

# Search for top FCNC tqH interaction using taus with Run-2 data

Boyang Li, Tsinghua University On behalf of ATLAS tqH tautau group

Boyang Li, Weiming Yao, Xin Chen, MingMing Xia

CLHCP 2020, Tsinghua University November 6

1

### Outline

- Introduction to tqH FCNC interaction
- Published results with 36fb<sup>-1</sup>
- 140fb<sup>-1</sup> tqH FCNC search at LHC
  - New mode added
  - New channels added
  - Signal regions
  - Fake tau/lepton estimation
  - BDT and limit setting
- Results

# FCNC tqH interaction

- The Standard Model (SM) doesn't provide tree level • tqH interactions.
- The interaction can happen only through loop • diagrams, one of which is shown on the right.
- The diagram is further suppressed due to the GIM • mechanism (Phys. Rev. D 2 (1970) 1285).
- The branching ration is far beyond the current ٠ detection capabilities. In short, it happens so rarely that we cannot see it.
- But there are models that can have them enhanced. •
- Study the process using 6-dim EFT [1412.5594]: ۲

$$\mathcal{L}_{EFT} = \frac{C_{u\phi}^{i3}}{\Lambda^2} (\phi^{\dagger}\phi)(\bar{q}_i t)\tilde{\phi} + \frac{C_{u\phi}^{3i}}{\Lambda^2} (\phi^{\dagger}\phi)(\bar{Q}u_i)\tilde{\phi} + H.c \qquad \Lambda = 1 \text{TeV}$$
  
BR $(t \to qH) = 0.1 \% \to C = 1.3952$ 

Then measure the decay branching ratio, then derive the Wilson coefficient.

$$d/s/b$$
  $W^+$   $u/c$   
 $d/s/b$   $d/s/b$   
 $H$ 

 $\Lambda = 1 \text{TeV}$ 

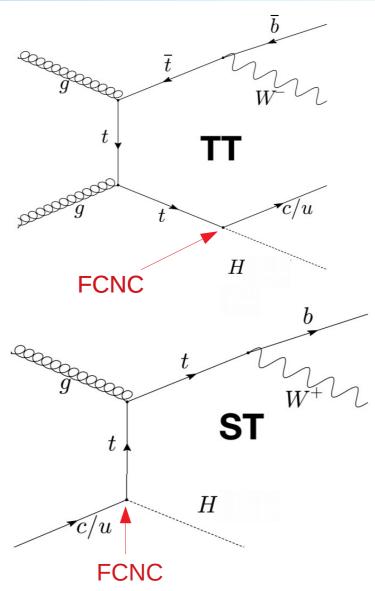
 $\sigma(cg \rightarrow tH) = 52.9$ fb

 $C = 1 \rightarrow \sigma(ug \rightarrow tH) = 365.2$ fb

**CLHCP 2020** 

# **Published results**

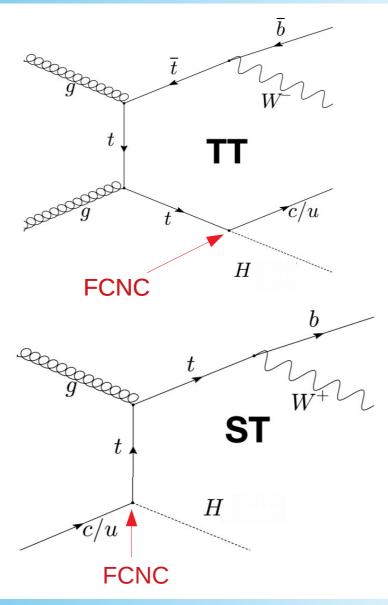
- ATLAS
  - $t \rightarrow Hu$ 
    - 1.2×10<sup>-3</sup>
  - $t \rightarrow Hc$ 
    - 1.1×10<sup>-3</sup>
- Regular Article Experimental Physics | Open Access | Published: 21 May 2019 Search for top-quark decays  $t \rightarrow Hq$  with 36 fb<sup>-1</sup> of pp collision data at  $\sqrt{s} = 13$  TeV with the ATLAS detector The ATLAS collaboration, M. Aaboud, [...] L. Zwalinski
- Journal of High Energy Physics2019, Article number: 123 (2019)Cite this article409 Accesses14 Citations1 AltmetricMetrics


- CMS
  - $t \rightarrow Hu$ 
    - 4.7×10<sup>-3</sup>
  - t→Hc
- Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at  $\sqrt{s}=13~{
  m TeV}$
- The CMS collaboration, A. M. Sirunyan, [...] N. Woods
- Journal of High Energy Physics 2018, Article number: 102 (2018) Cite this article
- 4.7×10<sup>-3</sup> 437 Accesses | 21 Citations | 7 Altmetric | Metrics

# FCNC diagrams at LHC

- Published 36fb<sup>-1</sup>: TT only
- *tcH* and *tuH* are the same in TT mode
- ST contributes more in *tuH* interaction than *tcH* due to PDF.
- Yields (stat only) in one of the signal region with 140fb<sup>-1</sup> and BR=0.2%:

| Yields | TT               | ST               |  |
|--------|------------------|------------------|--|
| tuH    | $64.25 \pm 0.63$ | $22.24 \pm 0.29$ |  |
| tcH    | $61.96 \pm 0.61$ | $4.76 \pm 0.06$  |  |


• 30% improvement in *tuH* interaction.

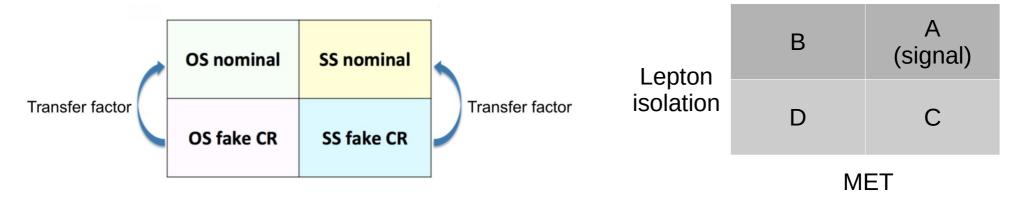


#### New channels

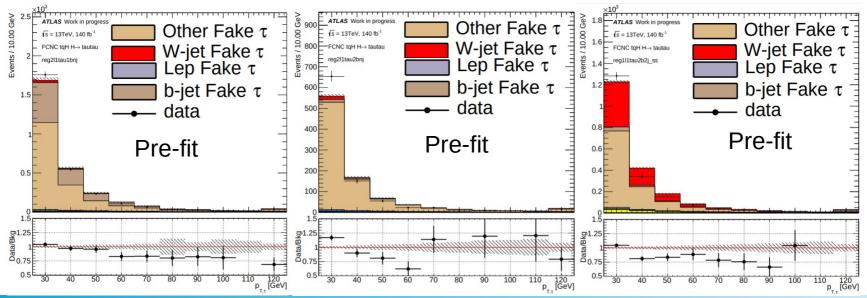
- Published: 36fb-1,  $W \rightarrow qq$  only
- New channels:
  - $W \rightarrow l\nu \ H \rightarrow \tau_{\rm had} \tau_{\rm had}$ 
    - Lepton+(2 hadronic taus)(OS)
    - (Lepton+1 hadronic tau)(SS)

| Significance | l+2tau | I+tau SS | l+tau+3j | l+tau+4j |
|--------------|--------|----------|----------|----------|
| tuH          | 8.09   | 2.25     | 1.37     | 2.49     |
| tcH          | 6.3    | 1.85     | 0.74     | 2.02     |

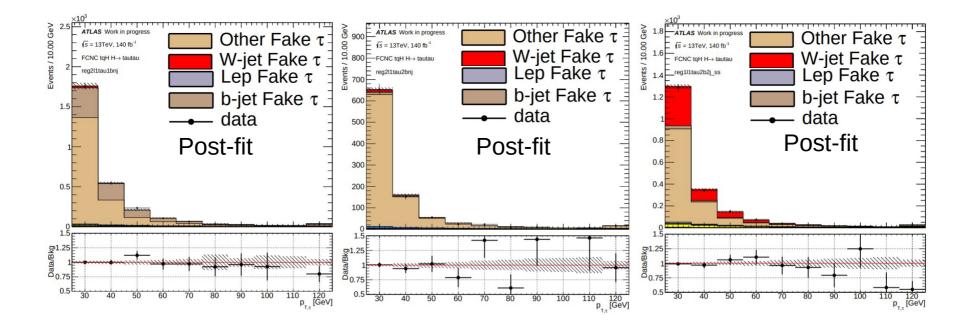



# Signal regions

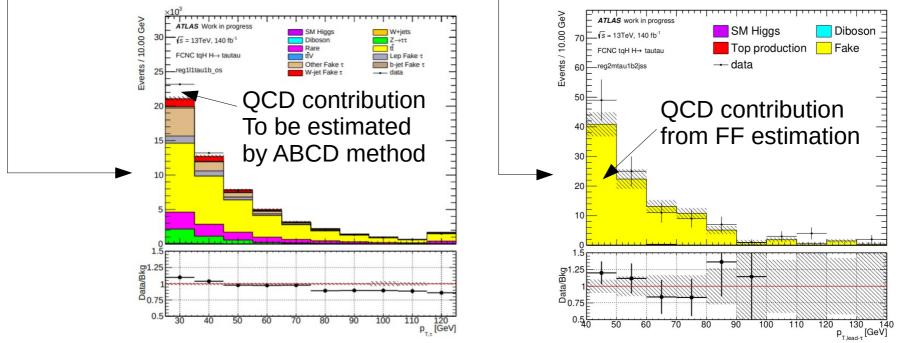
- $H \to \tau_{had} \tau_{had}, W \to q\bar{q}$ 
  - 1 b-jet + (2 hadronic taus)(OS) + (2/at least 3) light flavor jet
- $H \to \tau_{lep} \tau_{had}, W \to q\bar{q}$ 
  - 1 b-jet + (1 lepton + 1 hadronic tau)(OS)
    + (2/at least 3) light flavor jet
- $H \to \tau_{had} \tau_{had}, W \to l\nu$ 
  - 1 b-jet + 1 lepton + (2 hadronic tau)(OS)
  - 1 b-jet + (1 lepton + 1 hadronic tau)(SS)
    + at most 2 light flavor jet


- New background estimation: Fake SF + Data Driven
  - Use calibrated MC to model non-QCD background
  - Use Fake Factor to model QCD background.
  - Also attempt ABCD method depending on the need of each region.

- Published: 36fb-1, BDT ID, Data Driven
- New RNN tau ID, with the same signal efficiency:
  - 50% less fake background in
    - $H \rightarrow \tau_{\rm lep} \tau_{\rm had}$
  - 75% less fake background in

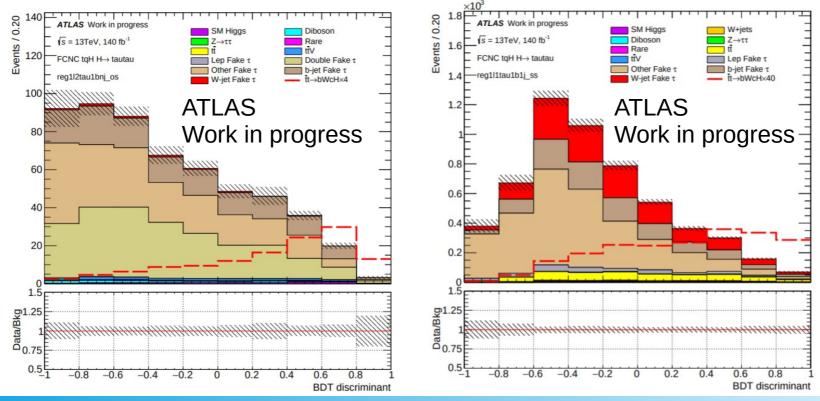

 $H \rightarrow \tau_{\rm had} \tau_{\rm had}$ 




- Calibrate fake taus in ttbar CR since the dominant background is ttbar.
- CRs are selected designated for different fake origin:
  - 2l+1tau+1bjet (left) for b-jet faking taus
  - 2l+1tau+2bjet (middle) for radiation jet faking taus
  - (1l+1tau)(SS)+2bjet (right) for W decaying jets faking taus



- Combined fit is done in the ttbar CRs to derive the SFs for fake taus with different origins.
- The SFs are applied both in SRs and CRs.
- The modeling in CRs should be good by definition.




- Need Data Driven to estimate QCD background in the following regions:
  - 1 b-jet + (1 lepton + 1 hadronic tau)(SS)+ at most 2 light flavor jet: OS CR shown below
    - 1 b-jet + (2 hadronic taus)(OS) + at least 2 light flavor jet: SS
       CR shown below



## **BDT and limit settings**

- The BDT training is done to each region separately, optimized with different sets of variables.
- Limit are set by fitting the BDT discriminant.



# Results

- Tau channels is getting more competitive after adding the leptonic channels.
- The comparison between new channel (3rd column) and the old channels (1st and 2nd column) is shown below.

| Stats only limit            | STH $\tau_{\text{lep}} \tau_{\text{had}}$ os | TTH $\tau_{\text{lep}} \tau_{\text{had}}$ os | $l	au_{ m had}	au_{ m had}$ os | Combined               |
|-----------------------------|----------------------------------------------|----------------------------------------------|--------------------------------|------------------------|
| $\bar{t}t \rightarrow bWcH$ | $2.48^{+0.98}_{-0.69}$                       | $1.04^{+0.42}_{-0.29}$                       | $0.31^{+0.13}_{-0.09}$         | $0.29^{+0.12}_{-0.08}$ |
| $cg \rightarrow tH$         | $23.16^{+9.85}_{-6.47}$                      | $24.66^{+10.87}_{-6.89}$                     | $3.86^{+1.67}_{-1.08}$         | $3.74^{+1.60}_{-1.05}$ |
| tcH merged signal           | $2.25^{+0.89}_{-0.63}$                       | $1.00^{+0.40}_{-0.28}$                       | $0.29^{+0.12}_{-0.08}$         | $0.27^{+0.11}_{-0.08}$ |
| $\bar{t}t \rightarrow bWuH$ | $2.44_{-0.68}^{+0.97}$                       | $0.99^{+0.40}_{-0.28}$                       | $0.29^{+0.12}_{-0.08}$         | $0.27^{+0.12}_{-0.08}$ |
| $ug \to tH$                 | $3.70^{+1.50}_{-1.03}$                       | $4.30^{+1.72}_{-1.20}$                       | $0.82^{+0.36}_{-0.23}$         | $0.78^{+0.33}_{-0.22}$ |
| tuH merged signal           | $1.51^{+0.60}_{-0.42}$                       | $0.80^{+0.32}_{-0.22}$                       | $0.21^{+0.09}_{-0.06}$         | $0.20^{+0.09}_{-0.06}$ |

Limits are in unit of BR=0.2%, which is the 36.1fb<sup>-1</sup> result. We are expecting a much better result after combining 6 signal regions.

So keep tuned.