Combination of measurements of Higgs boson production and decay using up to 139/fb of p-p collision data at  $\sqrt{s}$ =13TeV collected with the ATLAS experiment

Speaker: Gangcheng Lu

- IHEP, China
- 7. Nov. 2020



2020/11/7



### Outline

### Introduction

- Global mu measurements
- Cross-section measurements in production modes
- Simplified template cross-section(STXS) measurements
- $\succ \kappa$  framework measurements
- Two Higgs doublet models(2HDM) interpretation

### Introduction

- Following the discovery of the Higgs boson, its coupling properties to other SM particles, such as its production cross sections and decay branching fractions, can be precisely computed.
- The measurements can provide stringent tests of the SM validity. The deviation from SM would an indicator of beyond standard model physics(BSM)



The properties were consistent with the SM in the <u>Run I</u>. For this combination, the measurements have been extended using the Run 2 dataset, to probe Higgs properties more precisely.

### Input channels

|                      | ZZ | $\gamma\gamma$ | bb | $\mu\mu$ | $\tau \tau$ | WW | multi-lep | inv |
|----------------------|----|----------------|----|----------|-------------|----|-----------|-----|
| ggF                  | •  | •              |    | •        | 0           | 0  |           |     |
| $\operatorname{VBF}$ | ●  | •              | 0  | ●        | 0           | 0  |           | •   |
| WH                   | ●  | ●              | ●  | ●        |             |    |           |     |
| $\operatorname{ZH}$  | ●  | ●              | ●  | ●        |             |    |           |     |
| $\mathrm{ttH}$       | ●  | ●              | 0  | ●        |             |    | 0         |     |
| $\mathrm{tH}$        |    | ●              |    |          |             |    |           |     |

● Included with full Run 2 dataset(139fb<sup>-1</sup>) ○ Included with 2015-2016 data only

 $\blacktriangleright$   $H \rightarrow \gamma \gamma, H \rightarrow ZZ \rightarrow 4l$  and  $VH, H \rightarrow bb$  analyses are included in the STXS

measurements

- >  $H \rightarrow \mu\mu$  and VBF *Hinv* are only used for  $\kappa$  framework with  $\kappa_{\mu}$  and  $B_{i.}, B_{u.}$  respectively
- For more detailed not covered in the presentation, please refer to the  $\underline{\text{CONF-NOTE}}_{2020/11/7}$ .

### **Global mu results**

$$\mu = 1.06^{+0.07}_{-0.07} = 1.06^{+0.04}_{-0.04}(stat.)^{+0.03}_{-0.03}(exp.)^{+0.05}_{-0.04}(sig.th.)^{+0.02}_{-0.02}(bkg.th.)$$

- > The global  $\mu$  is defined as the ratio of observed yields to its SM expectation, a measurement of potential deviation from SM.
- Observed result is 1.06, a little larger then SM expected, with a precision of 7%

The measurement is consistent with SM prediction with a p-value of  $p_{SM} = 40\%$ 



# Cross-section measurements in production modes

### **Production cross sections**

- Cross-sections are measured in the main Higgs production modes:
  - ➢ ggF (including ~1% contribution from bbH)
  - > VBF
  - ≻ WH
  - > ZH (including  $gg \rightarrow ZH$ )
  - $\succ$  ttH + tH
- The cross sections are float in the simultaneous fit to data, while the branching fractions are fixed to their SM expectations.
- > Compatible with the SM expectation with  $p_{SM} = 86\%$
- **Decreased anti-correlation** between ggF and VBF(~8%), mainly from new  $\gamma\gamma$  and ZZ results.
- Over 5σ significance in all 5 production modes, a first > 5σ observation in WH channel!





### Production cross sections × BR

- > Probe Higgs properties in each production×decay:  $(\sigma \times B)_{if}$
- Some productions or decays get merged with others, due to limited statistics

| ATLAS Preliminary                                                          | Stat. 💳 Syst.                                                                                                     | SM                                    |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| $V_{S} = 13$ TeV, 24.5 - 139 fb<br>$m_{ij} = 125.09$ GeV. $ V_{ij}  < 2.5$ |                                                                                                                   |                                       |
| $p_{SM} = 87\%$                                                            | Total Stat.                                                                                                       | Syst.                                 |
| ggF γγ 📥                                                                   | 1.03 ± 0.11 ( ± 0.08                                                                                              | +0.08                                 |
| ggF ZZ                                                                     | 0.94 <sup>+0.11</sup> <sub>-0.10</sub> ( ±0.10                                                                    | , ± 0.04 )                            |
| ggF WW                                                                     | 1.08 <sup>+0.19</sup> <sub>-0.18</sub> ( ± 0.11                                                                   | , ±0.15)                              |
| ggFττ μ                                                                    | $1.02 \begin{array}{c} +0.60 \\ -0.55 \end{array} \begin{pmatrix} +0.39 \\ -0.38 \end{array}$                     | $+0.47 \\ -0.39$                      |
| ggF comb.                                                                  | 1.00 ± 0.07 ( ± 0.05                                                                                              | , ± 0.05 )                            |
| VBF γγ                                                                     | 1.31 +0.26 ( +0.19 -0.23 ( -0.18                                                                                  | +0.18<br>-0.15)                       |
| VBF ZZ                                                                     | $1.25 \stackrel{+0.50}{_{-0.41}} ( \stackrel{+0.48}{_{-0.40}}$                                                    | + 0.12<br>- 0.08 )                    |
| VBF WW                                                                     | $0.60  {}^{+ 0.36}_{- 0.34} \left( \begin{array}{c} {}^{+ 0.29}_{- 0.27} \right.$                                 | , ±0.21)                              |
| VBF ττ μ                                                                   | $1.15 \begin{array}{c} ^{+0.57}_{-0.53} \left( \begin{array}{c} ^{+0.42}_{-0.40} \right. \end{array} \right.$     | , +0.40<br>-0.35)                     |
| VBF bb                                                                     | 3.03 + 1.67 + 1.63 - 1.62                                                                                         | , <sup>+0.38</sup> <sub>-0.24</sub> ) |
| VBF comb.                                                                  | $1.15 \stackrel{+0.18}{_{-0.17}}(\pm 0.13$                                                                        | , +0.12<br>-0.10)                     |
| νΗ γγ                                                                      | $1.32 \begin{array}{c} {}^{+0.33}_{-0.30} \left( \begin{array}{c} {}^{+0.31}_{-0.29} \end{array} \right.$         | , +0.11<br>-0.09)                     |
| VH ZZ                                                                      | 1.53 + 1.13 + 1.10 - 0.92 + 1.10                                                                                  | +0.28<br>-0.21)                       |
| VH bb 😝                                                                    | $1.02 \stackrel{+0.18}{_{-0.17}} (\pm 0.11$                                                                       | , <sup>+0.14</sup><br>-0.12)          |
| VH comb.                                                                   | $1.10  {}^{+0.16}_{-0.15} \left(  \pm 0.11 \right.$                                                               | , +0.12<br>-0.10)                     |
| ttH+tH γγ                                                                  | $0.90  {}^{+0.27}_{-0.24} ( \begin{array}{c} {}^{+0.25}_{-0.23} \end{array}$                                      | $, {}^{+0.09}_{-0.06})$               |
| ttH+tH VV                                                                  | $1.72 \begin{array}{c} {}^{+0.56}_{-0.53} \left( \begin{array}{c} {}^{+0.42}_{-0.40} \right. \end{array} \right.$ | $, {}^{+0.38}_{-0.34})$               |
| <i>ttH+tH</i> ττ <b>μ</b>                                                  | $1.20  {}^{+1.07}_{-0.93} ( \begin{array}{c} {}^{+0.81}_{-0.74} \\ {}^{-0.74}_{-0.74} \end{array}$                | $^{+0.70}_{-0.57}$ )                  |
| ttH+tH bb                                                                  | $0.79 \stackrel{+0.60}{_{-0.59}} (\pm 0.29$                                                                       | , +0.52<br>-0.51)                     |
| ttH+tH comb.                                                               | $1.10 \begin{array}{c} +0.21 \\ -0.20 \end{array} \begin{pmatrix} +0.16 \\ -0.15 \end{array}$                     | $, +0.14 \\ -0.13$ )                  |
|                                                                            |                                                                                                                   |                                       |
| -2 0 2 4                                                                   | 6                                                                                                                 | 8                                     |
| $\sigma	imes$ B nc                                                         | ormalized                                                                                                         | to SM                                 |

- > Compatible with the SM expectation with  $p_{SM} = 87\%$
- Good agreement observed for each final state within a production mode

### **STXS** measurements

## Granularity of STXS binning

- Simplified template cross sections(STXS) are defined through a partition of the phase space of SM Higgs productions into non-overlapping regions, independent of Higgs decay process, aim to
  - Have good sensitivity
  - Avoid large theory uncertainties
  - > Approximately match experimental selections, to minimize **model-dependent extrapolations**.
- The final scheme is the version with some bins in Stage1.2 merged, based on the principles of avoiding strong anti-correlation and >100% uncertainties except in some bins sensitive to BSM



### **STXS** measurements



- > Only  $\gamma\gamma$ , ZZ, VH  $\rightarrow bb$  channels included in STXS measurements.
- Increase in number of regions probed,
   compared with <u>paper</u> in the last iteration
  - Finer granularity for low pT and high pT bins
  - Differential measurements for ttH
- The tH production is separated from ttH, with very large statistical uncertainty.
- Compatible with the SM prediction with a p-value of 95%

### *k* framework interpretation

### Kappa framework

- $\blacktriangleright$  Coupling-strength modifier  $\kappa$  are introduced to study modifications of the Higgs boson coupling related to BSM physics.
- > For a given **production process or decay model** j, the  $\kappa_j$  is defined as:

$$\kappa_j^2 = \frac{\sigma_j}{\sigma_j^{\text{SM}}} \quad \text{or} \quad \kappa_j^2 = \frac{\Gamma_j}{\Gamma_j^{\text{SM}}}$$

- Except the coupling to SM particles, the contributions from BSM B<sub>i</sub> and B<sub>u</sub> are probed
  - >  $B_i$  is related to **invisible decays**: decays identified only through MET
  - >  $B_u$  is related to **undetected BSM decays**: BSM decays to that none of the included analyses are sensitive.

$$\kappa_H^2(\kappa, B_{\rm i.}, B_{\rm u.}) = \frac{\sum_j B_j^{\rm SM} \kappa_j^2}{(1 - B_{\rm i.} - B_{\rm u.})}.$$

| Production                      | Loops        | Main         | Effective              | Resolved modifier                                                                         |  |
|---------------------------------|--------------|--------------|------------------------|-------------------------------------------------------------------------------------------|--|
|                                 |              | interference | modifier               |                                                                                           |  |
| $\sigma(ggF)$                   | $\checkmark$ | t-b          | $\kappa_g^2$           | $1.040 \kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.005 \kappa_t \kappa_c$ |  |
| $\sigma(\text{VBF})$            | -            | -            | -                      | $0.733 \kappa_W^2 + 0.267 \kappa_Z^2$                                                     |  |
| $\sigma(qq/qg \to ZH)$          | -            | -            | -                      | $\kappa_Z^2$                                                                              |  |
| $\sigma(aa \rightarrow 7H)$     | /            | . 7          |                        | $2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t$                           |  |
| $O(gg \rightarrow ZH)$          | v            | 1-2          | K(ggZH)                | $-0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$                                      |  |
| $\sigma(WH)$                    | -            | -            | -                      | $\kappa_W^2$                                                                              |  |
| $\sigma(t\bar{t}H)$             | -            | -            | -                      | $\kappa_t^2$                                                                              |  |
| $\sigma(tHW)$                   | -            | t-W          | -                      | $2.909 \kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$                           |  |
| $\sigma(tHq)$                   | -            | t-W          | -                      | $2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$                           |  |
| $\sigma(b\bar{b}H)$             | -            | -            | -                      | $\kappa_b^2$                                                                              |  |
| Partial decay width             |              |              |                        |                                                                                           |  |
| $\Gamma^{bb}$                   | -            | -            | -                      | $\kappa_{h}^{2}$                                                                          |  |
| $\Gamma^{WW}$                   | -            | -            | -                      | $\kappa_W^2$                                                                              |  |
| $\Gamma^{gg}$                   | $\checkmark$ | t-b          | $\kappa_{g}^{2}$       | $1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$                           |  |
| $\Gamma^{\tau\tau}$             | -            | -            | -                      | $\kappa_r^2$                                                                              |  |
| $\Gamma^{ZZ}$                   | -            | -            | -                      | $\kappa_Z^2$                                                                              |  |
| $\Gamma^{cc}$                   | -            | -            | -                      | $\kappa_c^2 (= \kappa_t^2)$                                                               |  |
|                                 |              |              |                        | $1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t$                           |  |
| $\Gamma^{\gamma\gamma}$         | $\checkmark$ | t-W          | $\kappa_{\gamma}^2$    | $+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b$                                   |  |
|                                 |              |              |                        | $-0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$                                   |  |
| $\Gamma^{Z\gamma}$              | $\checkmark$ | t-W          | $\kappa_{(Z\gamma)}^2$ | $1.118 \kappa_W^2 - 0.125 \kappa_W \kappa_t + 0.004 \kappa_t^2 + 0.003 \kappa_W \kappa_t$ |  |
| $\Gamma^{ss}$                   | -            | -            | -                      | $\kappa_s^2 (= \kappa_b^2)$                                                               |  |
| $\Gamma^{\mu\mu}$               | -            | -            | -                      | $\kappa_{\mu}^2$                                                                          |  |
| Total width $(B_{i.} = B_{i.})$ | $B_{u.} = 0$ |              |                        |                                                                                           |  |
|                                 |              |              |                        | $0.581 \kappa_b^2 + 0.215 \kappa_W^2 + 0.082 \kappa_g^2$                                  |  |
|                                 |              |              |                        | $+0.063 \kappa_{\tau}^2 + 0.026 \kappa_Z^2 + 0.029 \kappa_c^2$                            |  |
| $\Gamma_H$                      | $\checkmark$ | -            | $\kappa_H^2$           | $+0.0023 \kappa_{\chi}^2 + 0.0015 \kappa_{(Z\chi)}^2$                                     |  |
|                                 |              |              |                        | $+0.0004 \kappa_s^2 + 0.00022 \kappa_u^2$                                                 |  |

### Coupling to each SM particle

- Study the Higgs coupling with each SM particles. No additional BSM contributions
- > Loops of gluons and photon couplings are expressed in terms of SM contents



➢ 68% confidence interval shown for the particles

### Loops and decays

#### **No BSM contribution**

#### $B_{i}$ and $B_{u}$ introduced



- Effective coupling κ<sub>g</sub> and κ<sub>γ</sub> are sensitive to new particles and BSM effects appearing in loops.
- Compatibility to SM is 51%
  - Linearicorrelation is 0.34

|                 |          |                                 | -                |                       |
|-----------------|----------|---------------------------------|------------------|-----------------------|
|                 |          | Measured value                  | -                |                       |
| 10              | observed | $0.94\substack{+0.07 \\ -0.06}$ | -                |                       |
| $\kappa_g$      | expected | $1.00\substack{+0.07 \\ -0.07}$ |                  |                       |
| ĸ               | observed | $1.04^{+0.06}_{-0.05}$          | -                |                       |
| $\kappa_\gamma$ | expected | $1.00\substack{+0.06\\-0.05}$   | $\triangleright$ | $B_{i}$ correlated to |
| $R_{\cdot}$     | observed | < 0.13                          | -                | Hinv analysis         |
| $D_{l}$ .       | expected | < 0.13                          |                  | Compatibility to      |
| R               | observed | < 0.16                          |                  | SM is <b>70%</b>      |
| $D_{u}$ .       | expected | < 0.23                          |                  |                       |



### Generic kappa model

#### **No BSM contribution**

- > No BSM contributions to the total width( $B_{i.} = B_{u.} = 0$ )
- > The signs of  $\kappa_t$  can be positive or negative, while the other parameters kept positive
- > the region with  $\kappa_t < 0$  is excluded at **2.9(obs.)/2.7(exp.)**  $\sigma$



#### $B_{i}$ and $B_{u}$ introduced

To probe for BSM contributions, the combination includes the results of direct search to **Hinv.** Assuming  $\kappa_V < 1$  to regularize total width



| Parameter      | (a) $B_i = B_u = 0$              | (b) $B_i$ free, $B_u \ge 0$ , $\kappa_{W,Z} \le 1$       |
|----------------|----------------------------------|----------------------------------------------------------|
| KZ             | $1.02\pm0.06$                    | > 0.88 at 95% CL                                         |
| $\kappa_W$     | $1.06\pm0.07$                    | > 0.89 at 95% CL                                         |
| КЪ             | $0.98 \stackrel{+ 0.14}{- 0.13}$ | $0.92 \pm 0.10$                                          |
| K <sub>t</sub> | $1.00 \pm 0.12$                  | $0.97 \pm 0.12$                                          |
| Kτ             | $1.05 \stackrel{+ 0.15}{- 0.14}$ | 1.02 + 0.13 - 0.14                                       |
| Kγ             | $1.06 \stackrel{+ 0.08}{- 0.07}$ | 1.04 + 0.06 - 0.07                                       |
| Кg             | $0.96 \stackrel{+ 0.09}{- 0.08}$ | $0.93 \begin{array}{c} + \ 0.08 \\ - \ 0.07 \end{array}$ |
| $B_{\rm i}$    | -                                | < 0.09 at 95% CL                                         |
| B <sub>u</sub> | -                                | < 0.19 at 95% CL                                         |

### **2HDM Interpretation**

## **Two-Higgs Doublet Model**

➢ In 2HDM, the SM Higgs sector is extended by

an additional Higgs doublet

- ➤ 4 types of 2HDM are defined:
  - Type I: One Higgs doublet couples to vector bosons; the other couples to fermions
  - Type II: One Higgs doublet couples to up-type quarks; the other to down-type quarks and charged leptons.
  - Lepton-specific: The Higgs bosons have the same couplings to quarks as in
     Type I model and to charged leptons as in Type II.
  - Flipped: The Higgs boson have the same couplings to quarks as in Type II
     202AA4467charged leptons as in Type I.



### Summary

- The results presented in the CONF note are based on the combination of  $H \rightarrow \gamma \gamma$ ,  $H \rightarrow ZZ^*, H \rightarrow WW^*, H \rightarrow \tau \tau, H \rightarrow b\overline{b}, H \rightarrow \mu\mu$  and  $VBF H \rightarrow inv$
- > Global signal strength is measured to be  $1.06 \pm 0.07$
- > XS measurements in production modes are performed. The observed and expected significances of WH and ZH both exceed  $5\sigma$ , indicating a first observation for WH
- > XS measurements in STXS regions are found to be consistent with SM predictions.
- Measurements of coupling modifiers in several  $\kappa$  frameworks are performed. No significant deviations from SM is observed.
- ➤ 4 types of Two-Higgs-Doublet-Model(2HDM) get interpreted as constraints in the  $(\cos(\beta \alpha), tan\beta)$  plane.
- The Minimal supersymmetric standard model(MSSM) and Effective field theory(EFT) interpretations based on the dataset in this combination have been updated in the conference note[link].
  19



### Harmonization among workspaces

- > 2 types of workspaces from each analysis
  - Mu workspace: with full theory uncertainties on signal, used in inclusive mu and kappa results
  - XS workspace: with only theory uncertainties on acceptance of signal, used in prod. mode XS and STXS measurements
- Parameters of interest need to get merged in order to measure in a coarser granularity
  - For mu WS, the parameters can merged straightforward since full theory uncertainties considered
  - For XS WS, additional uncertainties need to be injected to cover assumption of SM predicted fractions. (twiki)

$$\succ \ \Delta \delta_t = \delta_t - \frac{\sum_i n_i^{SM} \delta_i}{\sum_i n_i^{SM}}$$

### Harmonization among workspaces

- There are some fundamental modifications to all workspaces
- The luminosity uncertainty was split into correlated(1 NP) and uncorrelated(2 NPs) between 15+16 years and 17+18 years
  - The total uncertainty on 15+16 dataset(36/fb) is 2.1%, on FullRun2 dataset(140/fb) is 1.7%.
- BR uncertainties
  - BR uncertainty was split into different sources in the combination, in order to correlated properly between different channels

### > Scaling $m_H$ to **125.09GeV**

- > Input channels are mostly based on  $m_H$ =**125GeV** except Hyy
- ➤ the impacts are negligible in most of cases, only variation of  $H \rightarrow VV$  branching ratio need to be corrected.

|             | $36 { m  fb^{-1}}$ | $139 { m  fb^{-1}}$ |
|-------------|--------------------|---------------------|
| Uncorr36    | 1.558              | 0.406               |
| Uncorr44-58 | 0                  | 0.794               |
| Correlated  | 1.459              | 1.459               |
| Total       | 2.135              | 1.710               |

| Channel                 | BR       | $\alpha_s$ | $m_b$ | $m_c$ | TH $bb$ | TH $\tau\tau$ | TH $\mu\mu$ | TH $cc$ | TH $gg$ | TH $VV$ | TH $\gamma\gamma$ | TH $Z\gamma$ |
|-------------------------|----------|------------|-------|-------|---------|---------------|-------------|---------|---------|---------|-------------------|--------------|
| $H \rightarrow bb$      | 5.81E-01 | -0.78      | 0.71  | -0.15 | 0.21    | -0.03         | j0.01       | -0.01   | -0.26   | -0.12   | j0.01             | -0.01        |
| $H \to \tau \tau$       | 6.26E-02 | 0.63       | -0.99 | -0.15 | -0.29   | 0.47          | 0.01        | -0.01   | -0.26   | -0.12   | 0.01              | -0.01        |
| $H \rightarrow \mu \mu$ | 2.17E-04 | 0.63       | -0.99 | -0.15 | -0.29   | -0.03         | 0.50        | -0.01   | -0.26   | -0.12   | 0.01              | -0.01        |
| $H \rightarrow cc$      | 2.88E-02 | -0.38      | -0.99 | 5.18  | -0.29   | -0.03         | 0.01        | 0.49    | -0.26   | -0.12   | 0.01              | -0.01        |
| $H \rightarrow gg$      | 8.18E-02 | 3.65       | -0.99 | -0.15 | -0.29   | -0.03         | 0.01        | -0.01   | 2.94    | -0.12   | 0.01              | -0.01        |
| $H \to \gamma \gamma$   | 2.27E-03 | 0.63       | -0.99 | -0.15 | -0.29   | -0.03         | 0.01        | -0.01   | -0.26   | -0.12   | 1.00              | -0.01        |
| $H \to Z\gamma$         | 1.54E-03 | 0.63       | -0.99 | -0.15 | -0.29   | -0.03         | 0.01        | -0.01   | -0.26   | -0.12   | 0.01              | 4.99         |
| $H \rightarrow VV$      | 2.42E-01 | 0.63       | -0.99 | -0.15 | -0.29   | -0.03         | i0.01       | -0.01   | -0.26   | 0.38    | i0.01             | -0.01        |

### **Correlation scheme**

#### Overview of uncertainty correlation for 139/fb analyses

- The correlation scheme between different release has been studied in the previous combination paper, proved to be adequate
- The Rel 21. analyses use different jet collections.VHbb uses EMTopo jets, while HZZ, HGam, Hmumu, VBF Hinv use
   PFlow jets
- What we do follows from discussions with Jet/MET experts and specific checks

|                                  | VHbb | H4l      | Нуу                 |
|----------------------------------|------|----------|---------------------|
| EG Resolution and scale          | Ð    | $\oplus$ | θ                   |
| EL ISO/RECO efficiency           | •    | $\oplus$ | $\oplus$            |
| JES                              | θ    | ⊖,⊕      | $_{\ominus,\oplus}$ |
| JVT                              | •    | $\oplus$ | $\oplus$            |
| LUMI                             | •    | $\oplus$ | $\oplus$            |
| MET                              | ⊕    | $\oplus$ | $\oplus$            |
| MUON ISO/RECO efficiency         | •    | $\oplus$ | $\oplus$            |
| MUON ID/MS/SAGITTA/SCALE         | ⊕    | $\oplus$ | $\oplus$            |
| PDF4LHC signal                   | •    | $\oplus$ | $\oplus$            |
| QCD scale signal                 | •    | $\oplus$ | $\oplus$            |
| PS signal                        | ⊕    | $\oplus$ | $\oplus$            |
| EL ID efficiency                 | •    |          | $\oplus$            |
| FT                               |      |          |                     |
| JER                              |      | $\oplus$ | $\oplus$            |
| PWR                              | •    | $\oplus$ | $\oplus$            |
| Unconstrained NP                 |      |          |                     |
| MC Stat                          |      |          |                     |
| Theory systematics on background |      |          |                     |

#### "+" means fully correlated "-" means partially correlated

### 2Dscans



### **Coupling to fermions VS vector bosons**

- > Assuming uniform coupling modifiers for all fermions and weak vector bosons
- > Only SM particles contribute to the total width of Higgs boson

|            |          | Measured value                  |
|------------|----------|---------------------------------|
| <i>V</i>   | observed | $1.03\substack{+0.03\\-0.03}$   |
| $\kappa_V$ | expected | $1.00\substack{+0.03\\-0.03}$   |
| $\kappa_F$ | observed | $0.97\substack{+0.07 \\ -0.07}$ |
|            | expected | $1.00\substack{+0.08\\-0.07}$   |



2020/11/7

2D scan  $\kappa_V$  VS  $\kappa_F$ 

Constrain all other coupling modifiers to

their SM values

- Assuming no contribution from invisible or undetected Higgs boson decays
- Compatibility with SM is 45%
  - Linear correlation is 0.50

### **Generic model with ratios**

- > Measuring coupling modifiers ratios, with respect to a reference process  $gg \rightarrow H \rightarrow ZZ$ , to avoid introducing assumptions on Higgs total width
- > The compatibility with SM hypothesis is **92%**



| Parameter            | Definition in terms of $\kappa$ modifiers | Result                                                   |
|----------------------|-------------------------------------------|----------------------------------------------------------|
| KgZ                  | $\kappa_g \kappa_Z / \kappa_H$            | $0.98 \pm 0.05$                                          |
| $\lambda_{tg}$       | $\kappa_t/\kappa_g$                       | $1.04\pm0.12$                                            |
| $\lambda_{Zg}$       | $\kappa_Z/\kappa_g$                       | $1.06 \begin{array}{c} + & 0.12 \\ - & 0.11 \end{array}$ |
| $\lambda_{WZ}$       | $\kappa_W/\kappa_Z$                       | $1.04 \ ^{+ \ 0.08}_{- \ 0.07}$                          |
| $\lambda_{\gamma Z}$ | $\kappa_{\gamma}/\kappa_Z$                | $1.04 \begin{array}{c} + & 0.07 \\ - & 0.06 \end{array}$ |
| $\lambda_{	au Z}$    | $\kappa_{\tau}/\kappa_{Z}$                | $1.04\pm0.13$                                            |
| $\lambda_{bZ}$       | $\kappa_b/\kappa_Z$                       | $0.96 \begin{array}{c} + \ 0.12 \\ - \ 0.11 \end{array}$ |

### Ratios of XS and branching fractions

Parametrisation

$$\succ (\sigma \times B)_{if} = \sigma_{ggF}^{ZZ} \cdot (\frac{\sigma_i}{\sigma_{ggF}}) \cdot (\frac{B_f}{B_{ZZ}})$$

➤ Measure the ratios of production XS to that of ggF, and ratios of branching fractions to that of  $H \rightarrow ZZ^*$ 



Uncertainty Quantity SM prediction Value Total Stat. Syst.  $\sigma^{ZZ}_{\rm ggF}$ + 0.05 $1.18 \pm 0.06$ [pb]  $\pm 0.11$ 1.15  $\pm 0.09$ -0.04+ 0.017+ 0.013+ 0.010 $\sigma_{\rm VBF}/\sigma_{\rm ggF}$ 0.089 $0.079 \pm 0.004$ -0.009- 0.015 -0.012+ 0.011+ 0.0090.0269 + 0.0014 - 0.0015 $\sigma_{WH}/\sigma_{ggF}$ 0.036  $\pm 0.005$ -0.008- 0.009 + 0.007+ 0.006+ 0.004 $0.0178 \stackrel{+ 0.0011}{_{- 0.0010}}$  $\sigma_{ZH}/\sigma_{ggF}$ 0.020 - 0.003 -0.005-0.004+ 0.0030+ 0.0025+ 0.0018 $0.0131 + 0.0010 \\ - 0.0013$  $\sigma_{t\bar{t}H+tH}/\sigma_{ggF}$ 0.0143 -0.0028-0.0022- 0.0016 + 0.012+ 0.010+ 0.006 $B_{\gamma\gamma}/B_{ZZ}$ 0.091  $0.0860 \pm 0.0010$ - 0.005 -0.010-0.009+ 1.5+ 1.1+ 1.1 $B_{WW}/B_{ZZ}$ 8.3  $8.15 \pm < 0.01$ -1.4- 1.0 - 1.0 + 0.7+ 0.5 $B_{\tau\tau}/B_{ZZ}$  $2.369 \pm 0.017$ 2.6 $\pm 0.5$ - 0.6 - 0.4 + 6 + 5 + 4  $22.0\pm0.5$  $B_{bb}/B_{ZZ}$ 19 - 5 - 4 - 3

### Validation on input channels

Inclusive mu:

CONF

Cross Check

#### **VHbb** validation

- The workspace provided used full granularity of Stage1.2 scheme
- The cross-check results agree well with the VHbb published results



#### **Cross-check**

 $\mu_{VH}^{bb} = 1.02_{-0.17}^{+0.18} = {}^{+0.12}_{-0.11} (\text{Stat.})_{-0.13}^{+0.14} (\text{Syst.})$  $\mu_{VH}^{bb} = 1.02_{-0.17}^{+0.18} = {}^{+0.12}_{-0.12} (\text{Stat.})_{-0.13}^{+0.14} (\text{Syst.})$ 



#### H->ZZ->4l validation

Validation on 4XS is a simple remerge without injecting additional uncertainties

#### Inclusive mu:

**CONF** 
$$\mu = 1.01 \pm 0.08 (\text{stat.}) \pm 0.04 (\text{exp.}) \pm 0.05 (\text{th.}) = 1.01 \pm 0.11$$

Xcheck  $\mu = 1.01^{+0.09}_{-0.08} (\text{stat.})^{+0.04}_{-0.03} (\text{exp.})^{+0.06}_{-0.05} (\text{theo.}) = 1.01^{+0.11}_{-0.10}$  Cross-check

 $\sigma \cdot BR(H \rightarrow ZZ)/\sigma_{Sl}$  $0.95 \pm 0.11$  $\sigma B_{ggF}/\sigma B_{SM}$  $\sigma B_{VBF} / \sigma B_{SM}$  $1.2 \pm 0.5$  $1.4^{+1.2}_{-0.9}$  $\sigma B_{VH}/\sigma B_{SM}$ Published  $1.8^{+1.8}_{-1.2}$  $\sigma B_{ttH}/\sigma B_{SM}$  $N_{ZZ-0i}/N_{SM}$  $1.06 \pm 0.09$  $N_{ZZ-1i}/N_{SM}$  $0.99 \pm 0.15$  $N_{ZZ-2j}/N_{SM}$  $1.14 \pm 0.25$  $1.5 \pm 0.4$  $N_{ttV}/N_{SM}$ 

#### Remerged Workspace

| Mu        | Best fit | Error |
|-----------|----------|-------|
| ggF       | 0.95     | 0.12  |
| VBF       | 1.22     | 0.46  |
| VH        | 1.43     | 1.05  |
| ttH       | 1.79     | 1.46  |
| r_ZZ_0jet | 1.06     | 0.09  |
| r_ZZ_1jet | 0.99     | 0.15  |
| r_ZZ_2jet | 1.14     | 0.25  |
| r_ttV     | 1.46     | 0.36  |

2020/11/7

### Validation on input channels

#### $H ightarrow \mu \mu$ validation

Published

- > Hmumu workspace has a production mode granularity at the particle level
- > The fit results and ranking agree well with published results



#### **Cross-check**

| POI              | Original       | Validatior             |
|------------------|----------------|------------------------|
| VH-and-ttH-cate. | $5.0 \pm 3.5$  | $4.97^{+3.58}_{-3.40}$ |
| ggF-0-jet-cate.  | $-0.4 \pm 1.6$ | $-0.39^{+1.5}_{-1.5}$  |
| ggF-1-jet-cate.  | $2.4 \pm 1.2$  | $2.38^{+1.20}_{-1.18}$ |
| ggF-2-jet-cate.  | $-0.6 \pm 1.2$ | $-0.62^{+1.2}_{-1.2}$  |
| VBF-cate.        | $1.8 \pm 1.0$  | $1.82^{+1.08}_{-1.02}$ |
| combined         | $1.2 \pm 0.6$  | $1.17^{+0.60}_{-0.58}$ |



#### Ranking and pulls on observed data 29

### Validation on input channels

#### *Hinv*, *VBF* + *MET* validation

- ➢ Validate the upper limit
   on BR(H → inv) using
   WS from Hinv,VBF+MET
   analysis
- The fit results and NP ranking are consistent with published results



 $(\hat{\theta} - \theta_0)/\Delta \theta$ 

 $(\hat{\theta} - \theta_{\alpha})/\Delta \theta$ 

2020/11/7

# NP Ranking with mu WS



- The dominant theoretical NP is QCDscale\_ggF\_mu
- The dominant experimental NP is correlated luminosity uncertainty 2020/11/7

### **5XS NP ranking**





### **5XS NP ranking**





### **5XS NP ranking**



### Ratios of XS and branching fractions

