Search for Neutral MSSM Higgs Bosons H/ A decaying to ττ with the ATLAS detector

Xiaozhong Huang, Hanfei Ye, Lei Zhang

Nanjing University

CLHEP2020, Nov. 6th

Introduction

MSSM: two Higgs doublets, five Higgs

 $h \mid H \mid A \mid H^+ \mid H^-$

- At tree level, described by two parameters
 - m_A and tan β
 - Solution Enhanced couplings to τ for large tan β
- Search H/A in $\tau\tau$ final state
 - dominant sensitivity at most of the of the parameter space
 - $au_{\mathrm{lep}} au_{\mathrm{had}}$ and $au_{\mathrm{had}} au_{\mathrm{had}}$
 - b-associated production and gluon fusion

b

 $\phi = h/A/H$

Event Selection

 $\Delta \Phi$

- $au_{
 m lep} au_{
 m had}$ (46%)
 - Single lepton trigger
 - $p_T^l > 30 \text{ GeV}, p_T^{\tau_{had}} > 25 \text{ GeV}$
 - At least one isolated lepton, and medium tauID WP (BDT)
 - Suppress W+jets: $m_{\rm T}(\text{lep, MET}) \le 40 \text{ GeV}$
 - Suppress Zee:visible mass not in [80, 100] GeV
- $au_{\rm had} au_{\rm had}$ (42%)
 - Single $au_{ ext{had}}$ trigger
 - $p_T^{\tau_{\text{had}}} > 85/130/165 \text{ GeV}, p_T^{\tau_{\text{had}}} > 65 \text{ GeV}$
 - Medium + Loose tauID WP (BDT)
 - Lepton veto
- Further selection: opposite sign, back-to-back
- Two categories: b-veto and b-tag

Final discriminating variable: $m_{\rm T}^{\rm TOT} = \sqrt{m_{\rm T}^2(\tau_1, E_{\rm T}^{\rm miss}) + m_{\rm T}^2(\tau_2, E_{\rm T}^{\rm miss}) + m_{\rm T}^2(\tau_1, \tau_2)}$

Acceptance x Efficiency

• A ϵ decreases rapidly in $\tau_{\rm had}\tau_{\rm had}$ for lower mass due to higher $p_T^{\tau_{\rm had}}$ threshold

 $ightarrow au_{
m lep} au_{
m had}$ has better sensitivity in low mass

Overview of Background Estimation

- $\tau_{had} \tau_{had}$ has more backgrounds from Multi-jet (mainly in low mass)
 jets are more likely to fake τ_{had}
- More backgrounds from Top and W+jets in $\tau_{lep} \tau_{had}$

$$\tau_{\rm lep} \tau_{\rm had} : W \to e \nu_e, W \to \tau (e \nu_e \bar{\nu_\tau}) \nu_\tau$$

• $\tau_{had} \tau_{had}$: $W \to \tau$ (hadronic decay) ν_{τ}

$\rightarrow \tau_{\rm had} \tau_{\rm had}$ has better sensitivity in high mass

Fake Estimation in

 Multi-jet fakes in SR (region A) is estimated from region C by applying a transfer factor, i.e. fake factor (FF)

• defined as:
$$f_{\tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}}) \equiv \frac{N^{\mathrm{pass} \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})}{N^{\mathrm{fail} \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})}$$

- calculated in a background enriched region (DiJet CR)
- a cut of 0.03 to the BDT score is applied to make CR similar as SR

Fake Estimation in

 τ_{lep}

 τ_{had}

Post-fit distribution

Systematic uncertainty

Source	ggF (400 GeV)	ggF (1 TeV)	bbH (400 GeV)	bbH (1 TeV)
Tau id. efficiency Tau energy scale Z+jets bkg. modeling Mis-id. $\tau_{had-vis}$ bkg. Others	$\begin{array}{c} 0.14 \\ 0.33 \\ 0.27 \\ 0.22 \\ 0.09 \end{array}$	$\begin{array}{c} 0.16 \\ 0.09 \\ 0.19 \\ 0.01 \\ 0.04 \end{array}$	$\begin{array}{c} 0.12 \\ 0.22 \\ 0.08 \\ \hline 0.14 \\ 0.11 \end{array}$	$\begin{array}{c} 0.08 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \end{array}$
Total	0.54	0.28	0.45	0.13

Low mass

- ggF, dominant background is Z+jets, and fakes
- bbH: dominant background is $t\overline{t}$, and **fakes**

High mass

- ggF: some contribution from Z+jets, signal efficiency becomes more important
- bbH: almost background free, signal efficiency is the most important

Upper Limit

Compared to previous result, the limit is improved by a factor of
 4-5 in the mass range 700-2500 GeV

Summary

Search for A/H decaying into a pair of τ is performed using full Run2 data

PDF

HTML

- Data is consistent with background estimation in SM
- The upper limit is improved significantly

Editors' Suggestion

Search for Heavy Higgs Bosons Decaying into Two Tau Leptons with the ATLAS Detector Using pp Collisions at $\sqrt{s}=13~{\rm TeV}$

G. Aad et al. (ATLAS Collaboration)

Phys. Rev. Lett. **125**, 051801 (2020) – Published 27 July 2020

A search for heavy neutral Higgs bosons at the LHC agrees with the Standard Model and results in a significant reduction in parameter space for two-Higgs-doublet models.

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb⁻¹ of proton-proton collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2–2.5 TeV for the $\tau^+ \tau^-$ decay with at least one τ -lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the standard model. In the M_h^{125} scenario of the minimal supersymmetric standard model, values of $\tan \beta > 8$ and $\tan \beta > 21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 and 1.5 TeV, respectively, where $\tan \beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

The end, thanks you.

BACKUP

Overview of Background Estimation

Type I: real τ_h or lepton faking τ_h

$Z/\gamma^* \rightarrow \tau \tau$ (b-veto) $t/t\overline{t}$ (b-tag) Diboson	real τ_h	MC simulation with data driven corr.
$Z/\gamma^* \rightarrow l^+ l^- (\tau_{\rm lep} \tau_{\rm had})$	lepton faking τ_h	

Type II: one jet faking τ_h

W+jets (b-veto) <i>t/tt̄</i> (b-tag)	jet faking τ_h	Data driven method (FF/FR)
---	---------------------	----------------------------

Type III: two jets faking l/τ_h

Multijet jet fak	ing l and τ_h Data driven method (FF)
------------------	--

