

Measurements of LGAD sensors at USTC & HGTD software and performance

Tao Wang

8th, Nov. 2020 on behalf of USTC HGTD team

All the plots are from <u>HGTD TDR</u> except measurement results at USTC

ATLAS EXDEDIMENT

0

0.5

2.5

2

1.5

3.5

true track m

3

٠

Adding timing information can improve the

separation in the **high** |**η**| region

Introduction | HGTD

- ATLAS detector with HGTD (High Granularity Timing Detector) installed
- Part of ATLAS Phase II upgrade

- 2 double-sided plates
- 4 layers, 8000 modules
- 3.6 million LGADs (Low Gain Avalanche Detector)

High granularity

Introduction | Overview

Sensor test | TCT measurement set up @USTC

Sensor Test | Beta scope

Sensor test | Laser

Sensor test | Time resolution

HPK sensor type 3.1

$$\sigma_t^2 = \sigma_{\text{Landau}}^2 + \sigma_{\text{timewalk}}^2 + \sigma_{\text{jitter}}^2$$

$$\sigma_{\text{timewalk}} \text{ is corrected and reduced with CFD method}$$

$$\sigma_{\text{jitter}} = \frac{N}{dV/dt} = \frac{N}{S/t_{\text{rise}}}$$

N: noise S: signal t_{rise} : rising time of signal

 σ_t -laser is close to $\sigma_{\rm jitter}$ -beta scope

Time resolution at **10 fC** is about **30 ps**, which satisfies current specification

Sensor test | USTC sensor

USTC sensor

Designed by USTC and produced by IME Also **satisfy** current specification for HGTD More details **in Xiao Yang's talk** (<u>link</u>)

Software and performance | Performance overview

 $t_{\rm reco}^0 - t_{\rm truth}^0$ distribution for VBF H(inv) events

HGTD can provide a way to determine t_0 (time of the **primary vertex**) information for tracks

Software and performance | Lepton isolation **Un-isolated** electron relabeled Identifying **pile-up** tracks as isolated electron $t_{\rm elec\,trk}^0$ Isolation Efficiency ATLAS Simulation ITk-only √s=14 TeV, <µ> = 200 .05 $t_{\rm trk}^0$ Z→e⁺e⁻ ITk+HGTD : Initial (0fb⁻¹) HGTD ITk+HGTD : Final (4000fb⁻¹) **Electron track** 0.9 **Pileup track** 0.85 $z_{electrk}^{0}$ $z_{\rm trk}^0$ 0.8 2 $\Delta R = 0.2$ S 0.75 σ_{Z_0} 0.7 $t_{\rm trk}^0$ **∟**0 0.5 2.5 1.5 3.5 2 Pileup density [vertices/mm] ^{*L*}elec trk > s1.6 σ_t $z_{\rm trk}^0$ Improve about **10%** at **1.6** vertices/mm $Z_{\text{elec trk}}^{\mathbf{v}}$

Software and performance | Pileup jet suppression

Improve up to about **50%** at **85%** signal (HS) efficiency

(a) Jets with $30 \text{ GeV} < p_{\text{T}} < 50 \text{ GeV}$.

Software and performance | Luminosity measurement

- HGTD as a luminometer
 - **High granularity** gives **low occupancy** $\Rightarrow \langle n_{\text{hits}} \rangle \propto \langle \text{pp interaction} \rangle$
 - Special two-timing-window scheme at ASIC level to provide in-situ measurement for noise and afterglow
- Analysis channels can benefit from precise luminosity measurement:
 - $ggH(\rightarrow\gamma\gamma)$
 - $ggH(\rightarrow ZZ^*)$
 - ggH+VBF, H→ττ
 - ...

Summary

- HGTD, a novel detector to be installed on HL-LHC in the forward region, can provide high-precision timing information for charged particles;
- The LGAD technology is used, R&D work is being performed to measure the time resolution of the candidate sensors, and their characteristics agree with what's expected for un-irradiated sensors;
- Performance studies has been done to explore the full potential of HGTD, and it has been shown the timing information can improve physics studies in multiple ways
- More results coming!

Thanks for listening!

Backup

Calibration

- Calibration signal generated by signal generator with attenuator
- Injected signal leading edge ~1 ns
- Injected charge Q= $\Delta V^*1 \text{ pF}$
- Average result of 1000 signals
- Calibration constant = $\frac{\text{Injected charge}}{\text{Voltage integral}}$

Waveform analysis

- **Amax**: the maximum amplitude of the waveform
- **Tmax**: time when the amplitude of the waveform is maximum
- **RMS**: RMS of the head part of the waveform (before the peak)
- **TOA**: time when the amplitude of the signal crosses 0.5*Amax
- **Collected charge**: the peak integral divide by the calibration constant

Events selection

Tmax: time when the amplitude of the waveform gets maximum Amax: the maximum amplitude of the waveform

- Events recorded when the PMT is triggered
- Events chosen as the signal events while the events on both DUT1 and DUT2 are in the signal region (cut applied on the 2d distribution of Amax and Tmax)

Time reconstruction

- CTD(Constant Threshold Discriminator): the time of arrival is defined as the time where the signal crosses a constant threshold. The effects of time-walk can be corrected if the signal amplitude is known.
- CFD(Constant Fraction Discriminator): the time of arrival is defined as the time where the signal crosses a constant fraction ($f_{\rm CFD}$) of the maximum amplitude. However, since the threshold is crossed before the maximum amplitude is reached, this method cannot be implemented in the read-out electronics.
- CFD is used in the offline analysis.

Jitter estimation

RMS: Mean of the RMS distribution

Ampl: MPV of the maximum amplitude distribution

T_{40%(60%)}: Time when the **average** waveform reach 40%(60%) of the maximum amplitude ²²

Beta scope test

Laser test

Sensor Test | Beta scope

HPK sensor

Luminosity measurement impact

Analysis channel	Largest uncertainty	$\Delta\sigma/\sigma_{\rm SM}$
Cross section for $ggH(\rightarrow \gamma\gamma)$	Photon isolation efficiency	1.9%
Cross section for $ggH(\rightarrow ZZ^*)$	Electron eff. reco. total	1.5%
Cross section for $ggH + VBF$, $H \rightarrow \tau\tau$	QCD scale ggH , $p_T^H \ge 120 \text{GeV}$	1.7%

Table 3.1: List of dominant uncertainties (excluding the uncertainty on the integrated luminosity) affecting various expected Higgs boson cross section results at the HL-LHC using $3000 \,\text{fb}^{-1}$ of data. An uncertainty on the luminosity measurement of 2% would be the dominant source of uncertainty for all these measurements.

