

ALICE Upgrade

Zhong-Bao Yin (Central China Normal University)

第六届中国LHC物理研讨会(CLHCP2020),11月9日

Outline

- Overview on ALICE detector upgrade programs
- Ongoing detector upgrade during LS2
- Further detector upgrade for RUN4
- Summary and outlook

- 50 kHz Pb-Pb interaction rate (Run 2 <10 kHz)
- Collect L_{Pb-Pb} = 13 nb⁻¹

٠

.....

ALICE physics goals driving the upgrade requirements – rare probes and high precision

- Heavy-flavour hadrons (down to very low p_T) \rightarrow mechanism of quark-medium interaction
- Charmonium states → dissociation/regeneration as tool to study de-confinement and medium temperature
- Dileptons from QGP radiation and low-mass vector mesons → χ symmetry restoration, initial temperature and EOS
- High-precision measurement of light and hyper-nuclei → production mechanism and degree of collectivity

-Vertex tracker at forward rapidity

ITS upgrade during LS2 (ITS2)

Improving tracking performance at low p_{T}

- 7-layer barrel fully equipped with dedicated Monolithic Active Pixel Sensors (MAPS): ALice Plxel **DEtector (ALPIDE)**
 - Inner Barrel ۲
 - 3 Inner Layers (48x 9-chip Staves)
 - Material per layer: ~0.35% X₀
 - **Outer Barrel** ٠
 - 2 Middle Layers (54x 8-module Staves)
 - 2 Outer Layers (90x 14-module Staves) •
 - Material per layer: ~ 0.8% X₀ •
- Radial coverage: 23 400 mm
- η coverage: |η| ≤ 1.3
- Total active area about 10 m²
- 24,000 pixel chips (12.5G pixels)
- Spatial resolution: 5 µm

Muon Forward Tracker (MFT)

Add precise vertexing capabilities to muon tracking at forward rapidity

- Based on same MAPS as ITS upgrade
- 2212 chips in total
- 5 disks with 2 planes on each disk
- Enables better matching to vertex

- Charm/beauty separation possible
- Improved mass resolution

The ALPIDE SENSOR the core of the new ITS and MFT

Pixel Sensor produced using 0.18µm CMOS Imaging Process

- High-resistivity (> 1 kΩ cm) p-type epitaxial layer (25 µm) on p-type substrate
- Small n-well diode (2 µm diameter), ~100 times smaller than pixel
 => low capacitance (~fF) and low noise
- Reverse-bias voltage (-6 V < V_{BB} < 0 V) to substrate (contact from the top) to increase depletion zone around n-well collection diode</p>
- Deep p-well shields n-well of PMOS transistors

IB&MFT: 50 μm thick OB: 100 μm thick

High speed serial
data output (HSO)
OB: 400 Mbit/s
IB: 600 Mbit/s or
1.2 Gbit/s

- Pixel Matrix: 1024 cols x 512 rows
- Pixel pitch: 29 μ m x 27 μ m
- Ultra-low power: ~40 mW/cm²
- Event-time resolution: < 4 μs
- Detection efficiency > 99%
- Fake hit rate << 10⁻⁶/pixel/event
- Space resolution: 5 μm
- Max particle rate: 100 MHz/cm²
- Trigger rate: 100 kHz Pb-Pb, 1 MHz pp
- Continuous or triggered readout
- Radiation tolerant: > 270 krad TID, >1.7x10¹² 1 MeV n_{eq} /cm² NIEL 7

ITS upgrade status

Inner and outer barrels fully assembled and under test on surface

DCS

Track reconstruction software

	DAQ stat	ion			
Vision_1: Run Control		- 0	×		
😂 🖬 🊳 🖫 📓 🛃	s 💩 😒 🕸 🕂 🗖	G 🚑 🔎 1:1	**		
CRU Selection dist_1:L1TOP	Run Type ReadoutTest	Messages: CONF Done configuring stave 8 CONF Done configuring RU 8 CONF Done configuring stave 9			
Options Configuration text box configure_from_file config/threshold Running? YES Running 1	_tuned_ibt_100e_0v_run100769.jsor	CONF Done configuring RU 9 CONF Done configuring stave 10 CONF Done configuring RU 10 CONF Done configuring stave 11			
START RUN	STOP RUN	CONF Done configuring RU 11 CONF Done configuring stave 12	~		

ITS upgrade commissioning - IB

before

Fake hit rate vs threshold

Achieved <10⁻¹⁰ /pixel/event by masking a small fraction of pixels

Study cluster and track parameters and alignment via cosmic rays

1 week of shift operation (1400 cosmics)

Cosmic tracks in one half layer of the Inner Barrel

ITS upgrade commissioning - OB

- Dead chips: 32 (over 23688) \rightarrow Percentage: 0.14%
- No overlap in polar direction

Threshold and noise after tuning an OL stave (~100 M pixels) compared to test data from a single chip

MFT status

MFT is fully assembled and integrated with FIT, ready for installation

Homogeneous threshold and low noise

11

ALICE detector upgrade for LS3 ITS3

ITS3: Replace the 3 inner layers with three truly cylindrical layers based on **curved** ultra-thin sensors

- Closer to beam pipe: $23 \rightarrow 18$ mm
- Less material: 0.35 % \rightarrow ~ 0.03 % X₀
- Resolution improved further by factor of 2

Add a forward calorimeter • (FoCal)

FoCal-H

FoCal

Constrain the gluon nPDF at • small Bjorken x via measurement of direct photon at forward rapidity

FoCal-E

R&D activities for ITS3

Bending ALPIDE

Bendable FPC

100 um-thick Kapton Tension wire 50 um-thick ALPIDE)A0929-1 19465 R=18 mm jig Wire-bonding after bending

Bent chip electrical test

- The curvature effect is not noticeable on:
 - pixel thresholds, FHR, pixel responsiveness
 - tested down to below nominal bending radius

Beam test

Fig. 10: Inefficiency as a function of threshold for different rows and incident angles with partially logarithmic scale $(10^{-1} \text{ to } 10^{-5})$ to show fully efficient rows. Each data point corresponds to at least 8k tracks.

- The chips just continue to work
- The efficiency shows >99.9% at nominal 100 e⁻ threshold

Wafer-scale sensor R&D

- Starting from ALPIDE architecture
- Porting to 65 nm technology node
 - smaller pixels (10 um x 10 um)
 - larger wafers (300 mm instead of 200 mm)
- Basic building block of 15 mm height
 - to be repeated n times in vertical direction to obtain the sizes needed per layer

- Content:
- Transistor Test structures
- Analog Pixel test chips
- Rolling shutter matrix
- smaller building blocks
- Goal: verification technology for:
- radiation hardness
- charge-collection properties

- 7 m away from the nominal IP
- Pseudo-rapidity coverage of 3.2 5.8 ۲
- To explore small *x* physics ٠

EIC2

Q_s(Pb)

Q_s(p)

10⁻²

10⁻³

10⁻⁵

 10^{-4}

 10^{-6}

NMC/EMC

 10^{-1}

FoCal-E design

high granularity electromagnetic calorimeter for γ and $\pi^{\rm 0}$ measurements

- Studied in simulations 20 layers:
 W(3.5 mm ≈ 1X0) + silicon sensors
- Two types: Pads (LG) and Pixels (HG)
- Pad layers provide shower profile
- Pixel layers provide position resolution to resolve shower overlaps

- Main challenge: Separate γ/π^0 at high energy
 - Two photon separation from π^0 decay (p_T = 10 GeV/*c*, η=4.5) ~2 mm
 - Needs small Molière radius and high granularity readout
 - Si-W calorimeter with effective granularity $\approx 1 mm^2$

Further optimization left for TDR:

- Location of pixel layers
- Number of pad layers
- Sensitive area at front for CPV/eID

FoCal-E detector Integration

- module of ≈ 18 pad layer and 2 pixel layers
- sensitive area: 45 cm x 8 cm
- use edge of detector for services
- designed to be stacked vertically for full detector setup
- single metal layer with cooling pipes
- full area coverage with 2 x 3 chains of 15 ALPIDE sensors

Summary and outlook

- Major upgrade of ALICE detector undergoing to take advantage of the luminosity increase in Run 3 & 4.
 - We are involved in ITS2 and MFT
 - ALPIDE chip R&D
 - OB HIC production completed
 - Commissioning of ITS2 is ongoing
 - MFT PCB production completed
- Active R&D on ITS3 and FoCal for detector upgrade for RUN4 to enhance its physics capabilities.
 - We are involved in R&D of wafer-scale sensor for ITS3
 - first prototype submission is imminent
 - Pixel layers to FoCal-E under R&D
- Outlook: A nearly pure silicon detector for RUN5 (beyond 2030)

Increase rate capabilities (factor 50 wrt to ALICE RUN4)

- large acceptance, fast tracker based on wafer-scale MAPS
- 0.05% X₀/layer
- PID by TOF in Si layers
- electron and photons: pre-shower detector, converter
- Access doubly and triply heavy-quark hadrons
- Precise dielectron measurements
- Soft and ultra-soft photons

Thank you very much for your attention !

ALICE detector in RUN 1 & 2

- Designed to cope with very high charged particle multiplicities
- Excellent tracking and particle identification of charged particles over wide p_{T} range

ALICE running status

Colliding System	Year	√s _{NN} (TeV)	Integrated Luminosity			
	2010,2011	2.76	~75 μb⁻¹			
Pb-Pb	2015	5.02	~250 μb⁻¹			
	2018	5.02	~1 nb ⁻¹			
Xe-Xe	2017	5.44	~0.3 μb⁻¹			
p-Pb	2013	5.02	~15 nb ⁻¹			
	2016	5.02 8.16	~25 nb⁻¹ ~3 nb⁻¹			
	2000 2012	0.9 2.76	~200 μb⁻¹, ~ 100 nb⁻¹			
рр	2009-2013	7 8	~1.5 pb ⁻¹ , ~2.5 pb ⁻¹			
	2015,2017	5.02	~1.3 pb ⁻¹			
	2015-2018	13	~45 pb ⁻¹			

Pb-Pb 2018 run

- 0-10%: ~ <mark>9 x</mark> 2015
- 30-50%: ~ <mark>4 x</mark> 2015
- Minimum Bias: ~ 2015
- delivered lumi. ~ 2 x 2015

参与ALICE升级探测器研制的状况

>参与ITS硅像素芯片设计:

(1)芯片读出结构;
(2)像素模拟前端电子学改进

>ITS探测器模块建造与测试

✓2017年9月份启动预生产
✓2018年4月份启动正式生产,于2019年8月完成(生产率为2 模块/天,共建造500个模块)

Noise and threshold performance

Threshold and noise after tuning for an OL Stave (~100M pixels) compared with a single chip test data ²⁶

Simulated ITS2 performance

- Pointing resolution improved by a factor of 3 and 5 in r ϕ and z direction for 0.5 GeV/c π
 - 400 (mm) ALICE Standalone tracking efficiency (%) 350 ALICE Current ITS (data) ²ointing Resolution 300 Upgraded ITS 80 **Current ITS** Upgraded ITS 250 60 200 150 40 100 20 50 0 10 10 p_ (GeV/c) 10 **10**⁻¹ p_T (GeV/c) ALI-PUB-103028 ALI-PUB-103021
 - Physics goal: improve heavy-flavor physics studies through low momentum track reconstruction

From chips to staves: IB

Inner Barrel HIC: 9x 50 μ m-thick ALPIDE chips wire-bonded to FPC

- <radius> (mm): 23, 31, 39
- Nr. staves: 12, 16, 20
- Nr. chips: 432
- Readout speed: 1.2 Gbps

- Chips read out separately
- Clock, control, data, power lines wirebonded to aluminum FPC
- Produced at CERN with 73% yield
- 27 cm length stave

From chips to staves: OB

Outer Barrel HIC: 14x 100 μ m-thick ALPIDE chips (2 rows)

- Data and control transferred through 1 master chip per row
- Chips wire-bonded to copper FPC
- Power delivered via 6 cross-cables soldered to FPC
- Produced at Bari, Liverpool, Pusan/Inha, Strasbourg and Wuhan

- HIC alignment on cold plate
- HIC-to-HIC (4 for ML and 7 for OL) interconnection soldering
- Two half staves on space frame
- Power bus installation
- Readout speed for OB: 400 MB/s

Breakdown of MFT structure

- CCNU takes charge of PCB design, layout and production.
- Status: Completed in 2019

Simulated MFT performance for charmonium measurement

ITS3 layout

Beam pipe Inner/Outer Radius (mm)	adius (mm) 16.0/16.5			
IB Layer Parameters	Layer 0	Layer 1	Layer 2	
Radial position (mm)	18.0 24.0		30.0	
Length (sensitive area) (mm)	300			
Pseudo-rapidity coverage	±2.5	±2.3	±2.0	
Active area (cm ²)	610	816	1016	
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280 x 94	
Number of sensors per layer	2			
Pixel size (µm ²)	O (10 x 10)			

- New beam pipe:
 - "old" radius/thickness: 18.2/0.8 mm
 - new radius/thickness: 16.0/0.5 mm
- Extremely low material budget:
 - Beam pipe thickness: 500 µm (0.14% X0)
 - Sensor thickness: 20-40 µm (0.02-0.04% X0)
- Material homogeneously distributed:
 - essentially zero systematic error from material distribution

Material budget

- Observations:
- Silicon makes only about 15% of total material
- Irregularities due to support/cooling and overlap

- Removal of water cooling
- possible if power consumption stays below 20 mW/cm²
- Removal circuit board (power+data)
- **possible** if integrated on chip
- Removal of mechanical support
- **benefit** from increased stiffness by rolling Si wafers

Implementation

- Air cooling ۲
- Possible below 20 mW/cm²
- Studied in the context of ITS2
- Achievable *if* periphery outside the fiducial volume

Wafer-scale chip

- Stitching to overcome reticle size limit
- Chip spanning half or full stave length
- Neither support structure nor electrical substrate necessary
- Thinning and bending
- Currently 50 μ m (25 μ m active volume)
- Below 50 μm, Si wafers become flexible, "paper-like"

Mechanics layout

- Possible layout based on air-cooling
- Sensors hold in place with low-density carbon foam

- Fixation into the experiment by surrounding support structure, as well as at both ends
- Cooling at the extremities (chip peripheries)

Simulated ITS3 performance

Improvement of a factor of 2 over all momenta

Large improvement at low transverse momenta

How much can the substrate be thinned?

Toward TRD: test module close to final design

FoCal-E test module concept

- Use final electronics configuration
- HGCROC + sensor modules + readout
- Pixel modules + readout
- Develop cooling solution
- HCAL module

Goals:

- Test/verify performance
- Gain experience with production/assembly
- Optimize processes

.)[(C)[E

FoCal-H design

Allows to isolate photons in FoCal-E and jet measurements

- Pb/scintillating fiber spaghetti calorimeter module as used in E864
- a lead to fiber ratio of 4.55 : 1 by volume to provide good calorimetric compensation and resolution
- a mass of about 100 kg and an active depth of approximately 8 λ_{had}
- Cu as the passive material is also under consideration to reduce the length and weight

- A nearly circular geometry approximately 1 m in radius
- 372 modules
- 1488 towers of 5cm x 5 cm

- CONTRE

FoCal timeline

	19	2020	2021	2022	2023	2024	2025	2026	2027
	Q4	Q1 Q2 Q3 Q4							
LHC		LS2	Run-3	3			LS3		Run-4
Lol									
R&D									
Test beam									
TDR									
Final design									
Production, construction, test of module									
Pre-assembly, calibration with test beam									
Installation and commissioning									
Physics data taking									

Table 6: Project timeline

Year	Activity
2016-2021	R&D
2020	Letter of Intent
2020-2022	final design
	Technical Design Report
	design/technical qualifications
2023–2027	Construction and Installation
2023–2025	production, construction and test of detector modules
2024–2025	pre-assembly
	calibration with test beam
2026	installation and commissioning
06/2027	Start of Run 4

- Next important step: Entering the engineering phase towards testbeam(s) 2021/22 and TDR
- Production estimated to fit well into 24 months Plus half a year of "learning curve"

(not adjusted for Covid-19 changes)