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HL-LHC & ATLAS HGTD

The high-luminosity (HL) phase
of the Large Hadron Collider
(LHC) at CERN aims to deliver to
deliver an integrated luminosity
of up to 4000fb-1.

Arbitrary units

The instantaneous luminosity of the
HL-LHC will reach up to 7.5 x 103*
cm~2s7%, a large increase from the
2.1 x 10** cm~2 s7! obtained during
Run 2 of the LHC
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LGAD Sensor Structure

Results in a high
electric field
(Amplification )
in a superficial
region
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Fabrication Process Simulation
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Cathode Current (A/um)

IV and Gain Simulation
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IV simulation curves
for different gain
layer implantation
dose: higher dose
leading to lower
breakdown voltage

BV for different
implantation dose:
tuning point at mid

dose, breakdown

voltage in simulation
lower than 479V
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Charge collection
curve with different

bias voltage: higher
bias voltage leading
to more collected
charge
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Mask and Cutting
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AsstrACT: Low Gain Avalanche Detectors (LGAD) are silicon sensors with a time resolution better
than 20 ps. The ATLAS and CMS experiments are designing LGAD detectors to address the pile-up
challenge at the High Luminosity-Large Hadron Collider (HL-LHC). The Institute of High Energy
Physics (IHEP) High-Granularity Timing Detector group has recently developed its first version
of LGAD sensors. The LGAD structure was designed using Technology Computer-Aided Design
(TCAD) simulations and optimized to obtain a high breakdown voltage and ideal gain. The n-type
Junction Termination Extension (N-JTE) zone is a critical structure to guarantee a high breakdown

voltage. The gain layer is optimized for an ideal gain factor and hence good time resolution. The
optimized LGAD sensor has a gain higher than six and a breakdown voltage higher than 400 V.
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ARTICLE INFO ABSTRACT
Keywords: Low Gain Avalanche Detectors (LGAD) are silicon sensors that can achieve a time resolution of better than
LGAD 20 ps. The ATLAS and CMS experiments are designing LGAD detectors to address the pile-up challenge at the

silicon sensors
TCAD simulation

High breakdown voltage
Gain factor
Implantation energy

High Luminosity Large Hadron Collider (HL-LHC). The Institute of High Energy Physics (IHEP) has recently
developed two versions of LGAD sensors. The LGAD sensors were designed using Technology Computer-Aided
Design (TCAD) simulations and optimized to obtain high breakdown voltage and a suitable gain. The n-type
Junction Termination Extension (N-JTE) and p-type gain layer are two critical structures for LGAD sensors

that were investigated. IHEP has tuned the fabrication process of two foundries to obtain the most promising
design. The first version of the IHEP LGAD sensor, with a gain higher than six and breakdown voltage higher
than 400 V, was submitted to Tianjin Zhonghuan Semiconductor Company for fabrication. The second version
of the LGAD sensor benefits from the higher implantation energy available at the Institute of Microelectronics
(IME) to reach a gain higher than ten and breakdown voltage higher than 420 V.

1. Introduction

CERN will start the High Luminosity (HL) Phase-II of the Large
Hadron Collider (LHC) in 2027 [1]. The HL-LHC will deliver an inte-
grated luminosity of up to 4000 fb~! over the subsequent decade. The
instantaneous luminosity of the HL-LHC will reach up to 7.5 x 103
em~2s71, a substantial increase from the 2.1 x 1034 cm~2s~! obtained
during LHC Run 2 [2,3]. The increase of instantaneous luminosity will
increase the number of collisions in each bunch crossing. Improvement
of the spatial and timing resolution is needed for particle tracks to be
distinguished and primary vertices to be properly identified. One possi-
ble approach to satisfy these requirements is to use a tracking detector
in conjunction with independent precise timing measurements. LGAD
are silicon sensors that can achieve a time resolution of better than 20
ps. They have so far been developed by several silicon foundries [4-9].
The Institute of High Energy Physics (IHEP) High-Granularity Timing
Detector group has recently developed its first two versions of LGAD
sensors. In this paper, we report on the design, Technology Computer-
Aided Design (TCAD) simulation and proposed fabrication technology
for these LGAD sensors.

2. Structure

The LGAD structure drawn in Fig. 1 is based on the standard PIN
diode architecture with an n** layer as the cathode and a p** layer as

50um

o substrte thickness

area s 1250um x 250um ANOGE

Fig. 1. Sketch of the LGAD structure with the active area shown. Height and width
are not at the same scale. The sensor total area is 1250 jm x 1250 . The thickness
of the p~ substrate is 50 ym.

the anode. High voltage is applied on the anode and charge is collected
from the n** cathode at ground potential.

The p~ substrate is the active volume for charge drifting. A thin-
ner sensor contributes to better time resolution due to fewer Landau
fluctuation. The proper gain factor can reduce jitter from electronic

noise and time walk from amplitude variations allowing for high time
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IME Production Summary
»Four wafers: #1, #3, #7, #8.

»Four quadrants: I, II, [lI, IV. #1 mid *
#3 mid -
#7 mid -
#8 high -

/ low
Il mid
Il high

IV extremely high
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30

+ > Wafer3 Quadrant IV problem

In simulation (dash line), higher gain
layer depletion voltages show up
from low dose to extremely high
dose. Because the gain layer doping
concentration is increasing.

In measurement (solid line), higher
gain layer depletion voltages show

up from Quadrant | to Quadrant IV.

The change of CV measurement fit
with CV simulation.
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16 V >14.5 V (-9.4%)
21V >18.5 V(- 11.9%)
24.5V 222.5V (-8.2%)

28V 225.5V (-8.9%)

16V = 14.5V (-9.4%)
20.5V > 18.5V (-9.8%)
23.5V >21.5V (-4.3%)
28V 225V (-10.7%)
16V > 14V (-12.5%)
20.5V = 18.5V (-9.8%)
24V 3 21.5V (-10.4%)
31V 25V (-19.4%)
15V 2 13V (-13.3%)
19.5V 2 17.5V(-10.3%)
23V = 20.5V (-10.9%)

26.5V 224V (-9.4%)
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» BV in measurement fit with simulation.
» Baseline design BV has the least difference.
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Time Resolution & Collected Charge
W7-IV & W8-IV
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» 50ps and 20 fC in room temperature achieved, better results expected in low temperature.
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Summary & Plan

v'CV and IV measurements show high uniformity for first production
IHEP-IME LGAD. LoW lj¢,¢a0 (<100pA) for medium and high boron dose
implantation.

v’ Carbon implantation achieved low leakage current (<100pA, U<200V).
v’ Pretty charge collection and time resolution before irradiation (<50ps,

>20fC).

v TCAD process simulated results are close with measurements but

process calibration is necessary in next run.

» Proton (CIAE) and neutron (JSI) radiation for |
» Large size production in IMEv2 production.
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