

Characterization of the LGADs for the HGTD Upgrade at USTC

Large array test

- Punch-through model
- ► USTC-1 LGAD

Xiao Yang, Xiangxuan Zheng

University of Science and Technology of China

The 6th China LHC Physics Workshop, November 8th, 2020

(i) HGTD TDR: https://cds.cern.ch/record/2719855/files/ATLAS-TDR-031.pdf

(ii) Layout and performance of HPK prototype LGAD sensors for the High-Granularity Timing Detector, NIMA, Volume 980, 11 November 2020 https://doi.org/10.1016/j.nima.2020.164379

X. Yang, X. Zheng, USTC, The 6th China LHC Physics Workshop The High-Granularity Timing Detector(HGTD) for the ATLAS Phrase-II Upgrade

Motivation and Technique

- In the HL-LHC, Pile-up density would get so high that track to vertex association would be very hard, especially in the forward region
- Having a timing detector in forward region would allow us make the matching in "4-D" space.
- A novel technology: LGAD (Low-Gain Avalanche **Detector**), which have promising S/N and σ_t by inducing an internal gain layer.

LGAD Sensor R&D

Challenges on LGAD Design

- **Radiation Hardness:**
 - Acceptor removal^[1]: lacksquareacceptors could be "neutralized" by the defects created by the hadron irradiation. (intensively studied by RD50)
 - Solutions:
 - Narrow and deep implantation of boron
 - **Carbon** diffusion
- **Premature breakdown:**
 - Optimization of the peripheral region to improve ulletHV tolerance (to ~800V)
 - Implementation of the structures commonly used ulletin power semiconductor device: Guard ring, JTE, Field plate

The I-V and C-V tests are powerful tools to obtain these parameters!

Radius [cm] HGTD's requirement on the NIEL fluence

$$\rho_A(\phi) = g_{eff} \phi + \rho_A(0) e^{-c\phi}$$

Acceptor density with NIEL fluence

HPK Prototype LGAD Probe

• With I-V and C-V:

- We can extract the parameters like:
 - leakage current
 - breakdown voltage: VBD
 - depletion voltage: VGL(gain layer), VFD(bulk)
 - doping profile
- Then we can determined the
 - power consumption
 - operation voltage
 - irradiation influence
 - uniformity of the array

-		
Туре	V _{GL} [V]	V _{FD} [V]
HPK-1.1–35	31	195
HPK-1.2–35	33	36
HPK-2–35	40	144
HPK-3.1–50	42	49
HPK-3.2–50	56	64

Measured depletion voltages (VGL,VFD) of different HPK prototype LGAD

Instruments and Boards

HPK 5x5 LGAD Array Test

VGL Determination Methods

- Traditional: The turning points are determined by extrapolating the adjacent segments before and after the transition region and finding the intersections of the extrapolations.
- *New*: We use the minimum point on the "Doping density- Bias voltage"(N-V) curve to determine the **VGL** and obtained promising results on HPK-1.2, HPK-3.1 and HPK-3.2

The new method is expected to works better in High-resist. wafer and Epi. wafer

X. Yang, X. Zheng, USTC, The 6th China LHC Physics Workshop

Finally, a 0.2% variation on the boron implantation dose is observed!

Impact of Floating Pad Study

- TDR referees have concern about the floating pads influences to the whole array during the operation.
 (punch-through effect)
- We invested it by simulate one disconnected pad and compare the surrounding pads I-V change.
- Conclusion: safe, only few extra current is observed. Furthermore, a picture of the punch-through with a quantitative model are given.

AllGround sum. 9 pads

All pads grounded

AllGround sum. 8 pads

Central pad floating.

Central DisCon sum. 8 pads

* Tested on a 15x15 array with 5x5 probe card

X. Yang, X. Zheng, USTC, The 6th China LHC Physics Workshop

Picture of the Punch-through in LGAD

V_{pt} = 90 V
V_{diff} = 25 V

Grounded Pad

Dis.Conn. Pad Biased by Punch-through

Dis.Conn. Pad Not Biased

I-Vs of a 15x15 array corner with 5x5 probe card

Explained the curves' shape measured form 15x15 array with 5x5 probe card

15x15 Array Test System

5x5 array -> 15x15 array 25 pads -> 225 pads!

HPK Batch 2 15x15 Array Test

Distribution of the average leakage current

I-V curves

100

120

140

160

10⁻¹²

10⁻¹³

20

40

leakage current hist _W8_P7.V_80-100 labprob-Data-IV-2020Oct09-15x15-Batch-2-W8_P7 [Log] Unit:0.1 nA 15 number 10^{-3} 2.1 Leakage Current [A] 2.138 channel names drawn here is not complete 2.105 1.776 10^{-4} C11 2 Row C12 **C07** 1.337 1.999 10^{-5} **C08** C13 1.164 1.169 1.939 1.9 C09 C14 10^{-6} C10 C15 1.953 1.212 Δ25 **R20** 1.192 10 1.8 1.98 10^{-7} 1.977 1.7 10^{-8} 1.948 10⁻⁹ 1.6 1.896 10^{-10} 1.895 1.5 5 1.678 1.655 1.928 10⁻¹¹ 1.4 1.884

1.952

1.998

0

1.717

* The variation on column you may find is due to few abnormal chips on the board, it have been identified and fixed later

10

5

All channels have good connection and noises are controlled below ~10 pA

20

180

Bias Voltage [V]

The variation is clearly shown on the leakage current distribution

1.3

1.2

1.572 429

Col number

15

X. Yang, X. Zheng, USTC, The 6th China LHC Physics Workshop

USTC First Version LGAD Wafers (USTC-1)

0

0

0

0

Wafer	Designed VBD [V]	GL.Energy	GL.Dose	Implantation
W1	165	Medium	Medium	В
W2	165	Medium	Medium	В
W3	150	Low	High	В
W4	180	High	Low	В
W5	265	Medium	Low	В
W6	165	Medium	Medium	B+C

Designed by: USTC Fabricated by: <u>IME,CAS</u> Lot of simulation work are done with TCAD Deep gain layer: W3

Carbon diffusion: W6

8 inch wafer, with 50 μm Epi. layer. Stepper size: 40 mm x 40 mm,

Summary of the USTC-1 I-V and C-V

Wafe	Designed VBD	GL.Energy	GL.Dose	Implantation	VBD [V]	VGL [V]	VFD [V]
W1	165	Medium	Medium	В	154	45	65
W2	165	Medium	Medium	В	150	46	54
W3	150	Low	High	В	110	34	>70
W4	180	High	Low	В	148	75	100
W5	265	Medium	Low	В	264	45	80
W6	165	Medium	Medium	B+C	84	48	>65

• For the majority of wafers (W1,W2,W4,W5), the measured VBD and VGL agree with the design well.

• The timing performance would be shown in Tao's talk (next)

*GL.Energy/Dose: Gain layer implantation energy/dose

Summary

- I. Characterized the first batch of HPK Prototype with USTC platform, serval results are put in the **TDR** and the **collaboration paper**.
- II. Proposed new method for precise depletion voltage (VGL) determination
 - With the new N-V method, we studied gain layer variation on the ~0.2% level precision.
- III. Built up the punch-through model to describe the floating pad's impact
- IV. Overcome the large scale connection and readout challenges to test large arrays (5x5 and 15x15), results are stable and accurate.
- V. Designed and fabricated **USTC-1 LGAD**, the preliminary test result show I-V and C-V of serval wafers meet the expectation.

(i) HGTD TDR: https://cds.cern.ch/record/2719855/files/ATLAS-TDR-031.pdf

(ii) Layout and performance of HPK prototype LGAD sensors for the High-Granularity Timing Detector, NIMA, Volume 980, 11 November 2020 https://doi.org/10.1016/j.nima.2020.164379

X. Yang, X. Zheng, USTC, The 6th China LHC Physics Workshop

Backup

Punch through path

2 0/

USTC-LGAD Design with TCAD

- TCAD structure based on process simulation
- Lots of optimization work done
- Major radiation damage model included

Designed Mask (2x2 array)

X. Yang, X. Zheng, USTC, The 6th China LHC Physics Workshop

➡Recommendation:

- High resist. substrate: >1kOhm*cm
- High energy boron implantation: at least ~1MeV
- Carbon diffusion on one wafer

Functional LGAD (USTC-1)

Wafer under fabrication

HPK Batch 2 15x15 Array Test

Distribution of the average leakage current

Beta-TCT result

CV circuit

C-V principle

Depletion process

I-V

Results from 15x15 sensor with 5x5 probe card

labprob-Data-IV-2020June1-T3.1_15x15_8E14-A_N3_p13Discon [Log]

The final punch through occurs at ~180-200V

Single pad PIN

Fig. 2.12. Schematic cross section of a simple silicon pad sensor

LGAD Charge collection and JTE

Fig. 1.85 A schematic of a segmented Low Gain Avalanche Detector LGAD is shown emphasising several different features – electric field, amplification, cell isolation, cell varieties. Cells can be strip, pads or pixels – mostly millimetre sized pads these days. The bulk is fully depleted. The amplification stage is localised between the deep p^+ implant and the n^{++} -electrode, see field configuration on the right. As for an n^{++} -in-p sensor the cells need to be isolated, here by p^+ stops. On the right another variant with a Junction Termination & Guard Ring is shown – Junction Termination Extension JTE. The JTE controls the electric field at the border region. A significant high bias voltage is applied between n^{++} cells (pixels or pads) and p^{++} -backplane

LGAD Signal

LGAD Challenge

 Radiation damage is a main concern: 2.5E15 n_eq/cm²

Radius [cm]

nop

Radiation Damage

 $\Delta N_{eff}(\Phi_{eq}, t, T) = N_{C,0}(\Phi_{eq}) + N_A(\Phi_{eq}, t, T) + N_Y(\Phi_{eq}, t, T)$

$$N_{C}(\Phi_{eq}) = N_{C,O}(1 - e^{-c\Phi_{eq}}) + g_{c}\Phi_{eq}$$
$$N_{A}(\phi) = g_{eff}\phi + N_{A}(0) e^{-c(N_{A}(0))\phi}$$
$$_{30}N_{Y} = N_{Y,0} \cdot (1 - e^{-t/\tau_{Y}})$$

Acceptor removal effect

Why Low gain: short noise!

snot noise arises when **charge carriers cross a potential barrier**, as it happens in silicon sensors, and is due to the finite fixed charge of each electron

$$i_{Shot}^2 = 2qI_{Det} = 2q[I_{surface} + (I_{Bulk} + I_{Signal})G^2G^x],$$

Time Resolutions Rank

Measurement of the Jitter contribution

Track to vertex association with time info. (4-D space)

Sensor Requirements

Technology	Silicon I ou Coin Avalanche Detector (ICAD)
Technology	Silicon Low Gain Avalanche Detector (LGAD)
Time resolution	\approx 35 ps (start); \approx 70 ps (end of lifetime)
Time resolution uniformity	No requirement
Min. gain	20 (start); 8 (end of lifetime)
Min. charge	4 fC
Min. hit efficiency	95%
Granularity	$1.3\mathrm{mm} imes 1.3\mathrm{mm}$
Max. inter-pad gap	100 µm
Max. physical thickness	300 µm
Active thickness	50 µm
Active size	$39\mathrm{mm} imes 19.5\mathrm{mm}$ ($30 imes 15\mathrm{pads}$)
Max. inactive edge	500 μm
Radiation tolerance	$2.5 \times 10^{15} \mathrm{n_{eq}} \mathrm{cm}^{-2}$, 1.5 MGy
Max. operation temperature on-sensor	−30 °C
Max. leakage current per pad	5 µA
Max. bias voltage	800 V
Max. power density	$100 \mathrm{mW/cm^2}$

Table 5.1: Sensor parameters and requirements.

HGTD Requirements

Pseudo-rapidity coverage	$2.4 < \eta < 4.0$
Thickness in z	75 mm (+50 mm moderator)
Position of active layers in z	±3.5 m
Weight per end-cap	350 kg
Radial extension:	
Total	$110 \mathrm{mm} < r < 1000 \mathrm{mm}$
Active area	$120 \mathrm{mm} < r < 640 \mathrm{mm}$
Pad size	$1.3\mathrm{mm} imes1.3\mathrm{mm}$
Active sensor thickness	50 µm
Number of channels	3.6 M
Active area	$6.4 { m m}^2$
Module size	$30 ext{ x 15 pads} (4 ext{ cm} \times 2 ext{ cm})$
Modules	8032
Collected charge per hit	> 4.0 fC
Average number of hits per track	
$2.4 < \eta < 2.7$ (640 mm > r > 470 mm)	≈2.0
$2.7 < \eta < 3.5$ (470 mm > r > 230 mm)	≈2.4
$3.5 < \eta < 4.0$ (230 mm > $r > 120$ mm)	≈2.6
Average time resolution per hit (start and end of operational lifetime)	
$2.4 < \eta < 4.0$	pprox 35 ps (start), $pprox$ 70 ps (end)
Average time resolution per track (start and end of operational lifetime)	\approx 30 ps (start), \approx 50 ps (end)

Table 2.1: Main parameters of the HGTD.

HGTD Irradiation fluence

(a) Nominal Si1MeV $_{n_{eq}}$ fluence for HL-LHC. (b) Nominal ionising dose for HL-LHC.