# Evidence of a $J/\psi \Lambda$ resonance and observation of excited $\Xi^-$ states in $\Xi_b^- \to J\!/\psi \Lambda K^-$ decays

LHCb-PAPER-2020-039 in preparation

Bo Fang

Wuhan University

The 6th China LHC Physics Worshop

November 6, 2020





## Outline

- Introdution
- 2 Analysis strategy
- 3 The LHCb detector
- 4 Dataset and Selections
- Signal extraction
- 6 Amplitude Analysis
- Systematic uncertainty
- 8 Conclusion

# Observation of pentaquark states in $\Lambda_b^0 o J/\psi \, pK^-$ decays

- In 2015, the LHCb collaboration reported the first observation of two pentaquark states( $P_c(4380)^+$  and  $P_c(4450)^+$ ) in the decays of  $\Lambda_b^0 \to J/\psi \, pK^-$ .(Phys. Rev. Lett. 115, 072001)
- In 2019, a new narrow pentaquark state( $P_c(4312)^+$ ) and two-peak structure of the  $P_c(4450)^+$  were observed with the inclusion of Runll data at LHCb.(Phys. Rev. Lett. 122, 222001)



## Motivation

## Why $\Xi_b^- \to J/\psi \Lambda K^-$ ?

• With u quark changed to s quark,  $\Xi_b^- \to J/\psi \Lambda K^-$  is an ideal channel to search for hidden-charm pentaquark state with strangness S=-1.

# previous analysis in $\varXi_b^- \to J\!/\psi\, \Lambda {\it K}^-$ :

• This decay  $(\Xi_b^- \to J/\psi \Lambda K^-)$  was observed and its branching ratio has been measured with Runl data in LHCb. (Phys. Lett. B772 (2017) 265)



B.Fang Wuhan Univ. CLHCP 2020 November 6, 2020 4 / 1

# Analysis strategy

- Reconstruction and selections:
  - Similar to the previous analysis in Runl.
  - Some selection criteria improved.
- 6-D amplitude analysis:
  - Similar to the analysis of  $\Lambda_b^0 \to J/\psi \, pK^-$  in 2015.
  - $\varLambda$  taken as a final-state particle.
  - Formula cross checked with the Dalitz-Plot Decomposition formula and updated.

## The LHCb detector



- ullet A forward spectrometer :  $2 < \eta < 5$
- Dedicated to precise study of b, c particles.
- Excellent tracking and vertexing.
- Good PID performance.

## Data sample:

• Lumi =  $9.0 \text{ fb}^{-1}$ . (  $3.0 \text{fb}^{-1}$  for Runl,  $6.0 \text{fb}^{-1}$  for Runll).

#### **Selections:**

- $\Xi_b^- \to J/\psi \Lambda K^-$ ,  $J/\psi \to \mu^+ \mu^-$ ,  $\Lambda \to p\pi^-$
- ullet  $\Lambda$  candidates are reconstructed into two categories:
  - two daughters with *Long track*(LL).
  - two daughters with *Downstream track*(DD).
- Selections are similar to the one used in previous analysis, except:
  - remove transverse momentum cuts and PID cuts for  $p\pi^-(\text{low Q value})$ .
  - loosen the  $\chi^2_{\text{IP}}$  of the associated  $K^-$  (included in MVA).



# Mass spectrum fit for $\Xi_b^-$ candidates



Runl DD(top left)
Runll DD(bottom left)



RunI LL(top right)
RunII LL(bottom right)

- sig: Hypatia function
- comb bkg: exponential function
- phys bkg:  $\Xi_b^- \to J/\psi \Sigma^0 K^- \text{ with } \Sigma^0 \to \Lambda \gamma \text{ with missing } \gamma, \text{ generator level MC } \text{convoluted with } \text{resolution Gaussian.}$

In total, we obtain about 1750 signal decays. Background takes 22.6% in  $\pm 2\sigma$  signal region (about $\pm 15~{\rm MeV}$ ).

# Dalitz plots

• Two excited  $\Xi^-$  states



• Possible  $P_{cs}^0$  state? Amplitude analysis required.

- Invariant mass squared of  $\Lambda K^$ versus  $J/\psi \Lambda$  for candidates within  $\pm 2\sigma$  of the  $\Xi_h^-$  mass.
- The yellow area shows the kinematically allowed region.
- $\Xi_h^-$ ,  $J/\psi$  and  $\Lambda$  are constrained to PDG mass,  $\Xi_h^-$  constrained to point back to primary vertex.

# Amplitude Analysis Strategy

- Amplitude analysis in  $\varXi_b^- o J/\psi \Lambda K^-$  is performed similar to Pentaquark analysis of  $\Lambda_b^0 o J/\psi p K^-$  in 2015 . Here we take  $\Lambda$  as a final state particle, since  $\Lambda$  has  $J^P$  the same as proton, so the code for  $\Lambda_b^0 o J/\psi p K^-$  is directly used.
- Formula cross checked with the Dalitz-Plot Decomposition formula and updated.
- $\Xi^*$  resonances listed in PDG with a rank higher than 2 star are considered.
- ullet  $\mathcal{Z}^*$  spectroscopy is not well measured,  $\mathcal{J}^{\mathcal{P}}$  of many states are not determined.
- Here we examine different  $J^P$  combinations.

| State                        | J <sup>P</sup>   | M(MeV)        | $\Gamma(MeV)$    | Couplings used(max) | J <sup>P</sup> examined |
|------------------------------|------------------|---------------|------------------|---------------------|-------------------------|
| Ξ(1690)                      | ??               | $1690 \pm 10$ | <30              | 4(4)                | $(1/2, 3/2)^{\pm}$      |
| Ξ(1820) <sup>—</sup>         | 3/2-             | 1823±5        | $24^{+15}_{-10}$ | 3(6)                | 3/2-                    |
| <b>Ξ</b> (1950) <sup>−</sup> | ??               | $1950 \pm 15$ | 60±20            | 3(6)                | $(1/2, 3/2, 5/2)^{\pm}$ |
| Ξ(2030) <sup>—</sup>         | 5/2 <sup>?</sup> | 2025±5        | $20^{+15}_{-5}$  | 3(6)                | 5/2 <sup>±</sup>        |
| NR                           | 1/2-             | -             | -                | 4(4)                | 1/2-                    |
| $P_{cs}^{0}$                 | ??               | ?             | ?                | 1(4)                | $(1/2, 3/2, 5/2)^{\pm}$ |

• PDG errors of masses and widths are used as Gaussian constraints for  $\Xi(1950)^-$  and  $\Xi(2030)^-$ . We measure masses, widths and fit fractions of  $\Xi(1690)^-$  and  $\Xi(1820)^-$ , which are totally float.

# Results of amplitude analysis

• Clear peaks for two  $\Xi^-$  states:  $\Xi(1690)^-$ ,  $\Xi(1820)^-$ .





• Adding a  $P_{cs}^0$  state improves  $-2ln\mathcal{L}$  by 43, corresponding to a significance of  $4.3\sigma(\text{stat. only})$ .

# Results of amplitude analysis

Projection of  $m(J/\psi \Lambda)$  and  $\cos\theta_{P_{cs}}$  zoomed in  $P_{cs}^0$  region:



• Statistics are not enough to determine  $J^P$  of  $P_{cs}^0$  and  $\Xi(1690)^-$ .

B.Fang Wuhan Univ. CLHCP 2020 November 6, 2020 12 / 16

# Systematic uncertainties

Systematic uncertainties are evaluated for the fit fractions, masses and widths of  $P_{cs}(4459)^0$ ,  $\Xi(1690)^-$  and  $\Xi(1820)^-$ , as well as the significance of  $P_{cs}^0$ , the largest variation is taken as final systematic uncertainty:

- Change to other possible  $J^P$  of the states used.
- The modeling uncertainty includes:
  - varying hadron-size parameter in the Blatt-Weisskopf barrier factor.
  - changing the orbital angular momenta L in  $\Xi_b^-$  decay.
  - using full numbers of couplings for  $\varXi^-$  or  $P^0_{cs}$  resonances.
  - polarization of  $\Xi_b^-$ .
  - Extended model: two more  $\varXi^-$  state fixed at 2.25 GeV (3/2<sup>-</sup>) and 2.5 GeV (1/2<sup>-</sup>), removing constraints for  $\varXi(1950)^-$ ,  $\varXi(2030)^-$ , and using full couplings for all  $\varXi^-$ .
  - Alternative NR  $\Lambda K^-$  models: constant NR +  $\Xi(1620)^-$ , Exp,  $1/(m_{\Lambda K}^2 + m_0^2)$ .
- Including  $\Lambda \to p\pi$  decay in the amplitude fit.
- The uncertainty due to efficiency.
- sWeights: physical background in low sideband of  $m(J/\psi \Lambda K)$ , correlations between fit variables and sw.

B.Fang Wuhan Univ. CLHCP 2020 November 6, 2020 13 / 16

### LHCb preliminary

| State                                   | $M_0  (\mathrm{MeV}/\mathit{c}^2)$ | $\Gamma \left( MeV/\mathit{c}^{2} \right)$ | Fit fraction (%)             |
|-----------------------------------------|------------------------------------|--------------------------------------------|------------------------------|
| $P_{cs}(4459)^0$                        | $4458.8 \pm 2.9^{+4.7}_{-1.1}$     | $17.3 \pm 6.5^{+8.0}_{-5.7}$               | $2.7^{+1.9+0.7}_{-0.6-1.3}$  |
| $\varXi(1690)^-$                        | $1692.0 \pm 1.3^{+1.2}_{-0.4}$     | $25.9 \pm 9.5^{+14.0}_{-13.5}$             | $22.1_{-2.6-8.9}^{+6.2+6.7}$ |
| arxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | $1822.7 \pm 1.5^{+1.0}_{-0.6}$     | $36.0 \pm 4.4^{+7.8}_{-8.2}$               | $32.9^{+3.2+6.9}_{-6.2-4.1}$ |

- Final significance of the  $P_{cs}(4459)^0$  state is estimated by pseudo experiments.
- After syst. uncertainty considered, the significance of the  $P_{cs}(4459)^0$  state is finally determined to be  $3.1\sigma(LHCb preliminary)$ .

B.Fang Wuhan Univ. CLHCP 2020 November 6, 2020

#### **Conclusion:**

- With Runl and Runll data(Lumi=9fb<sup>-1</sup>), about 1750  $\Xi_b^- \to J/\psi \Lambda K^-$  decays are observed.
- A full amplitude analysis is performed, and we get these results:
  - An evidence of a new pentaquark candidate  $P_{cs}(4459)^0$  in  $J/\psi \Lambda$  system:
    - Including syst. uncertainty, significance is  $3.1\sigma$ . (LHCb preliminary)
    - $M_0(P_{cs}) = 4458.8 \pm 2.9^{+4.7}_{-1.1} \text{ MeV (LHCb preliminary)}$
    - $\Gamma(P_{cs}) = 17.3 \pm 6.5^{+8.0}_{-5.7} \text{ MeV (LHCb preliminary)}$
    - fit fraction is  $(2.7^{+1.9}_{-0.6}, 0.7)$ % (LHCb preliminary)
  - This state is only  $19\,\mathrm{MeV}$  below  $\varXi_c^0\bar{D}^{*0}$  mass threshold.

B.Fang Wuhan Univ. CLHCP 2020 November 6, 2020 15 / 16

#### **Conclusion:**

- Some other results from amplitude analysis:
  - Two narrow excited  $\varXi^-$  states,  $\varXi(1690)^-$  and  $\varXi(1820)^-$ , are observed:
    - $M_0(\Xi_{1690}^-) = 1692.0 \pm 1.3_{-0.4}^{+1.2} \text{ MeV}, \Gamma(\Xi_{1690}^-) = 25.9 \pm 9.5_{-13.5}^{+14.0} \text{ MeV}$  (LHCb preliminary)
    - $M_0(\Xi_{1820}^-)=1822.7\pm1.5_{-0.6}^{+1.0}~{
      m MeV}, \Gamma(\Xi_{1820}^-)=36.0\pm4.4_{-8.2}^{+7.8}~{
      m MeV}$  (LHCb preliminary)
    - Fit fractions are  $(22.1^{+6.2}_{-2.6}, 2.8)\%$ ,  $(32.9^{+3.2}_{-6.2}, 2.4.1)\%$  for  $\Xi(1690)^-$  and  $\Xi(1820)^-$ , respectively. (LHCb preliminary)
  - Masses and widths of  $\Xi(1690)^-$  and  $\Xi(1820)^-$  are consistent with PDG value, with improved precision.
- Due to limited statistics,  $J^P$  of  $P_{cs}(4459)^0$  and  $\Xi(1690)^-$  states are not determined.

# Thank you for your attention!