

Measurements of semi-inclusive recoil jet production in pp and Pb-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV

Xiaojie Cao for ALICE collaboration

The 6th China LHC Physics Workshop

CCNU 11/08/2020

Motivation

> Why hadron-jet ?

- Observable can be calculated by pQCD
- Trigger track close to surface, but no bias on recoil jets
- Provide a good handle on the combinatorial background by varying trigger track intervals \rightarrow possible low pT, large R jet
- nucleus-nucleus collisions
- A probe to study medium effect in nucleus-nucleus collisions

ALICE detector

Measure trigger-normalized charged jet recoiling from trigger hadron

$$\frac{1}{N_{trig}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\eta_{jet}} \bigg|_{p_{T,trig} \in TT} = \left(\frac{1}{\sigma^{PP \to h+X}} \cdot \frac{d^2 \sigma^{pp \to h+jet+X}}{dp_{T,jet}^{ch} d\eta_{jet}}\right)_{p_{T,h} \in TT}$$

hadron

> Observables defined as the difference between trigger-normalized recoil jet distributions in two exclusive trigger track intervals in order to subtract all uncorrelated background jets

$$\Delta_{\text{recoil}} = \frac{1}{N_{\text{trig}}^{\text{AA}}} \frac{d^2 N_{\text{jet}}^{\text{AA}}}{dp_{\text{T,jet}}^{\text{ch}} d\eta_{\text{jet}}} \bigg|_{p_{\text{T,trig}} \in \text{TT}_{\text{Sig}}} - c_{\text{Ref}} \cdot \frac{1}{N_{\text{trig}}^{\text{AA}}} \frac{d^2 N_{\text{jet}}^{\text{AA}}}{dp_{\text{T,jet}}^{\text{ch}} d\eta_{\text{jet}}} \bigg|_{p_{\text{T,trig}} \in \text{TT}_{\text{Ref}}}$$

 c_{Ref} = scaling factor to account for conserved jet density

- Trigger track selection: $20 < TT_{sig} < 50$ GeV/c, $5 < TT_{ref} < 7$ GeV/c
- recoil jet reconstruction: anti-k_T, $p_T^{trk} > 0.15 \text{ GeV/c}$, $|\eta_{jet}| < 0.9 R$, R = 0.2, 0.4, 0.5Background subtraction: $p_{T,jet}^{corr} = p_{T,jet}^{raw} \rho * A_{jet}$ $\rho = median \left\{ \frac{p_{T,jet}^{k_T}}{A_{jet}} \right\}$ A_{jet} : Jet area •

Semi-inclusive recoil jet distributions

- Recoil jets measured for two p_T different trigger track(TT) intervals
- Combinational background uncorrelated with the trigger $p_{\rm T}$
 - ✓ Small background contribution in pp, much larger in Pb-Pb
 - Combinational background can be removed by taking the difference of the recoil jet distributions in two TT intervals

Scaling factor C_{Ref} determination

- Fitting by pol0, using the value of the parameter as the scale factor when calculate Δ_{recoil}
- Δ_{recoil} is clean of combinatorial background and corrected for detector effects using unfolding

xioajie.cao@cern.ch

Detector response and MC unfolding closure test

- Detector response matrix is obtained with MC simulation for jet energy scale and resolution correction
- Validate the procedure through the MC unfolding closure
- Using this response matrix to perform unfolding correction

Systematic uncertainty estimate

Resource	How to estimate	Value (%)
Track efficiency	varying tracking efficiency by 4%	4-8
	closure test	
Unfolding	regularization iteration	1_/
	methods(Svd/Bayes)	1-4
Prior	Different generator level as prior	1-3
UE subtraction	background fluctuation	2-6
Binning truncation	different bin boundary in analysis	1-6
C _{ref} determimation	different methods of getting C _{ref} & fitting error	< 1
Total	added in quadrature when uncorrelated	5-13

• Systematical uncertainties for different R analysis are similar

Results (Spectra: △recoil)

- Corrected Δ recoil distributions for different resolution parameters R = 0.2, 0.4 and 0.5
- PYTHIA8 simulation describes our data well

Results (Spectra: ratio for different radii)

- Jet cross section ratio measures the jet collimation
- Ratios R=0.2/R=0.4 and R=0.2/R=0.5 is slightly increasing with jet p_T
- Consistent with Monte Carlo simulation

Results (compared with Pb-Pb results)

- Ratios R=0.2/R=0.4 and R=0.2/R=0.5 consistent in different centralities and in pp collisions
- Hint of energy redistribution to large R for low P_T jets in central Pb-Pb collisions

Results (IAA)

- Recoil jet yield suppression with respect to pp and I_{AA} consistent for different jet radius within uncertainties
- Larger suppression in most central collisions
- Consistent results between 2.76 TeV and 5.02 TeV energy, even with different TT intervals and different references

Hadron-jet azimuthal correlations

Azimuthal distribution of recoil jets provides additional insight into QGP properties
 Broadening of away side jet peak gives direct access to transport coefficient

xiaojie.cao@cern.ch

Summary and outlook

- Semi-inclusive recoil jet yields have been measured in pp and Pb-Pb collisions at 5.02 TeV using RUN2 data at LHC
 - Recoil jet yields can be well described by PYTHIA MC in pp
 - Suppression observed in most and semi-central Pb-Pb collisions, a rising trend with $p_{\rm T}$
 - Ratios for different Rs have been calculated and are similar between pp and Pb-Pb collisions, hint of energy redistribution to large R for low $p_{\rm T}$ jets in central Pb-Pb collisions

> Next steps

- pp reference:large-statistics 2017 pp sample at $\sqrt{s} = 5.02$ TeV
- Push the measurement to low $p_{\rm T}$ and large R

Hadron-jet azimuthal correlations

$p_{\rm T}^{ m rec}$ Range(GeV/c)	$\sigma_{_{gen}}^{_{ m MC}}$	$\epsilon^{\rm MC,gen}_{\sigma, error}$
20-30	0.3578	± 0.0083
30-40	0.2953	± 0.0054
40-60	0.2747	± 0.0030

Data and MC samples

➢ Data: pp @5.02 TeV

Period	N event (FAST)	N event (CENT)	N event (All)	Percentile of total events
LHC15n	90M		90M	9%
LHC17p	573M	316M	889M	86%
LHC17q	29M	25M	54M	5%

For the preliminary results: only 17p FAST+CENT was used (~86%) (full list of run numbers in backup)

Mote Carlo(anchored to 17p data) : only JJ MC used for the moment LHC18b8_FAST (Jet-Jet): PYTHIA8, ~4.7M events/bin 20bins in total LHC18b8 CENT(Jet-Jet): PYTHIA8, ~2.6M events/bin 20bins in total

Selection

Selection for events and tracks:

> Evet Selection: kINT7, $|V_z| < 10cm$, $|V_{z(TPCtracks)} - V_{z(SPDtracks)}| < 0.5cm$

> Track Selection: $P_T^{\text{track}} > 0.15 GeV/c$ $|\eta_{\text{track}}| < 0.9$

Selection for hadron-jet analysis:

> Jet Reconstruction: Anti-KT algorithm, R=0.2, 0.4, 0.5 $P_T^{Jet} > 1.0 GeV/c |\eta_{jet}| < 0.9 - R$

Trigger Tracks pt Interval : Signal: (5, 7)GeV/c Reference: (20, 50)GeV/c

Analysis Strategy

Measure trigger-normalized charged jet recoiling from trigger hadron

$$\frac{1}{N_{trig}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\eta_{jet}} \bigg|_{p_{T,jrig} \in TT} = \left(\frac{1}{\sigma^{PP \to h+X}} \cdot \frac{d^2 \sigma^{PP \to h+jet+X}}{dp_{T,jet}^{ch} d\eta_{jet}}\right)_{p_{T,h} \in TT}$$

> Observables defined as the difference between trigger-normalised recoil jet distributions in two exclusive trigger

track intervals in order to subtract all uncorrelated background jets

- Signal: (20,50) GeV/c Reference:(5,7) GeV/c Cross checks: Signal: TT[15,20] ,[20-25], [25-30], [30-45] GeV/c Reference: TT[5-6], [6-7], [7-8], [8-9] GeV/c
- Divide data into two subsets for statistical independent signal & reference sample
- Loop over events:
 - ✓ Select event if there is a trigger track within the defined $p_{\rm T}$ interval
 - ✓ Select all jet candidates with R = 0.2, 0.4, 0.5
- Observable Δ recoil is defined: $\Delta recoil = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{sig}} - c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{trig}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{trig}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{trig}} \frac{d^2 N_{trig}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{trig}} \frac{d^2 N_{trig}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{trig}} \frac{d^2 N_{trig}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{trig}} \frac{d^2 N_{trig}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} \Big|_{p_{T,\text{trig}} \in TT_{ref}} + c. \frac{1}{N_{trig}} \frac{d^2 N_{trig}}{dp_{T,jet}^{ch} d\Delta \eta_{jet}} + c. \frac{1}{N_{trig}} \frac{d^2 N_{tr$

$$\Phi(\Delta\phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta\phi_{jet}} \bigg|_{p_{T,\text{ trig}} \in TT_{sig}} - c. \frac{1}{N_{\text{trig}}} \frac{d^2 N_{jet}}{dp_{T,jet}^{ch} d\Delta\phi_{jet}} \bigg|_{p_{T,\text{ trig}} \in TT_{ref}}$$

Trigger track distribution

- Signal trigger particle $p_{\rm T}$ interval (20, 50) GeV/c
- Reference trigger particle $p_{\rm T}$ interval (5, 7)

GeV/c

Unfolding corrections

fHistJet1PtvsJet2Pt

- The black point on the response show the mean value between x and y
- Validate the procedure through the MC unfolding closure and refolding test
- Different unfolding methods are consistent

$\Delta \phi$ analysis status

TT(20,50) signal

TT(5,7) reference

signal - reference

$\Delta \phi$ analysis status

σ^{data}	$\mathcal{E}^{data}_{\sigma.error}$	$\sigma_{ m det}^{MC}$	$\mathcal{E}_{\sigma.\mathrm{error}}^{MC,\mathrm{det}}$
0.4659	±0.0685	0.4514	±0.0156
0.3543	±0.0407	0.3619	±0.0083
0.3225	±0.0411	0.3086	±0.0061
0.2438	±0.0346	0.2539	±0.0931
0.1782	±0.0284	0.2469	±0.0020
	σ ^{data} 0.4659 0.3543 0.3225 0.2438 0.1782	σ^{data} $\mathcal{E}^{data}_{\sigma.error}$ 0.4659 ± 0.0685 0.3543 ± 0.0407 0.3225 ± 0.0411 0.2438 ± 0.0346 0.1782 ± 0.0284	σ^{data} $\mathcal{E}^{\text{data}}_{\sigma.error}$ σ^{MC}_{det} 0.4659 ± 0.0685 0.45140.3543 ± 0.0407 0.36190.3225 ± 0.0411 0.30860.2438 ± 0.0346 0.25390.1782 ± 0.0284 0.2469

xiaojie.cao@cern.ch

TT signal interval scan for recoil jet $P_{\rm T}$

> TT_reference: 8-9 GeV/c (run1), TT_signal scan: 15-20, 20-25, 25-30, 30-45 GeV/c

p_T low	p_T high	R	N Trigger Tracks	N jet > 40 GeV/c
15	20	0.4	29083	232
20	25	0.4	8183	145
25	30	0.4	2857	87
30	35	0.4	1176	35
35	45	0.4	821	44
20	50	0.4	12809	247

- For TT(20.50

Eer TT/20 2EV/TT/20 E

For TT(25.30)/TT(20.59

• Increasing statistic fluctuation with smaller TT signal intervals

TT reference interval scan for recoil jet P_{T}

2020-11-8

xioajie.cao@cern.ch