Evidence of a $J/\psi \Lambda$ resonance and observation of excited Ξ^- states in $\Xi_b^- \to J\!/\psi \Lambda K^-$ decays LHCb-PAPER-2020-039 in preparation Bo Fang Wuhan University The 6th China LHC Physics Worshop November 6, 2020 ## Outline - Introdution - 2 Analysis strategy - 3 The LHCb detector - 4 Dataset and Selections - Signal extraction - 6 Amplitude Analysis - Systematic uncertainty - 8 Conclusion # Observation of pentaquark states in $\Lambda_b^0 o J/\psi \, pK^-$ decays - In 2015, the LHCb collaboration reported the first observation of two pentaquark states($P_c(4380)^+$ and $P_c(4450)^+$) in the decays of $\Lambda_b^0 \to J/\psi \, pK^-$.(Phys. Rev. Lett. 115, 072001) - In 2019, a new narrow pentaquark state($P_c(4312)^+$) and two-peak structure of the $P_c(4450)^+$ were observed with the inclusion of Runll data at LHCb.(Phys. Rev. Lett. 122, 222001) ## Motivation ## Why $\Xi_b^- \to J/\psi \Lambda K^-$? • With u quark changed to s quark, $\Xi_b^- \to J/\psi \Lambda K^-$ is an ideal channel to search for hidden-charm pentaquark state with strangness S=-1. # previous analysis in $\varXi_b^- \to J\!/\psi\, \Lambda {\it K}^-$: • This decay $(\Xi_b^- \to J/\psi \Lambda K^-)$ was observed and its branching ratio has been measured with Runl data in LHCb. (Phys. Lett. B772 (2017) 265) B.Fang Wuhan Univ. CLHCP 2020 November 6, 2020 4 / 1 # Analysis strategy - Reconstruction and selections: - Similar to the previous analysis in Runl. - Some selection criteria improved. - 6-D amplitude analysis: - Similar to the analysis of $\Lambda_b^0 \to J/\psi \, pK^-$ in 2015. - \varLambda taken as a final-state particle. - Formula cross checked with the Dalitz-Plot Decomposition formula and updated. ## The LHCb detector - ullet A forward spectrometer : $2 < \eta < 5$ - Dedicated to precise study of b, c particles. - Excellent tracking and vertexing. - Good PID performance. ## Data sample: • Lumi = 9.0 fb^{-1} . (3.0fb^{-1} for Runl, 6.0fb^{-1} for Runll). #### **Selections:** - $\Xi_b^- \to J/\psi \Lambda K^-$, $J/\psi \to \mu^+ \mu^-$, $\Lambda \to p\pi^-$ - ullet Λ candidates are reconstructed into two categories: - two daughters with *Long track*(LL). - two daughters with *Downstream track*(DD). - Selections are similar to the one used in previous analysis, except: - remove transverse momentum cuts and PID cuts for $p\pi^-(\text{low Q value})$. - loosen the χ^2_{IP} of the associated K^- (included in MVA). # Mass spectrum fit for Ξ_b^- candidates Runl DD(top left) Runll DD(bottom left) RunI LL(top right) RunII LL(bottom right) - sig: Hypatia function - comb bkg: exponential function - phys bkg: $\Xi_b^- \to J/\psi \Sigma^0 K^- \text{ with } \Sigma^0 \to \Lambda \gamma \text{ with missing } \gamma, \text{ generator level MC } \text{convoluted with } \text{resolution Gaussian.}$ In total, we obtain about 1750 signal decays. Background takes 22.6% in $\pm 2\sigma$ signal region (about $\pm 15~{\rm MeV}$). # Dalitz plots • Two excited Ξ^- states • Possible P_{cs}^0 state? Amplitude analysis required. - Invariant mass squared of $\Lambda K^$ versus $J/\psi \Lambda$ for candidates within $\pm 2\sigma$ of the Ξ_h^- mass. - The yellow area shows the kinematically allowed region. - Ξ_h^- , J/ψ and Λ are constrained to PDG mass, Ξ_h^- constrained to point back to primary vertex. # Amplitude Analysis Strategy - Amplitude analysis in $\varXi_b^- o J/\psi \Lambda K^-$ is performed similar to Pentaquark analysis of $\Lambda_b^0 o J/\psi p K^-$ in 2015 . Here we take Λ as a final state particle, since Λ has J^P the same as proton, so the code for $\Lambda_b^0 o J/\psi p K^-$ is directly used. - Formula cross checked with the Dalitz-Plot Decomposition formula and updated. - Ξ^* resonances listed in PDG with a rank higher than 2 star are considered. - ullet \mathcal{Z}^* spectroscopy is not well measured, $\mathcal{J}^{\mathcal{P}}$ of many states are not determined. - Here we examine different J^P combinations. | State | J ^P | M(MeV) | $\Gamma(MeV)$ | Couplings used(max) | J ^P examined | |------------------------------|------------------|---------------|------------------|---------------------|-------------------------| | Ξ(1690) | ?? | 1690 ± 10 | <30 | 4(4) | $(1/2, 3/2)^{\pm}$ | | Ξ(1820) [—] | 3/2- | 1823±5 | 24^{+15}_{-10} | 3(6) | 3/2- | | Ξ (1950) [−] | ?? | 1950 ± 15 | 60±20 | 3(6) | $(1/2, 3/2, 5/2)^{\pm}$ | | Ξ(2030) [—] | 5/2 [?] | 2025±5 | 20^{+15}_{-5} | 3(6) | 5/2 [±] | | NR | 1/2- | - | - | 4(4) | 1/2- | | P_{cs}^{0} | ?? | ? | ? | 1(4) | $(1/2, 3/2, 5/2)^{\pm}$ | • PDG errors of masses and widths are used as Gaussian constraints for $\Xi(1950)^-$ and $\Xi(2030)^-$. We measure masses, widths and fit fractions of $\Xi(1690)^-$ and $\Xi(1820)^-$, which are totally float. # Results of amplitude analysis • Clear peaks for two Ξ^- states: $\Xi(1690)^-$, $\Xi(1820)^-$. • Adding a P_{cs}^0 state improves $-2ln\mathcal{L}$ by 43, corresponding to a significance of $4.3\sigma(\text{stat. only})$. # Results of amplitude analysis Projection of $m(J/\psi \Lambda)$ and $\cos\theta_{P_{cs}}$ zoomed in P_{cs}^0 region: • Statistics are not enough to determine J^P of P_{cs}^0 and $\Xi(1690)^-$. B.Fang Wuhan Univ. CLHCP 2020 November 6, 2020 12 / 16 # Systematic uncertainties Systematic uncertainties are evaluated for the fit fractions, masses and widths of $P_{cs}(4459)^0$, $\Xi(1690)^-$ and $\Xi(1820)^-$, as well as the significance of P_{cs}^0 , the largest variation is taken as final systematic uncertainty: - Change to other possible J^P of the states used. - The modeling uncertainty includes: - varying hadron-size parameter in the Blatt-Weisskopf barrier factor. - changing the orbital angular momenta L in Ξ_b^- decay. - using full numbers of couplings for \varXi^- or P^0_{cs} resonances. - polarization of Ξ_b^- . - Extended model: two more \varXi^- state fixed at 2.25 GeV (3/2⁻) and 2.5 GeV (1/2⁻), removing constraints for $\varXi(1950)^-$, $\varXi(2030)^-$, and using full couplings for all \varXi^- . - Alternative NR ΛK^- models: constant NR + $\Xi(1620)^-$, Exp, $1/(m_{\Lambda K}^2 + m_0^2)$. - Including $\Lambda \to p\pi$ decay in the amplitude fit. - The uncertainty due to efficiency. - sWeights: physical background in low sideband of $m(J/\psi \Lambda K)$, correlations between fit variables and sw. B.Fang Wuhan Univ. CLHCP 2020 November 6, 2020 13 / 16 ### LHCb preliminary | State | $M_0 (\mathrm{MeV}/\mathit{c}^2)$ | $\Gamma \left(MeV/\mathit{c}^{2} \right)$ | Fit fraction (%) | |---|------------------------------------|--|------------------------------| | $P_{cs}(4459)^0$ | $4458.8 \pm 2.9^{+4.7}_{-1.1}$ | $17.3 \pm 6.5^{+8.0}_{-5.7}$ | $2.7^{+1.9+0.7}_{-0.6-1.3}$ | | $\varXi(1690)^-$ | $1692.0 \pm 1.3^{+1.2}_{-0.4}$ | $25.9 \pm 9.5^{+14.0}_{-13.5}$ | $22.1_{-2.6-8.9}^{+6.2+6.7}$ | | arxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | $1822.7 \pm 1.5^{+1.0}_{-0.6}$ | $36.0 \pm 4.4^{+7.8}_{-8.2}$ | $32.9^{+3.2+6.9}_{-6.2-4.1}$ | - Final significance of the $P_{cs}(4459)^0$ state is estimated by pseudo experiments. - After syst. uncertainty considered, the significance of the $P_{cs}(4459)^0$ state is finally determined to be $3.1\sigma(LHCb preliminary)$. B.Fang Wuhan Univ. CLHCP 2020 November 6, 2020 #### **Conclusion:** - With Runl and Runll data(Lumi=9fb⁻¹), about 1750 $\Xi_b^- \to J/\psi \Lambda K^-$ decays are observed. - A full amplitude analysis is performed, and we get these results: - An evidence of a new pentaquark candidate $P_{cs}(4459)^0$ in $J/\psi \Lambda$ system: - Including syst. uncertainty, significance is 3.1σ . (LHCb preliminary) - $M_0(P_{cs}) = 4458.8 \pm 2.9^{+4.7}_{-1.1} \text{ MeV (LHCb preliminary)}$ - $\Gamma(P_{cs}) = 17.3 \pm 6.5^{+8.0}_{-5.7} \text{ MeV (LHCb preliminary)}$ - fit fraction is $(2.7^{+1.9}_{-0.6}, 0.7)$ % (LHCb preliminary) - This state is only $19\,\mathrm{MeV}$ below $\varXi_c^0\bar{D}^{*0}$ mass threshold. B.Fang Wuhan Univ. CLHCP 2020 November 6, 2020 15 / 16 #### **Conclusion:** - Some other results from amplitude analysis: - Two narrow excited \varXi^- states, $\varXi(1690)^-$ and $\varXi(1820)^-$, are observed: - $M_0(\Xi_{1690}^-) = 1692.0 \pm 1.3_{-0.4}^{+1.2} \text{ MeV}, \Gamma(\Xi_{1690}^-) = 25.9 \pm 9.5_{-13.5}^{+14.0} \text{ MeV}$ (LHCb preliminary) - $M_0(\Xi_{1820}^-)=1822.7\pm1.5_{-0.6}^{+1.0}~{ m MeV}, \Gamma(\Xi_{1820}^-)=36.0\pm4.4_{-8.2}^{+7.8}~{ m MeV}$ (LHCb preliminary) - Fit fractions are $(22.1^{+6.2}_{-2.6}, 2.8)\%$, $(32.9^{+3.2}_{-6.2}, 2.4.1)\%$ for $\Xi(1690)^-$ and $\Xi(1820)^-$, respectively. (LHCb preliminary) - Masses and widths of $\Xi(1690)^-$ and $\Xi(1820)^-$ are consistent with PDG value, with improved precision. - Due to limited statistics, J^P of $P_{cs}(4459)^0$ and $\Xi(1690)^-$ states are not determined. # Thank you for your attention!