

Low- $p_T \mu^+ \mu^-$ production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Jian Zhou (for the STAR Collaboration)

State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China

> 第6届中国LHC物理工作会议 The 6th China LHC Physics Workshop

Dileptons from photon interactions

- \succ Large quasi-real photon flux $\propto Z^2$
- Photon interactions
 - photon-photon interaction (dilepton...) $\propto Z^4$ —— distinctly peaked at low p_T
 - photon-nuclear interaction (vector mesons) $\propto Z^2$
 - \checkmark Coherent: photon interacts with the whole nucleus
 - ✓ Incoherent: photon interacts with nucleon or parton individually

Conventionally only studied in ultra-peripheral collisions (b>2R_A,UPCs) to keep coherence condition

Photons in hadronic heavy-ion collisions

□ Photons interact at the very beginning.

□ The dileptons can bring the information from the nuclear overlap region.

AR

Photoproduction with nuclear overlap

- \square Excess e⁺e⁻ pair p_T distribution concentrates below p_T ~ 0.15 GeV/c.
 - Evidence of photon interactions in hadronic heavy ion collisions.
- □ The observed p_T^2 broadening is consistent with QED calculations. Possible additional broadening is also proposed as a probe of a trapped magnetic field or of Coulomb scattering in a QGP.
- Low-p_T muon pairs production measurements provide a complementary channel and will help to further improve our understanding of photon-induced processes.

The Solenoidal Tracker At RHIC (STAR)

Time Projection Chamber: tracking, momenta, and PID

Time of Flight: PID by velocity Muon Telescope Detector: trigger on and identify muons

Muon identification

Muon can be identified at low p_T by using TOF.

> Muon can be identified at high p_T by using MTD.

STAR

Invariant mass spectrum

• The $\mu^+\mu^-$ invariant mass distribution at very low p_T in peripheral collisions.

- Low mass region ($0.40 < M_{\mu\mu} < 0.64 \text{ GeV}/c^2$) using TOF.
- High mass region ($M_{\mu\mu} > 3.2 \text{ GeV}/c^2$) using MTD.

Invariant mass spectra in high mass region

- Significant enhancement with respect to the cocktail in 60-80% centrality collisions.
- Consistent with the theoretical calculation.

Calculations based on Equivalent Photon Approximation (EPA) method.

- Weizsacker–Williams method to estimate photon flux.
- Use Woods-Saxon charge distribution in nucleus for photon flux estimation.
- Photon is treated as real.
- Consider dilepton production insides nucleus.

W.M. Zha et al., Phys. Lett. B 800 (2020) 135089

STAR

p_T distributions in high mass region

- Excesses concentrate below $p_T \approx 0.15 \text{ GeV/c}$.
- Data are consistent with hadronic expectation when $p_T > 0.15$ GeV/c.
- Theoretical calculation is compatible with data.

FAR

p_T distribution in low mass region

- Excesses concentrate below $p_T \approx 0.15 \text{ GeV/c}$.
 - > Similar shape to e^+e^- and high mass $\mu^+\mu^-$ measurements.
 - > Indication of photon interactions in hadronic heavy ion collisions.
 - > Efficiency correction and cocktail simulation are ongoing.

Summary

• A significant $\mu^+\mu^-$ enhancement relative to the cocktail is observed at very low p_T in peripheral Au+Au collisions at 200 GeV.

In high mass Region ($M_{\mu\mu} > 3.2 \text{ GeV}/c^2$):

- \square Excess was entirely observed below $p_T \approx 0.15$ GeV/c.
- Compatible with the theoretical calculation.
- In low mass Region (0.40 < $M_{\mu\mu}$ < 0.64 GeV/ c^2):
- \square Excess was entirely observed below $p_T \approx 0.15$ GeV/c.
- □ Efficiency correction and cocktail simulation are ongoing.

• Outlook

□ Search for $cos4\Delta\phi$ angular distribution which is related to vacuum birefringence. --STAR, arXiv : 1910.12400

Summary

• A significant $\mu^+\mu^-$ enhancement relative to the cocktail is observed at very low p_T in peripheral Au+Au collisions at 200 GeV.

In high mass Region ($M_{\mu\mu} > 3.2 \text{ GeV}/c^2$):

- \square Excess was entirely observed below $p_T \approx 0.15$ GeV/c.
- Compatible with the theoretical calculation.
- In low mass Region (0.40 < $M_{\mu\mu}$ < 0.64 GeV/ c^2):
- \square Excess was entirely observed below $p_T \approx 0.15$ GeV/c.
- □ Efficiency correction and cocktail simulation are ongoing.

• Outlook

Search for cos4Δφ angular distribution which is related to vacuum birefringence. —STAR, arXiv : 1910.12400
The is

Back up

Invariant mass spectrum (40-60%)

Low mass region

Outlook—— $\Delta \phi$ distribution (60-80%)

STAR, arXiv : 1910.12400

- □ Theory predicts that the linearly polarized photon-photon collisions will lead to a $cos4\Delta\phi$ angular distribution which can be identified as vacuum birefringence.
- □ The previous observation of dielectron production is in agreement with theoretical predictions.
- Dimuon channel provides a new channel to study the Breit-Wheeler process.

STAR