

### JIANHUI ZHU (zjh@ccnu.edu.cn) ON BEHALF OF ALICE

#### CHARMED BARYONS MEASUREMENTS FROM pp TO Pb-Pb 中師範大譽 ALICE CENTRAL CHINA NORMAL UNIVERSITY







### Motivation

Charm & beauty meson production well described by factorisation theorem:

$$\frac{\mathrm{d}\sigma^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{D}}}(p_{\mathrm{T}};\mu_{\mathrm{F}};\mu_{\mathrm{R}}) = PDF(x_{1},\mu_{\mathrm{F}})PDF(x_{2},\mu_{\mathrm{F}}) \otimes \frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{c}}}(x_{1},x_{2},\mu_{\mathrm{R}},\mu_{\mathrm{F}})$$

initial state pQCD partonic parton distribution function cross section

- Charm baryon-to-meson ratio sensitive to hadronization mechanism
- Role of charm measurements in all collision systems
  - pp: test of perturbative QCD calculations
  - p-Pb : cold nuclear matter effects
  - Pb-Pb: modification of hadronization mechanism in the medium **Fragmentation**: <u>Coalescence</u>:





08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb

- $O \otimes D_{\mathrm{c} \to \mathrm{D}}(z = p_{\mathrm{D}}/p_{\mathrm{c}}, \mu_{\mathrm{F}})$
- hadronization by fragmentation







## Motivation

- $\Lambda_c^+/D^0$  enhanced in pp w.r.t. e<sup>+</sup>e<sup>-</sup>
  - Fragmentation not universal?
  - **Colour reconnection?**
  - Unobserved charm-baryon states?
- $\wedge \Lambda_c^+/D^0$  enhanced in Pb-Pb w.r.t. pp and p-Pb
  - Models including coalescence and fragmentation describe the enhancement in Pb-Pb
  - Radial-flow push in Pb-Pb?
- Heavier charmed-baryon measurement ( $\Sigma_c, \Xi_c, \Omega_c$ )
  - Further possible enhancement due to strange component
  - Needed for total charm cross section
  - $\Xi_c$ : see Tiantian's talk (Heavy Flavor/Heavy Ion, 17:32 Nov. 6)
  - $\Omega_{c}$ : under investigation, will be ready next year

08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb

|                          | $\Lambda_{ m c}^+$ / D $^0$ $\pm$ stat. $\pm$ syst. | System | $\sqrt{s}$ (GeV) |
|--------------------------|-----------------------------------------------------|--------|------------------|
| CLEO [43]                | $0.119 \pm 0.021 \pm 0.019$                         | ee     | 10.55            |
| ARGUS [42,98]            | $0.127 \pm 0.031$                                   | ee     | 10.55            |
| LEP average [80]         | $0.113 \pm 0.013 \pm 0.006$                         | ee     | 91.2             |
| ZEUS DIS [51]            | $0.124 \pm 0.034 \substack{+0.025 \\ -0.022}$       | ep     | 320              |
| ZEUS γp,<br>HERA I [49]  | $0.220 \pm 0.035 \substack{+0.027 \\ -0.037}$       | ep     | 320              |
| ZEUS γp,<br>HERA II [50] | $0.107 \pm 0.018 ^{+0.009}_{-0.014}$                | ep     | 320              |





# **ALICE detector**

- Inner Tracking System (ITS)
  - | *η* | < 0.9
  - Tracking, vertex, particle identification (PID), multiplicity
- Time Projection Chamber (TPC)
  - $|\eta| < 0.9$
  - Tracking, PID
- Time-Of-Flight (TOF)
  - | η | < 0.9</p>
  - Tracking, PID





#### Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb





## Charm-baryon analysis

### Hadronic decays: $\wedge \Lambda_c^+ : \Lambda_c^+ \to pK^-\pi^+, \Lambda_c^+ \to pK_s^0$ $\Sigma_{c}^{0,++}: \Sigma_{c}^{0} \to \Lambda_{c}^{+}\pi^{-}, \Sigma_{c}^{++} \to \Lambda_{c}^{+}\pi^{+}$



08 Nov. 2020 - CLHCP

- PID and topological selections
- Signal extraction via invariant mass analysis
- Acceptance x efficiency correction
- **B** feed-down subtraction

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb







# pp collision



# $\Lambda_c^+/D^0$ in pp collision with different multiplicity at 13 TeV



ALI-PREL-336442

08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb

- $\Lambda_c^+/D^0$  largely enhanced in pp w.r.t.  $e^+e^-$
- Significant enhancement with increasing multiplicity in pp collision

#### **PYTHIA8:**

- Monash (tuned on  $e^+e^-$ ) NOT reproduce enhancement and multiplicity dependence
- CR with string formation beyond leading colour approximation describes multiplicity dependence
  - **Reconnections among junctions**
  - Multi-parton interactions

#### **PYTHIA8**

[Comput. Phys. Commun. 178 (2008) 852] **PYTHIA8 Monash** [Eur. Phys. J. C 74 (2014) 3024] PYTHIA8 (Mode2) [JHEP 08 (2015) 003]



# $\Lambda_c^+$ ( $\leftarrow \Sigma_c^{0,+,++}$ )/D<sup>0</sup> in pp collision at 13 TeV

- Largely underestimated by PYTHIA8 default tune (Monash)
- PYTHIA8 with CR & M. He and R. Rapp describe data
  - PYTHIA8 with junction, both  $\Lambda_c^+$  and  $\Sigma_c^{0,+,++}$  yields increased a lot
  - SHM with increased set of charm-baryon states
    - SHM not affected by internal structure of particle or by hadronization mechanisms, but just take into account their masses
- ▶  $\Lambda_c^+$ (  $\leftarrow \Sigma_c^{0,+,++}$ )/D<sup>0</sup> has similar  $p_T$ -dependency as  $\Lambda_c^+$ /D<sup>0</sup>
  - $\Lambda_{c}^{+}/D^{0}$  enhancement in pp collision can be only partially explained by  $\Sigma_{c}^{0,+,++}$  feed-down

08 Nov. 2020 - CLHCP



M. He and R. Rapp [PLB 795 (2019) 117-121]



# $\Sigma_{c}^{0,+,++}/D^{0}$ in pp collision at 13 TeV



M. He and R. Rapp [PLB 795 (2019) 117-121]

08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb

| Particle        | New CR model $(N_{\text{par}}/N_{\text{events}})$ |                     | Old CR model        |                                    |
|-----------------|---------------------------------------------------|---------------------|---------------------|------------------------------------|
|                 | string                                            | junction            | all                 | $N_{\rm par}/N_{\rm events}$ (all) |
| $D^+$           | $5.3 \cdot 10^{-2}$                               | 0                   | $5.3 \cdot 10^{-2}$ | $6.5 \cdot 10^{-2}$                |
| $\Lambda_c^+$   | $4.0 \cdot 10^{-3}$                               | $7.9 \cdot 10^{-3}$ | $1.2\cdot 10^{-2}$  | $6.6 \cdot 10^{-3}$                |
| $\Sigma_c^{++}$ | $2.7\cdot 10^{-4}$                                | $1.3\cdot 10^{-2}$  | $1.3\cdot 10^{-2}$  | $5.4 \cdot 10^{-4}$                |
| $\Sigma_c^+$    | $2.5\cdot 10^{-4}$                                | $1.5\cdot 10^{-2}$  | $1.5\cdot 10^{-2}$  | $5.2 \cdot 10^{-4}$                |
| $\Sigma_c^0$    | $2.5\cdot 10^{-4}$                                | $1.3\cdot 10^{-2}$  | $1.3\cdot 10^{-2}$  | $5.1 \cdot 10^{-4}$                |

Largely underestimated by PYTHIA8 default tune (Monash)

- Production of  $\Sigma_c$  via a combination of c with spin-1 diquark formed in string fragmentation process
- Suppression due to high spin-1 diquark mass

PYTHIA8 with CR & M. He and R. Rapp describe data

- PYTHIA8 with junction,  $\Sigma_c$  formed directly and yield increased a lot
  - about same ud and uu(dd) production (up to combinatorics factors)
- SHM with RQM expected more  $\Sigma_c$  states
- Similar  $\Sigma_c$  yield predicted by CR and SHM with RQM





# $\Sigma_{\rm c}^{0,+,++}/\Lambda_{\rm c}^+$ in pp collision at 13 TeV

- Underestimated by PYTHIA8 Monash and overestimated by PYTHIA8 with CR
- Described by M. He and R. Rapp with augmented set of charm-baryon states



08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb



| Model             | $\Lambda_{c}$ / D <sup>0</sup> | $\Sigma_{c}$                                                 |
|-------------------|--------------------------------|--------------------------------------------------------------|
| PYTHIA8 Monash    | underestimate                  | underestimate                                                |
| PYTHIA8 CR        | describe                       | describe $\Sigma_c/D^0$<br>overestimate $\Sigma_c/\Lambda_c$ |
| M. He and R. Rapp | describe                       | describe                                                     |

M. He and R. Rapp [PLB 795 (2019) 117-121]











### $R_{\rm pPb}(\Lambda_{\rm c}^+)$ in p-Pb collisions at 5.02 TeV

- Compatible with unity except  $1 < p_T < 2 \text{ GeV}/c \rightarrow \text{Suppression in low } p_T$
- Consistent with  $R_{pPb}(D)$  within uncertainties
- Models cannot quantitatively reproduce data
  - POWHEG+PYTHIA6 with CT14NLO+EPPS16 PDF

    - The uncertainty band includes the uncertainties on the nuclear PDFs and on the choice of the pQCD scales
  - POWLANG with HTL transport coefficients
    - Assume that a hot deconfined medium is formed in p-Pb collisions
    - Not implement specific differences in hadronisation mechanisms for baryons and mesons



08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb



POWHEG event generator with PYTHIA6 parton shower and EPPS16 parameterisation of the nuclear modification of the PDFs



### $\Lambda_c^+/D^0$ in p-Pb collisions at 5.02 TeV

### $\Lambda_{\rm c}^+/{\rm D}^0$ vs. $p_{\rm T}$ :

Decrease with increasing  $p_{\rm T}$  in both pp and p-Pb

- Qualitatively consistent in pp and p-Pb
- $\Lambda_c^+/D^0$  vs. y:
  - Enhancement at midrapidity w.r.t. forward and backward rapidities



08 Nov. 2020 - CLHCP

LHCb [JHEP 02 (2019) 102]



Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb



# Pb-Pb collisions





# $R_{AA}(\Lambda_c^+)$ in Pb-Pb collisions at 5.02 TeV



- $\Lambda_c^+$  suppressed in Pb-Pb  $\rightarrow$  by a factor  $\sim 1.5$  up to  $p_T = 12 \text{ GeV}/c$
- Data described by model with both fragmentation and coalescence presented in Pb-Pb and pp
- Nuclear suppression hierarchy:  $R_{AA}(\Lambda_c^+) \sim R_{AA}(D_s^+) > R_{AA}(D) > R_{AA}(h^{\pm})$

08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb





# $\Lambda_{c}^{+}/D^{0}$ in Pb–Pb collisions at 5.02 TeV



- Hint of  $\Lambda_c^+/D^0$  enhancement in intermediate  $p_T$  from pp to Pb-Pb
  - Radial-flow push in Pb-Pb?
  - Coalescence effect?
- Data described by model with fragmentation+coalescence in  $p_{\rm T} > 4 \ {\rm GeV}/c$
- Data slightly underestimated by SHM

08 Nov. 2020 - CLHCP

#### Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb

#### Catania [Eur.Phys.J.C (2018) 78:348] Statistical hadronization model (SHM) [J.Phys.G37:094014,2010] [Phys.Lett.B659:149-155,2008] [Eur.Phys.J.C51:113-133,2007] **PYTHIA8** [Comput. Phys. Commun. 178 (2008) 852] PYTHIA8 (SoftQCD, Mode0) [JHEP 08 (2015) 003]





# $\Lambda_c^+/D^0$ vs. Multiplicity in pp, p-Pb and Pb-Pb collisions



08 Nov. 2020 - CLHCP

- p–Pb Minimum Bias,  $\sqrt{s_{_{\rm NN}}}$  = 5.02 TeV

Increase smoothly from low multiplicity pp to Pb-Pb

- Low pp multiplicity > e<sup>+</sup>e<sup>-</sup>
- High pp multiplicity ~ Pb-Pb
  - Saturate already at high multiplicity in pp?

#### Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb



# Summary

#### In pp collision:

- Hadronization in pp very different than e<sup>+</sup>e<sup>-</sup> and depends on multiplicity
- PYTHIA8 with CR beyond LC describes  $\Lambda_c^+/D^0$  and  $\Sigma_c^{0,+,++}/D^0$ , but overestimate  $\Sigma_c^{0,+,++}/\Lambda_c^+$
- SHM with augmented set of charm-baryon states describes  $\Lambda_c^+/D^0$ ,  $\Sigma_c^{0,+,++}/D^0$  and  $\Sigma_c^{0,+,++}/\Lambda_c^+$

#### In p-Pb collisions:

- $R_{pPb}(\Lambda_c^+)$  compatible with unity and consistent with  $R_{pPb}(D)$  within uncertainties
- Models cannot quantitatively reproduce  $R_{\rm pPb}(\Lambda_{\rm c}^+)$
- $\Lambda_c^+/D^0$  qualitatively consistent with pp collision, enhanced at midrapidity w.r.t. forward and backward rapidity

#### In Pb-Pb collisions:

- $\Lambda_c^+$  production consistent with fragmentation+coalescence and SHM
- Hint of possible  $\Lambda_c^+/D^0$  enhanced at mid  $p_T$

08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb







# **Overview of theoretical calculations (I)**

#### **PYTHIA8** [JHEP 08 (2015) 003]

- Primordial  $\Lambda_c^+$  enhanced by factor ~2 with new CR model
- Extra contribution from feed-down of  $\Sigma_c$  states (x20~30 more)
- The junction topology favours baryon formation



08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb

Old CR model **ALICE** Particle New CR model  $(N_{par}/N_{events})$ junction all  $N_{\rm par}/N_{\rm events}$  (all) string  $6.5 \cdot 10^{-2}$  $5.3 \cdot 10^{-2}$  $5.3 \cdot 10^{-2}$  $D^+$ 0  $\begin{array}{c} \Lambda_c^+ \\ \Sigma_c^{++} \\ \Sigma_c^+ \\ \Sigma_c^- \end{array}$  $7.9 \cdot 10^{-3}$  $6.6 \cdot 10^{-3}$  $4.0 \cdot 10^{-3}$  $1.2 \cdot 10^{-2}$  $1.3 \cdot 10^{-2}$  $2.7 \cdot 10^{-4}$  $5.4 \cdot 10^{-4}$  $1.3 \cdot 10^{-2}$  $1.5 \cdot 10^{-2}$   $1.5 \cdot 10^{-2}$  $2.5 \cdot 10^{-4}$  $5.2 \cdot 10^{-4}$  $\Sigma_c^0$  $2.5 \cdot 10^{-4}$   $1.3 \cdot 10^{-2}$   $1.3 \cdot 10^{-2}$  $5.1 \cdot 10^{-4}$ 

MPI-based CR (old CR model)



from different MPIs to minimize

\* As implemented in Monash

More-QCD CR (new CR model)



- Uses a simple model of the colour rules of QCD to determine the formation of strings and introduce junctions
- Minimization of the string length over all possible configurations
- **\*** Include CR with MPIs and with beam remnants



# **Overview of theoretical calculations (II)**

- Min He and Ralf Rapp [PLB 795 (2019) 117-121] [PRL 124, 042301 (2020)]
  - SHM with increased set of charm-baryon states
    - Estimate missing states from RQM (relativistic quark model) [PRD
    - RQM describes  $\Lambda_c^+/D^0$  better than PDG  $\rightarrow$  RQM: extra 18  $\Lambda_c$ , 4
  - Describe  $\Lambda_c^+/D^0$  measurement well in pp, p-Pb and Pb-Pb c



[PLB 795 (2019) 117-121]

- SHMC (SHM for charmed hadrons) [PLB 797 (2019) 134836]
  - Assume (anti-)charm quark number conserved during the QGP phase, i.e., thermal production or annihilation negligible
  - Quarks thermalized in QGP before hadronization and rapidly freeze-out at phase boundary at T = 156.5 MeV

Catania [Eur.Phys.J.C (2018) 78:348]

Transport model with hadronization via coalescence+fragmentation

08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb

|                                                                                                                                                                      | $r_i$               | $D^+/D^0$ | $D^{*+}/D^0$ | $D_s^+/D^0$ |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--------------|-------------|--|
| 84:014025,2011] and PDG                                                                                                                                              | PDG(170)            | 0.4391    | 0.4315       | 0.2736      |  |
| $2 \Sigma_{a}, 62 \Xi_{a}, 34 \Omega_{a}$                                                                                                                            | PDG(160)            | 0.4450    | 0.4229       | 0.2624      |  |
|                                                                                                                                                                      | $\mathrm{RQM}(170)$ | 0.4391    | 0.4315       | 0.2726      |  |
| ollisions with RQM                                                                                                                                                   | $\mathrm{RQM}(160)$ | 0.4450    | 0.4229       | 0.2624      |  |
| <ul> <li>ALICE: PLB793, 0-80%</li> <li>ALICE: SQM19, 0-10%</li> <li>STAR: 1910.14628, 10-80%</li> <li>Pb+Pb 5.02 TeV, 0-20%</li> <li>Au+Au 0.2 TeV, 0-20%</li> </ul> |                     |           |              |             |  |
| 4 6 8 10 12                                                                                                                                                          | PRL 124, 042301 (   | (2020)]   |              |             |  |
| p <sub>T</sub> (GeV)                                                                                                                                                 |                     |           |              |             |  |





# $\Lambda_c^+$ cross section in pp collision at 5.02 and 13 TeV



#### pp@5.02 TeV

- All models underestimate the measured  $p_{\rm T}$ -differential prompt  $\Lambda_{\rm c}^+$  cross section
  - PYTHIA 8 Monash tune and PYTHIA 8 Mode0, 2, 3 with colour reconnection (CR) beyond leading-colour approximation
  - GM-VFNS: parton model with quark masses, a new fragmentation function for  $\Lambda_c^+$  (combining e<sup>+</sup>e<sup>-</sup> from OPAL and Belle) has been used
  - POWHEG: next-to-leading-order (NLO) generator

#### pp@13 TeV

- PYTHIA 8 Mode 2 describe the measured  $p_{\rm T}$ -differential prompt  $\Lambda_c^+$  cross section
- Agreement of PYTHIA 8 Mode2 with data depends on collision energy

08 Nov. 2020 - CLHCP

Large difference observed for  $\Lambda_c^+$  in pp w.r.t. ee and ep, indicates a limit to the universality of usage of Fragmentation Fractions from LEP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb



# $\Lambda_c^+$ cross section in p-Pb collisions at 5.02 TeV





- - Shao: data-driven model based on pp LHCb data with EPS09NLO nPDF

08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb



The  $p_{\rm T}$ -differential cross section significantly underestimated by models (from comparison to Run-1 predictions) POWHEG: non-perturbative fragmentation functions  $f(c \rightarrow \Lambda_c^+)$  estimated from  $e^+e^-$  data. Non-universality?





# $\Sigma_{\rm c}$ suppression from spin-1 diquark suppression in e<sup>+</sup>e<sup>-</sup>



- $\Lambda_{\rm c}$  production rate higher than extrapolation of hyperon curve to charm mass window
  - Different production mechanism, points to important role of diquark production for charm baryons
- spin-0 diquark component for  $\Lambda_c$

08 Nov. 2020 - CLHCP

Jianhui Zhu - Charmed baryons measurements from pp to Pb-Pb

 $\Lambda_c$  and  $\Sigma_c$  cross-section difference support charm baryon production from diquark degrees of freedom and a

