

Search for pentaquarks in Λ_b^0 decays

Mengzhen Wang Center of High Energy Physics, Tsinghua University

The 6th China LHC Physics Workshop 6 Nov. – 9 Nov. 2020

11/06/20

CLHCP 2020

Outline

- Introduction
- Selected topics

arXiv:2007.11292. PRD accepted

- Observation of $\Lambda_b^0 \rightarrow \eta_c p K^-$ and search for $P_c^+ \rightarrow \eta_c p$
- Observation of $\Lambda^0_b \to \Lambda^+_c K^+ K^- \pi^-$
- Summary

Introduction

- Pentaquarks P_c observed in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays
- The nature of *P_c* still unknown. Many interpretations...

Tightly-bound pentaquark

Loosely-bound molecule

PLB749(2015)289, PLB749(2015)454, etc...

PRL105(2010)232001, PRC84(2011)015203, PRL115(2015)122001, etc...

PRD92(2015)071502, PLB757(2016)231, arXiv:1507.06552, PLB757(2016)61, etc

- Search for pentaquarks in other decay modes to improve the knowledge of the pentaquark state
 - Today's menu: search for pentaquarks in Λ_b^0 decays

11/06/20

CLHCP 2020

The LHCb detector

Int. J. Mod. Phys. A 30, 1530022 (2015)

JINST 3 (2008) S08005

 Single-arm forward spectrometer, designed for the study of heavy flavor physics

 $2 < \eta < 5$ range: $\sim 25\% b\overline{b}$ pairs in LHCb acceptance

Excellent vertex, IP and decay-time resolution:

 \succ σ(IP) ≈ 20 µm for high-p_T tracks

 \succ $\sigma(\tau) \approx 45$ fs for $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow D_s^- \pi^+$ decays Hadre Very good momentum resolution $\succ \epsilon_K$

- \succ δ*p*/*p* ≈ 0.5% − 1% for *p* ∈ (0,200)GeV
- \succ $\sigma(m_B)$ ≈ 24 MeV for two-body decays

cays Hadron and Muon identification

 $\succ \epsilon_{K \to K} \approx 95\% \text{ for } \epsilon_{\pi \to K} \approx 5\% \text{ up to } 100 \text{ GeV}$

Observation of $\Lambda_b^0 \rightarrow \eta_c p K^-$

Motivation

- Same quark contents as $\Lambda_b^0 \rightarrow J/\psi p K^-$. Provide unique environment for P_c studies
- Search for new pentaquark:
 - A $\Sigma_c \overline{D}$ molecular state, with predicted mass ~4.27GeV, decaying into $\eta_c p$
- Investigate the nature of observed states
 - If $P_c(4312)^+$ is $\Sigma_c \overline{D}$ molecule

 $\frac{BF(P_c(4312)^+ \to \eta_c p)}{BF(P_c(4312)^+ \to J/\psi p)} \sim 3$

- $\Lambda_b^0 \rightarrow \eta_c p K^-$ was not yet observed
- Search for $\Lambda_b^0 \to \eta_c p K^-$, then search for P_c contributions in it

Observation of
$$\Lambda_b^0 \to \eta_c p K^-$$

- LHCb run2 data, $\sqrt{s} = 13$ TeV, int. lumi. ~5.5 fb⁻¹
 - η_c reconstructed using $\eta_c \rightarrow p\bar{p}$
- Cut-based preselection + Multi-variate analysis for event selection
 - Significant Λ_b^0 flight distance; good track & vertex qualities
 - Positive particle-identification information; hard p, p_T
- Fit 2D mass spectrum to confirm the existence

Search for the P_c contributions

- Check background-subtracted $\eta_c p$ mass spectrum
 - sPlot technique. 2D mass as discriminating variable.

• The $\Lambda_b^0 \rightarrow \eta_c p K^-$ branching fraction measured $\frac{\mathcal{B}(\Lambda_b^0 \rightarrow \eta_c p K^-)}{\mathcal{B}(\Lambda_b^0 \rightarrow J/\psi \, p K^-)} = 0.333 \pm 0.050 \text{ (stat.)} \pm 0.019 \text{ (syst.)} \pm 0.032 \text{ (}\mathcal{B}\text{)}$

Observation of $\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-$

Observation of $\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-$

- A not yet observed decay mode
- Potential open-charm pentaquark in $\Lambda_c^+ K^+$ system
- LHCb run1 data, $\sqrt{s} = 7,8$ TeV, int. lumi. ~ 3 fb⁻¹
 - Λ_c^+ reconstructed using $\Lambda_c^+ \rightarrow p K^- \pi^+$
- Cut-based preselection + Multi-variate analysis for event selection
- Λ_b^0 mass fit for the observation
 - Signal: double-sided CB function
 - Combinatorial background: exponential function
 - Partially reconstructed $\Lambda_b^0 \rightarrow \Sigma_c^+ K^+ K^- \pi^-$

 $N\left(\Lambda_b^0\to\Lambda_c^+K^+K^-\pi^-\right)=3400\pm80$

Branching fraction measurement

• $\Lambda_b^0 \to D_s^- \Lambda_c^+, D_s^- \to K^+ K^- \pi^-$ as normalization channel

Use simulation for efficiency calculation, with necessary data-driven tunings

$$\begin{aligned} \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} &= (9.26 \pm 0.29 \pm 0.46 \pm 0.26) \times 10^{-2},\\ \text{stat. syst. ext.}\\ \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-) &= (1.02 \pm 0.03 \pm 0.05 \pm 0.10) \times 10^{-3} \end{aligned}$$

Systematic uncertainty dominated by imperfect knowledge of the phase-space distribution of the 4-body Λ_b^0 decay

 $m[\Lambda_c^+ D_s^-]$ (MeV/ c^2)

Resonant contributions

- Background-subtracted mass spectrum of final-state combinations
 - sPlot technique. $m(\Lambda_b^0)$ as discriminating variable.

Conclusion

- LHCb made the observation of several Λ_b^0 decays, which is promising for pentaquark studies in the future
 - $\Lambda_b^0 \to \eta_c p K^-$
 - $\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-$
- No P_c contribution observed at this stage. But stay tuned with LHCb upgrade data available !

Thank you for your attention ! Any questions or comments ?