and llvv final states using 139 fb⁻¹ of pp collisions at 13 TeV with the ATLAS detector

Submitted into Eur. Phys. J. C, e-print: arXiv:2009.14791

Heling Zhu (祝鹤龄) Nov. 7th, 2020 @ CLHCP

Introduction

- Standard Model extension: not only one Higgs (125 GeV) boson responsible for electroweak symmetry breaking?
- Search for heavy resonance with $S \rightarrow ZZ \rightarrow 4I/IIvv$.
- Heavy resonance productions: gluon-gluon Fusion (ggF) and the Vector Boson Fusion (VBF)
- Several benchmark models:
 - Heavy spin-0 resonance of Narrow Width Approximation (NWA)
 - Heavy spin-0 resonance of Larrow Width Approximation (LWA) with widths of 1, 5, 10, 15% of signal mass
 - Two-Higgs-Doublet Model (2HDM)
 - Spin-2 graviton in Randall-Sundrum model

200 GeV to 2000 GeV

ZZ→4I Analysis

- Two opposite sign same flavor lepton (e, μ) pairs.
- The 4l Signals are modeled from parameterization
 - Truth width of NWA: ignored, LWA and Graviton: analytical function
 - Detector resolution:

 $P_{\mathcal{S}}(m_{4\ell}) = f_{\mathcal{C}} \cdot \mathcal{C}(m_{4\ell}; \mu, \sigma_{\mathcal{C}}, \alpha_{\mathcal{C}}, n_{\mathcal{C}}) + (1 - f_{\mathcal{C}}) \cdot \mathcal{G}(m_{4\ell}; \mu, \sigma_{\mathcal{C}})$

- For LWA signal, the interferences between heavy Higgs and SM ggZZ process (H-b), and heavy Higgs and SM Higgs (H-h) are considered.
- Irreducible backgrounds (~97%): $qq \rightarrow ZZ$, $gg \rightarrow ZZ$, EW-qqZZ
 - Shapes are modeled with <u>empirical function</u>
 - Normalizations are constrained by data
- Reducible backgrounds: Z+jets, ttbar
 - Shapes from MC simulation
 - Normalizations from <u>data driven method</u>

Discriminant: 41 invariant mass

ZZ→IIvv Analysis

- One opposite sign same flavor lepton (e, μ) pair + E_T^{miss} (>120) GeV).
- The Ilvv Signals are estimated from MC simulations
- ZZ backgrounds (qqZZ, ggZZ, EW-ZZjj , 60%):
 - Shapes are estimated from MC simulation
 - Normalization is obtained from data (free parameter in fit)
- WZ backgrounds (32%):
 - Shape from MC simulation
 - Yield is estimated in 3-lepton control region.
- Others: Non-resonant-II (WW/top/ $Z \rightarrow \tau \tau$, 5%), Z (ee, $\mu\mu$) + jets (3%):
- Fitting discriminant:

$$m_{\rm T} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2} -$$

 $-\left|\vec{p_{\mathrm{T}}}^{\ell\ell}+\vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right|$

4

MVA Method for 4I NWA Model

- Two classifiers based on Deep Neural Network: one VBF classifier and one ggF classifier • The ggF and VBF models are trained independently under different phase spaces after all analysis
- selection
- Use simulated 4 NWA signal events with mH from 200 to 1400 GeV
- Background: $qq \rightarrow ZZ + gg \rightarrow ZZ (\rightarrow 4I)$
- To avoid bias, during training, re-weight signal samples to perfectly match falling background spectrum Bias test: no sculpting in either signal acceptance or background distributions
- Input features are kinematics of leptons and jets
- Training of VBF:
 - Events with Njets >= 2
 - Signal: VBF signal samples
- Training of ggF:
 - Events with Njets < 2
 - Signal: ggF signal samples

Two Event Categorizations

- Cut-based (4| & llvv):
 - A model-independent analysis
 - VBF-enriched: 4I (IIvv) $m_{ii} > 400$ (500) GeV and $\Delta \eta_{ii} > 3.3$ (4.4)
 - ggF-enriched: remaining events
- MVA-based (41 NWA signal only):
 - Gain better signal and background separation for NWA specific model
 - Cut at NN_{ggF} and NN_{VBF}: VBF-MVA-enriched, ggF-MVAhigh, ggF-MVA-low
- For NWA signal, consider both ggF and VBF production mode 4l channel: MVA-based analysis as baseline.
- For LWA and Graviton signal, only consider ggF categories with Cut-based analysis.

6

Systematics

- Overall, the impacts of systematic uncertainties are small
- Experimental uncertainties: ATLAS combined performance (<u>CP</u>) recommendation
- Theory uncertainties:
 - QCD scale, PDF, Parton shower, EW correction
- Other shape uncertainties from background estimation: due to the ZZ backgrounds are constrained by data.

Systematic source

ZZ parameterisat Z + jets modellin Parton showering $e\mu$ statistical unce Data stat. uncerta Total uncertainty

Electroweak correct Parton showering (QCD scale of $q\bar{q}$ – Z + jets modelling Data stat. uncertain Total uncertainty

uncertainties are small 5 combined performance (<u>CP</u>)

ggF production		VBF production			
e	Impact [%]	Systematic source In			
$m_H = 300 \text{ GeV}$					
tion $(\ell^+ \ell^- \ell'^+ \ell'^-)$	4.5	Jet flavor composition			
$\log\left(\ell^+\ell^-\nu\bar{\nu}\right)$	2.3	$q\bar{q} \rightarrow ZZ \ QCD$ scale (VBF-enriched category, $\ell^+ \ell^- \ell'^+ \ell'^-$			
g of ggF $(\ell^+ \ell^- \ell'^+ \ell'^-)$	2.2	ZZ parameterisation $(\ell^+ \ell^- \ell'^+ \ell'^-)$			
ertainty $\ell^+ \ell^- \nu \bar{\nu}$	2.0	Jet energy scale(<i>in-su</i> calibration)			
ainty	53	Data stat. uncertainty			
	55	Total uncertainty			
	m _I	$_{H} = 1000 \text{ GeV}$			
ctions for $q\bar{q} \rightarrow ZZ \ (\ell^+ \ell^-)$	$v\bar{v}$) 9.3	Parton showering $(\ell^+ \ell^- \nu \bar{\nu})$			
$(\ell^+\ell^-\nu\bar{\nu})$	5.2	Electroweak corrections for $q\bar{q} \rightarrow ZZ \ (\ell^+ \ell^- \nu \bar{\nu})$			
$\rightarrow ZZ \left(\ell^+ \ell^- \nu \bar{\nu} \right)$	4.8	QCD scale of $q\bar{q} \rightarrow ZZ \ (\ell^+ \ell^- \nu \bar{\nu})$			
$g(\ell^+\ell^-\nu\bar{\nu})$	2.4	Jet flavor composition			
nty	57	Data stat. uncertainty			
-	59	Total uncertainty			

Combination between 41 and llvv

- Final results are obtained by combining 4I and Ilvv channels.
- In both 4I and 2I2v channels, the data are consistent with the SM.
- Separate ZZ bkg normalization factors due to different selections:

ZZ normalization factors:

_	Analysis	Normalisation factor	Fitted value
-		$\mu_{ZZ}^{ ext{VBF-MVA}}$	0.9 ± 0.3
	$\ell^+\ell^-\ell'^+\ell'^-$	$\mu_{ZZ}^{ m ggF-MVA-high}$	1.07 ± 0.05
		$\mu_{ZZ}^{ m ggF-MVA-low}$	1.12 ± 0.03
ы	$\ell^+\ell^- uar u$	μ_{ZZ}	1.07 ± 0.05

Process

 $q\bar{q} \rightarrow Z$ $gg \rightarrow Z$ ZZ (EV Z + jets

tīV,V

Total ba

Observe

Post-fit numbers from B-only hypothesis

				-				
	VBF-enriched cate	egory 4µ	ggI channel	F-MVA-high $2e2\mu$ ch	a categories annel 4 <i>e</i>	channel	ggF-M	VA-lo
ZZ ZZ W) s,tī VV	11 ± 4 3 ± 2 4.1 ± 0.4 0.08 ± 0.02 0.97 ± 0.1	232 37 4.5 0.6 9.8	± 10 ± 6 ± 0.2 ± 0.1 ± 0.2	389 ± 17 64 ± 10 $7.5 \pm 0.$ $1.7 \pm 0.$ $17.5 \pm 0.$	7 154 0 26 .4 3 .4 0.8 .4 7.8	± 7 ± 4 ± 0.2 ± 0.1 ± 0.2	2008 ± 247 ± 14.3 ± 8.8 ± 21.9 ±	: 47 : 19 : 0.7 : 2.1 : 0.5
ckground	19 ± 5	284	± 12	480 ± 20	0 192	2 ± 8	2300 ±	: 51
d	19		271	493		191		230
- 	Process $q\bar{q} \rightarrow ZZ$ $gg \rightarrow ZZ$ ZZ (EW) WZ Z + jets Non-resonant- ll $t\bar{t}V,VVV$ Total backgrounds	ggF-enri e^+e^- chann 714 ± 38 94 ± 29 6.6 ± 0.5 412 ± 14 43 ± 13 66 ± 6 5.9 ± 0.4 1342 ± 52	ched cate el $\mu^+\mu$ 817 105 455 60 77 5.9 1527	egories - channel 7 ± 44 5 ± 32 7 ± 0.5 5 ± 12 0 ± 22 7 ± 7 9 ± 0.4 7 ± 60	VBF-enr e^+e^- chann 2.9 ± 0.2 1 ± 0.5 0.8 ± 0.1 2.5 ± 0.5 0.3 ± 0.2 0.2 ± 0.2 0.09 ± 0.02 7.8 ± 0.8	iched cate el $\mu^+\mu^-$ 3.5 1 0.9 3 0.4 0.3 2 0.04 9	egories $- channel \pm 0.2\pm 0.4\pm 0.1\pm 1.5\pm 0.3\pm 0.2\pm 0.21\pm 1.6$	—
	Observed	1323		1542	8		10	

01

Interpretation: NWA model

- upper limits on the production cross section in the asymptotic approximation.
- For NWA model
 - is profiled
 - MVA-based analysis as baseline for NWA, <u>Cut-based analysis</u> is also studied

• No significant excess is observed, therefore, the results of the search are interpreted as 95% CLs

• During statistical fit, both ggF and VBF signals are included, and the other signal not under test

- Last paper: 2015+2016 datasets with 36.1/fb, also projected to 139/fb Compare with both the MVA- and Cut- based analysis in this paper Expected 95% CLs upper limits in the case of NWA model Up to 70% reduction: ~50% reduction due to the luminosity increase

Changes:

- Jets and lepton isolation: more robust for high pile-up condition.
- 2. ZZ bkg constrained by data: reduce uncertainties from theo.
- Search range extend to 2 TeV 3.
- Selection and categorization optimizations.

Compare to last paper

Interpretation: 2HDM

- <u>2HDM</u> exclusion contours under the assumption of NWA signal
 - Type-I: All quarks and leptons couple only to second Higgs doublet (Φ_2)
 - Type-II: Φ_1 couples to down-type quarks and leptons and Φ_2 couples to up-type quarks
- $tan\beta$: the ratio of Higgs doublets' vacuum expectation values
- Coupling of the heavier Higgs (*H*) is proportional to $cos(\beta \alpha)$

m_H [GeV]

Interpretation: LWA model

- For LWA model, study only ggF production
- Search range from 400 GeV to 2000 GeV
- Interpretation at 4 widths: 1, 5, 10, 15% of signal masses
- Interference of H-b and H-h are all taken into account

Interpretation: RS Graviton

- Graviton excitation in the context of the bulk RS model ($G_{\ensuremath{\mathsf{KK}}}$)
- Coupling strength depends on k/\overline{M}_{pl} , where k is the curvature of the extra dimension and \overline{M}_{pl} is the reduced plank mass (2.4x10¹⁸ GeV)
- Set coupling k/\overline{M}_{pl} to 1, mass of G_{KK} is the only free parameter in this simplified model
- Comparing to the theoretical prediction, mass below 1750 GeV is excluded.

Conclusion

- presented with 139 fb⁻¹ 13 TeV data collected by ATLAS detector.
 - Submitted into Eur. Phys. J. C, e-print: arXiv:2009.14791
- Several models are studied:
 - Narrow-width spin-0 resonance
 - Large-width spin-0 resonance with widths of 1, 5, 10, 15% of signal mass
 - Parameters in two-Higgs-Doublet Model (2HDM)
- Search range: 200 GeV to 2000 GeV.
- No significant excess is observed.

• Search for heavy resonances decaying into a pair of Z bosons in 4I and Ilvv channels is

• A Graviton excitation spin-2 resonance in the context of the Randall-Sundrum model.

• The results of the search are interpreted as upper limits on the production cross section.

Backup

ZZ→4l analysis: Event selection

Quadruplet Selection

- Four leptons final state, 2 opposite sign same flavor pairs.
 - Discriminant: 4-lepton invariant mass, m4l
- Use Particle-flow (PFlow) jets & lepton isolation: robust for high pile-up condition
- Isolation
- Impact
- Parameter
- Significance
- Best
- Quadruplet
- Vertex
- Selection

- Require at least one quadruplet of leptons consisting of two pairs of same-flavour opposite-charge leptons fulfilling the following requirements:
- $p_{\rm T}$ thresholds for three leading leptons in the quadruplet: 20, 15 and 10 GeV
- Maximum one calo-tagged or stand-alone muon or silicon-associated forward per quadruplet
- Leading di-lepton mass requirement: $50 < m_{12} < 106$ GeV
- Sub-leading di-lepton mass requirement: $50 < m_{34} < 115$ GeV
- $\Delta R(\ell, \ell') > 0.10$ for all leptons in the quadruplet
- Remove quadruplet if alternative same-flavour opposite-charge
- di-lepton gives $m_{\ell\ell} < 5 \text{ GeV}$
- Keep all quadruplets passing the above selection
- Contribution from the other leptons of the quadruplet is subtracted
- FixedCutPFlowLoose WP for all leptons
- Apply impact parameter significance cut to all leptons of the quadruplet
- For electrons: $d_0/\sigma_{d_0} < 5$
- For muons: $d_0/\sigma_{d_0} < 3$
- If more than one quadruplet has been selected, choose the quadruplet

with highest Higgs decay ME according to channel: 4μ , $2e2\mu$, $2\mu 2e$ and 4e

- Require a common vertex for the leptons:
- χ^2 /ndof < 5 for 4 μ and < 9 for others decay channels

Input features for DNN

Table 15 & 16 in paper draft (Auxiliary material)

	For VBF classifier		Model	Inputs	Description
Model	Inputs	Description	rNN	$p_{\mathrm{T}}^{\ell 0,\ell 1,\ell 2,\ell 3}$ $\eta^{\ell 0,\ell 1,\ell 2,\ell 3}$	transverse momenta of the four leptons pseudorapidity of the four leptons
rNN	$p_{\rm T}^{{ m j0,j1}}$ $\eta^{{ m j0,j1}}$ $p_{\rm T}^{\ell 0,\ell 1,\ell 2,\ell 3}$ $\eta^{\ell 0,\ell 1,\ell 2,\ell 3}$	transverse momenta of the two leading jets pseudorapidity of the two leading jets transverse momenta of the four leptons pseudorapidity of the four leptons		$m_{4\ell}$ $p_{\mathrm{T}}^{4\ell}$ $\eta^{4\ell}$	invariant mass of the four lepton system transverse momentum of the four lepton system pseudorapidity of the four lepton system
$m_{4\ell}$ $m_{ m jj}$ MLP $p_{ m T}^{ m jj}$ $\Delta\eta_{ m H,j}$ $min\Delta R_{ m iZ}$	invariant mass of the four lepton system invariant mass of the two leading jet system	MLP	$\cos \theta^{+}$ $\cos \theta_{1}$ $\cos \theta_{2}$ Φ	production angle of the leading Z defined in the four lepton rest fi angle beteween the negative final state lepton and the direction of leading Z in the Z rest frame	
	$p_{\rm T}$ $\Delta \eta_{\rm H,j}$ min $\Delta R_{\rm iZ}$	difference in pseudorapidity between the four lepton system and the leading jet minimum distance between one of the two lepton pairs and a jet		angle between the negative final state lepton and the direction of sub-leading Z in the Z rest frame angle between the decay planes of the four final state leptons expr the four lepton rest frame	
	<u> </u>			$p_{ m T}^{ m j0}$ $\eta^{ m j0}$	transverse momentum of the leading jet pseudorapidity of the leading jet

For ggF classifier

DNN classifier bias test

- 450 GeV which has not seen during training (right figure)
- after DNN cut (left)

Evaluate the ggF classifier on a newly generated ggF signal mass point at

No background sculpting comparing the background shape before and

Z→llvv analysis: Event selection and categorization

- Final state with 2 opposite sign same flavour lep plus E_T^{miss}
 - Events are not fully reconstructable, discrimination transverse mass, **mT**

$$m_{\rm T} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left|\vec{p}_{\rm T}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

- Sensitive at mass range > 300 GeV
- Large branching ratio, dominant in higher mass

Criterion

 $E_{\rm T}^{\rm miss} > 120 \text{ GeV}$ $\Delta R_{\ell,\ell} < 1.8$ $\Delta \phi(Z, E_T^{\rm miss}) > 2.5$ $\Delta \phi(\text{jet}_{p_{\rm T}} > 100 \text{ GeV}, E_{\rm T}^{\rm miss}) > 0.4$ $E_{\rm T}^{\rm miss} \text{-significance} > 10.0$ $n_{\text{b-jets}} = 0, \text{ (jet } p_{\rm T} > 20 \text{ GeV}, \text{ b-tagging MV2c10 WP 85\%)}$

otons	•	Jse Cut-based categorization (4 categories		
		 Obtained from 2D significance scan 		
nant:		• VBF: $m_{jj} > 550$ GeV and $\Delta \eta_{jj} > 4.4$		
		 ggF: remaining events passing analysis selection 		
		 Both are separated in eevv and µµvv channel 		
region.				
		Mainly suppresses		
		Z+jets		
		Z+jets, WW,top, $Z \rightarrow \tau \tau$		
		Z+jets, WW,top, $Z \rightarrow \tau \tau$		
MV2c10 WP 85%)		Z+jets		
		Z+jets		
) Top quarks		

LWA Signal Modeling

Cross section:

$$\sigma_{pp \to H \to ZZ}(m_{4\ell}) = 2 \cdot m_{4\ell} \cdot \mathcal{L}_{gg} \cdot \frac{1}{\left|s - s_H\right|^2} \cdot \Gamma_{H \to gg}(m_{4\ell}^2) \cdot \Gamma_{H \to ZZ}(m_{4\ell}^2)$$

Higgs propagator

$$\frac{1}{s - s_H} = \frac{1 + i \cdot \overline{\Gamma}_H / \overline{m}_H}{s - \overline{m}_H^2 + i \cdot s \cdot \overline{\Gamma}_H / \overline{m}_H}$$
$$\overline{m}_H = \sqrt{\Gamma_H^2 + m_H^2}$$
$$\overline{\Gamma}_H = \overline{m}_H \cdot \frac{\Gamma_H}{m_H}$$

 $H \rightarrow ZZ$ width

$$\Gamma_{H \to ZZ}(s) = C \cdot s^{\frac{3}{2}} \cdot \left[1 - \frac{4m_Z^2}{s} + \frac{3}{4} \left(\frac{4m_Z^2}{s} \right)^2 \right] \cdot \left[1 - \frac{4m_Z^2}{s} \right]^{\frac{1}{2}}$$

 $gg \rightarrow H$ width (via t or b-quark) $\Gamma_{H \to gg}(s) = C \cdot s^{\frac{3}{2}} \cdot \left| A_t(\tau_t) \right|^2$ $A_t(\tau) = 2\frac{\tau + (\tau - 1)f(\tau)}{\tau^2}$ $\tau_t = \frac{s}{4m_t^2}$ $f(\tau) = \begin{cases} \arcsin^2(\sqrt{\tau}), \ \tau \le 1 \\ -\frac{1}{4} \left[\log \frac{1 + \sqrt{1 - \tau^{-1}}}{1 + \sqrt{1 - \tau^{-1}}} - i\pi \right]^2, \ \tau > 1 \end{cases}$ MC with 15% width

Truth convolute with NWA reco

where $s = m_{4l}^2$, L_{gg} : gluon-gluon luminosity

- Interference between heavy Higgs and $gg \rightarrow ZZ$ continuum
 - Fit to truth-level MC

$$\sigma_{pp}(m_{4\ell}) = \mathcal{L}_{gg} \cdot \frac{1}{m_{4\ell}} \cdot \operatorname{Re}\left[\frac{1}{s - s_H} \cdot \left((a_0 + a_1 \cdot m_{4\ell} + \dots)\right)\right]$$

- Interference between heavy Higgs and SM Higgs
 - Calculate from analytical function directly (like LWA)

$$\sigma_{pp}(m_{4\ell}) = 4 \cdot m_{4\ell} \cdot \mathcal{L}_{gg} \cdot \operatorname{Re}\left[\frac{1}{s - s_H} \cdot \frac{1}{(s - s_h)^*}\right] \cdot \Gamma_H$$

• Empirical function: $f(m_{4\ell}) = C_0 H(m_0)$

> $f_1(x) = \left(\frac{x - a_4}{a_3}\right)$ $f_2(x) = \exp\left[b_0\right]$ $C_0 = \frac{f_2(m_0)}{f_1(m_0)}.$

- f1: covers low mass region
- f2: describes high mass tail
- ggZZ and EW-ZZjj backgrounds.

ZZ background parameterization

$$(m_{4\ell}) - m_{4\ell})f_1(m_{4\ell}) + H(m_{4\ell} - m_0)f_2(m_{4\ell}),$$

$$\frac{4}{2} \int_{0}^{a_{1}-1} \left(1 + \frac{x - a_{4}}{a_{3}}\right)^{-a_{1}-a_{2}},$$

$$= \left(\frac{x - b_{4}}{b_{3}}\right)^{b_{1}-1} \left(1 + \frac{x - b_{4}}{b_{3}}\right)^{-b_{1}-b_{2}},$$

• Transition point: m_0 , $m_0 = 260$ GeV for qqZZ background, and 350 GeV for

Parameterization's error

- P.d.f with visualized 1-sigma error band: <u>VisualizeError()</u> in RooFit • Linear propagation of the covariance matrix

error(x) = Z * F a(x) * Corr(a,a') F a'(x)where F a(x) = [f(x,a+da) with f(x) = the plotted curve'da' = error taken from the fit result Corr(a,a') = the correlation matrix from the fit result Z = requested significance 'Z sigma band', we use <math>Z = 1

Fast but may not be accurate in the presence of strong correlations (~>0.9)

Reducible Background Estimation

- llee: from Z boson with light-flavor jets (Z+LF)
 - Fit to the number of hits in the innermost ID layer in 31 + X CR, second lepton pair should be same sign.
- IIuu: Z boson with heavy-flavor jets (Z+HF) or top-quark
 - Fit to M_{Z1} in dedicate CRs: inverted d_0 CR, $e\mu + \mu\mu$ CR, inverted isolationCR, Same-signCR
- The normalizations from fit are then propagated to SR, by applying transfer factors to account for the difference of selection efficiencies between SR and CRs

Experimental Uncertainties

- Electron:
 - **Reconstruction & Identification:** EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR, EL_EFF_ID_CorrUncertaintyNP[0-15]
 - Energy scale & Resolution: EG_SCALE_ALLCORR, arise from detector components: EG_SCALE_E4SCINTILLATOR, EG_SCALE_LARTEMPERATURE_EXTRA2016PRE, EG_RESOLUTION_ALL
- Muon:

 - systems: MUON_ID, MUON_MS, MUON_SAGITTA_RESBIAS, MUON_SAGITTA_RHO
 - MUON_EFF_TTVA_STAT, MUON_EFF_TTVA_SYS
- **Jet energy scale and resolution:** JET_JER_DataVsMC, JET_JER_EffectiveNP[1-7]
- **Pile-up:** rescale $<\mu>$ according to data vs MC comparisons: PRW_DATASF

Reconstruction & identification: MUON_EFF_RECO_STAT(_LOWPT), MUON_EFF_RECO_SYS(_LOWPT)

• Momentum scale & resolution: tracking properties are different in the different tracking

• Track-to-vertex-association (TTVA): performance of matching a muon track to a vertex:

Statistic Procedure

- Binned likelihood function: $L = \prod \prod P$
 - where $\mathbf{n} = (n_1, ..., n_N)$ is histogram (eg. m4l distribution)
 - θ nuisance parameters (eg. exp. and theo. uncertainties) constrained by Gaussian
- Under the case we have two (ggF, VBF signal) in this analysis: $\text{Yield}_{\text{cat i, bin j}} = S_{ggF} f_{ggF}(x_{ij}) + S_{VBF} f_{VBF}(x_{ij}) + B f_B(x_{ij})$

cat bins

- where f_{ggF/VBF}, f_B are the P.D.F.s of ggF/VBF signal and background follow modeling

• S_{ggF/VBF}, B are the normalization for signal and background, and background normalization can either modeled by MC simulation or constrained by data: $S_{ggF(VBF)} = \sigma_{ggF(VBF)} \times B(S \to ZZ) \times A \times C \times \left| \mathcal{L} \right|$ • To test the hypothesized value of σ , define the profile likelihood ratio: $\lambda(\sigma) = \frac{\mathcal{L}(\sigma, \hat{\theta})}{2}$ $\mathcal{L}(\hat{\sigma}, \hat{\theta})$

- Define the test statistic and minimize t_{σ} : $t_{\sigma} = -2ln\lambda(\sigma)$

$$Pois(n_{ij}|\text{Yield}_{ij}(\vec{\sigma},\vec{\theta}))\prod_{j}^{var}G(\theta_k|0,1)$$

NWA upper limits: Cut-based

- Up to 20% worse than DNN-based analysis (for mass < 1500 GeV)
- 95% CLs upper limits are set in the asymptotic approximation

Two-Higgs-Doublets Model

- Through electroweak symmetry breaking, there are five physical Higgs bosons: two CPeven (h, H), one CP-odd (A), and two charged ones (H[±]).
- $tan\beta$: the ratio of Higgs doublets' vacuum expectation values
- α : the two neutral CP-even Higgs bosons mixing angle
- Couplings of neural Higgs boson to vector bosons (W/Z):
 - The coupling of the lighter Higgs (h) equals to the SM coupling times $sin(\beta \alpha)$
 - The coupling of the heavier Higgs(*H*) equals to the SM coupling times $cos(\alpha \beta)$
 - The coupling of the pseudoscalar (A) to vector bosons is zero
- Couplings to fermions (different types of models):
 - Type-I : all quarks and leptons couple only to Φ_2
 - Type-II : down-type quarks and leptons couple to Φ_1 , and up-type quarks couple to Φ_2
 - Type-III : leptons couple to $\Phi_1,$ while all quarks couple to Φ_2
 - Type-IIII: down-type quarks couple to Φ_1 , while up-type quarks and leptons couple to Φ_2