Status of LHCb Upstream Tracker

Ina Carli (IHEP CAS Beijing) The 6th CLHCP workshop, 6-9 November 2020

LHCb upgrade I during LHC LS2

- 5-times higher instantaneous luminosity for Run 3 and 4 (2 \times 10³³ cm $^{-2} s^{-1}$), expected integrated luminosity 50 fb $^{-1}$
- new electronics with 40 MHz readout, software-only trigger
- replace tracking detectors, new optics and PMTs of RICH1&2

Role of Upstream Tracker (UT)

- improve p_{T} resolution and suppress ghost tracks
- trigger speed up: using Velo+UT matching, very low- p_T tracks can be removed ($p_T < 0.4 \,\text{GeV}$) and search window in SciFi tightened

LHCb-PUB-2014-028, LHCb-PUB-2013-023

UT design

- four detection planes, ${\sim}2\,\text{m}^2$ each
- two planes with vertical strips, two rotated by $\pm 5^\circ$
- finer granularity than previous detector, closer to beampipe

Sensors

- 968 silicon strip sensors
- finer segmentation and radiation hardness in inner-most region

Sensor	Туре	Thickness	Pitch	Length	Strips	# sensors
А	p-in-n	320 μ <i>m</i>	$187.5\mu m$	99.5 mm	512	888
В	n-in-p	250 μ m	93.5 μ m	99.5 mm	1024	48
С	n-in-p	250 μ m	93.5 μ <i>m</i>	50 mm	1024	16
D	n-in-p	250 μ <i>m</i>	93.5 μ <i>m</i>	50 mm	1024	16
					rpe A	

Readout chip

- SALT (Silicon ASIC for LHCb Tracking)
- 128 channels, 6-bit ADC (5 bit and polarity), 40 MHz readout
- total of 4192 chips

M. Artuso et al, First Beam Test of UT Sensors with the SALT 3.0 Readout ASIC, DOI:10.2172/1568842

Readout chip

• per-channel TrimDAC correction and pedestal subtraction

- common mode noise correction
- zero suppression
- latest version fixed baseline oscillations

Module

LHCb ГНСр

- hybrid circuit with 4 or 8 chips
- thermally decoupled from sensor
- stiffener supports 2 sides of sensor \rightarrow 1 corner free to move
- total of 968 modules on 68 staves

Stave

- $1.6 \text{ m} \times 10 \text{ cm}$ low-mass support
- integrated Ti pipe for \mbox{CO}_2 cooling
- 4 low-mass Kapton flexes for readout, power and grounding (360 μm thick, copper < 70 μm)
- $\bullet\,$ sensors on front and back face overlap

Near-detector readout electronics

LHCP

- Data Control Boards:
 - chips for data formatting, timing distribution, controls using GBT chipset (7 GBTx and 1 GBT-SCA)
 - Versatile Link optical transceivers 3x VTTx and 1 VTRx, 4.8 Gb/s per fiber
 - 8 optic fibers

Near-detector readout electronics

• 248 DCBs in 8 PEPI crates (Peripheral Electronics Processing Interface)

System tests at CERN

- 7 production-quality modules
- final version of powering and readout schemes
- CO_2 cooling, tested $-30\,^\circ\!\text{C}$ to $20\,^\circ\!\text{C}$
- check performance and long-term stability
- software development
- test of mounting procedures

Performance

- noise on stave similar to single-module tests
- example at 5 °C, 400V bias: noise \sim 0.88, MIP signal \sim 13 \rightarrow S/N \sim 15

Integration

• most of mechanics and cabling delivered, being prepared at CERN

Integration

Readout and control systems (DAQ, DCS)

Chinese UT participation

IHEP CAS:

- 2 staff (Jianchun Wang, Yiming Li)
- 3 postdocs (Nathan Grieser, Yu Lu, Ina Carli)
- 2 visiting scientists (Mark Tobin, Petr Gorbounov in 2019)
- PhD and undergrad students (Quan Zou, Shuaiyi Liu, Yutong Li)

Other institutes:

- Zan Ren (Tsinghua University)
- Feihao Zhang (IHEP + Hunan University)
- Bo Chen (Hunan University)

Chinese UT participation

IHEP contributions:

- core members involved in UT efforts since early stage
- significant contributions to testbeam and irradiation campaigns: March '19 Fermilab, August '19 Mass. General Hospital, November '19 PSI, CIAE (China Institute of Atomic Energy) planned this November
- setup and running of system tests at CERN since June 2019
- development of readout and control systems
- infrastructure preparation (cabling, design and soldering of boards)
- talks at conferences (Mark Tobin LHCP 2020, Ina Carli ICHEP 2020)

Current UT status

- all production sites impacted by lockdown, now restarted
- $\bullet~\sim$ 60% modules built
- first 5 full staves ready to ship to CERN (out of 68)
- all near-detector electronics delivered and \sim 50% tested
- aiming for installation underground before fall 2021

Thank you for your attention!

Questions?

🖂 Ina.Carli@cern.ch 🛛 🕊 @Ina_Carli

Backup slides

LHCb tracking detectors

- Vertex Locator (VELO)
 - silicon pixel
 - precision tracking around IP
- Upstream Tracker (UT)
 - silicon strip
 - tracking before magnet
- SciFi
 - scintillating fibers
 - tracking after magnet

Sensor features

- A-type sensors: embedded pitch adapters (fan-up)
- top-side HV biasing
- cutout around beampipe \rightarrow all working well

(testbeam results with mini sensors, 1.2 cm × 1.8 cm)

SALT block diagram

SALT pulse shape

- $T_{
 m peak}\sim 25\,
 m ns$
- short tail, only 5% after $2\!\times\!T_{\rm peak}$
- crosstalk < 5%
- all 128 channels plotted, test pulse injected into every 4th channel
- fixed large coupling observed in previous iterations

SALT zero suppression

- per-chip threshold to lower occupancy
- planned threshold value = 2-3 ADC

no ZS

ZS, th = 9 ADC

