Search for Higgs boson production via vector boson fusion with decay to bottom quark pairs at $\sqrt{s}=13$ TeV with the ATLAS detector

Bo Liu

IHEP, CAS

<u>arXiv:2010.13651</u> (VBF+γ, submitted to JHEP) CERN-EP-2020-195 (VBF all-hadronic)

Introduction

- $\ast~$ H \rightarrow bb is the dominant decay mode but hard to discover and measure
 - First observation in 2018 with combining all productions
 - Later been discovered by VH only channel
- ✤ To observe H→bb is challenging in ggF production due to large QCD background
- * VBF production can help to reduce QCD contamination with forward jet requirement

Previous results

Previous 2015+2016 dataset was published in PRD

 Combined observes (expects) 1.9 σ (0.7 σ) significance

Phys. Rev. D 98 (2018) 052003

VBF+photon: introduction

Add extra photon to VBF production

- Heavily reduce QCD multi-jet contribution
- Extra EM object help to explore low pT phase space

- With a photon in final state, WW fusion becomes the main process
- Previous 2015+2016 dataset was published in PRD
 - Combined observes (expects) 1.4 σ (0.6 σ) significance

Process fractions in signal sample (at generation)

Process		Fraction
VIIAL	WH	4.5 %
νΠ(00)+γ	ZH	3.7 %
VDE U(bb) in	WW fusion	87.8 %
vBr n(00)+y	ZZ fusion	5.1 %

VBF+photon: preselection

- * Dedicated trigger design with photon
 - With photon included helps to preserve relative low jet pT
 - VBF signature considered as well
- Offline cuts are select to be slightly above trigger threshold → fully efficient for trigger.
- Require slight boost bb system to avoid kinematic turnOn for background
- Veto signal leptons to be orthogonal with VH channel

	L1	≥ 1 photon with $E_{\rm T}>22{\rm GeV}$
Trigger	HLT	≥ 1 photon with $E_{\rm T}>25{\rm GeV}$
Inggor		≥ 4 jets (or ≥ 3 jets and ≥ 1 <i>b</i> -jet) with $E_{\rm T} > 35 {\rm GeV}$ and $ \eta < 4.9$
		$m_{jj} > 700 \mathrm{GeV}$
		≥ 1 photon with $E_{\rm T} > 30{\rm GeV}$ and $ \eta < 1.37$ or $1.52 < \eta < 2.37$
		≥ 2 b-jets with $p_{\rm T} > 40{\rm GeV}$ and $ \eta < 2.5$
Offli	ne	≥ 2 jets with $p_{\rm T} > 40 {\rm GeV}$ and $ \eta < 4.5$
		$m_{jj} > 800 \mathrm{GeV}$
		$p_{\mathrm{T}}(b\bar{b}) > 60 \mathrm{GeV}$
		No electrons $(p_{\rm T}>25{\rm GeV}, \eta <2.47)$ or muons $(p_{\rm T}>25{\rm GeV}, \eta <2.5)$

VBF+photon: MVA

	Variable	vents	0.12 ATLAS S	Simulation	Нүјј	
VBF jets	$m_{JJ} p_{\rm T}^{JJ} \Delta \eta (JJ)$	ion of E	0.1 [–] √s = 13 T – VBF H(→	eV bb)+γ	Non	-reson. bb̄γjj — -
Color connection	$p_{\rm T}^{\rm Bal}$ centrality(γ)	Fract	0.08	LowB	DT MediumBDT	HighBDT
Angular	$ \Delta R(b_1, \gamma) \Delta R(b_2, \gamma) $ $ \Delta \Phi(bb, JJ) \cos\theta $ $ \Delta R(b_1, J_1) $		0.04			
⁶ ^{47LAS} ⁹⁰⁰⁰ ^{47LAS} ⁹⁰⁰⁰ ⁶ ¹¹⁴⁰⁰⁰ ¹⁵ ^{132 fb⁻¹} ⁹⁰⁰⁰ ¹⁵ ^{13TeV} , ^{132 fb⁻¹} ⁹⁰⁰⁰ ¹⁵ ¹⁴⁰⁰⁰ ¹⁵ ^{13TeV} , ^{132 fb⁻¹} ⁹⁰⁰⁰ ¹⁵ ^{13TeV} , ^{132 fb⁻¹} ⁹⁰⁰⁰ ¹⁵ ¹ ¹⁰⁰⁰ ¹⁵ ¹ ¹⁰⁰⁰ ¹⁵ ^{13TeV} , ^{132 fb⁻¹} ⁹⁰⁰⁰ ¹⁵ ¹⁴⁰⁰⁰ ¹⁵ ¹⁵ ^{13TeV} , ^{132 fb⁻¹} ⁹⁰⁰⁰ ¹⁵ ¹⁴⁰⁰⁰ ¹⁵ ¹⁵ ¹⁴⁰⁰⁰ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵						
7000 Mass sidebands 6000 5000 4000 2000 1000 0			Category BDT Output VBF+VH ggF $t\bar{t}H$ $Z\gamma jj$ EWK	LowBDT (-0.22, 0.15) 11.31 ± 0.12 1.71 ± 0.41 0.75 ± 0.14 8.50 ± 0.14	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	HighBDT $(0.48, 1)$ 18.33 ± 0.15 0.19 ± 0.13 0.05 ± 0.01 5.37 ± 0.11
Data 1.3 1.2 1.1 0.7 0.7 0.7 0.1 2 3 4 5		0.9 1 pbalance	$Z\gamma jj$ QCD Non-resonant $b\bar{b}\gamma jj$ Expected Yield Data	$ \begin{array}{r} 15.9 \pm 1.7 \\ 2834 \pm 42 \\ 2872 \pm 42 \\ 2964 \end{array} $	$7.2 \pm 1.1 \\ 1507 \pm 33 \\ 1545 \pm 33 \\ 1522$	$ \begin{array}{r} 1.65 \pm 0.52 \\ 322 \pm 17 \\ 348 \pm 17 \\ 318 \end{array} $

0

VBF+photon: Higgs and Z signal modeling

Events / 5 GeV

(MC-Fit) / VMC

3.5

2.5

0.5

ЗF

ATLAS Simulation

VBF H(\rightarrow bb)+ γ HighBDT

$$\begin{split} \mu_{\text{Bukin}} &= 123.8 \pm 2.8 \text{ GeV} \\ \sigma_{\text{Bukin}} &= 11.2 \pm 2.1 \text{ GeV} \end{split}$$

80

100

120

140

60

40

√s = 13TeV

• MC

-Bukin

180

160

Using *Burkin function* for signal modelling
 Pretty good signal modelling observed

$$S(m_{b\bar{b}} \ m_{b\bar{b}}^{p}, \sigma_{p}, \xi, \rho) = A_{p} \exp\left[\frac{\xi\sqrt{\xi^{2}+1}(m_{b\bar{b}} - m_{b\bar{b}}^{1})\sqrt{2\ln 2}}{\sigma_{p}\left(\sqrt{\xi^{2}+1} - \xi\right)^{2}\ln\left(\sqrt{\xi^{2}+1} + \xi\right)} + \rho\left(\frac{m_{b\bar{b}} - m_{b\bar{b}}^{i}}{m_{b\bar{b}}^{p} - m_{b\bar{b}}^{i}}\right)^{2} - \ln 2\pi \frac{1}{2}\left(\frac{1}{2}\right)^{2} \ln\left(\sqrt{\xi^{2}+1} + \xi\right)} + \rho\left(\frac{m_{b\bar{b}} - m_{b\bar{b}}^{i}}{m_{b\bar{b}}^{p} - m_{b\bar{b}}^{i}}\right)^{2} - \ln 2\pi \frac{1}{2}\left(\frac{1}{2}\right)^{2} \ln\left(\sqrt{\xi^{2}+1} + \xi\right)} + \rho\left(\frac{1}{2}\right)^{2} \ln\left(\frac{1}{2}\right)^{2} \ln\left(\sqrt{\xi^{2}+1} + \xi\right)} + \rho\left(\frac{1}{2}\right)^{2} \ln\left(\frac{1}{2}\right)^{2} \ln\left(\frac{1}{2}$$

Narrow signal shape in HighBDT due to less contamination in "signal-like" region

VBF+photon: Signal region distribution

- Background is modelled with polynomial function
 - Functional form is chosen with spurious signal test and F-test
 - Background function parameters are determined with S+B fit to data distribution
- Signal yield parameter is shared among categories.
- Separated Z boson yield in various categories

VBF+photon: Fit results

μ_H	1.3 ± 1.0
Exp. Sig	1.0σ
Obs. Sig	1.3σ

* Observed Higgs boson signal slightly higher than SM prediction

Source of absolute uncertainty	$\sigma(\mu_H)$ down	$\sigma(\mu_H)$ up
Statistical		
Data statistical	-0.78	+0.80
Bkg. fit shapes	-0.19	+0.22
Bkg. fit normalizations	-0.51	+0.52
Z boson normalizations	-0.15	+0.14
Systematic		
Spurious signal	-0.24	+0.21
Theoretical	-0.01	+0.08
Photon	-0.01	+0.03
Jet	-0.06	+0.20
b-tagging	-0.02	+0.11
Auxiliary	-0.01	+0.04
Total	-0.99	+1.04
Total statistical	-0.96	+0.99
Total systematic	-0.25	+0.32

- Combine all categories weighted by S/B
- Background is subtracted
- Clearly Z boson peak
- Small Higgs boson excess

- $b_1 \ge 1$ *b*-tagged jet at 77% efficiency working point with $p_T > 85$ GeV and $|\eta| < 2.5$
- $b_2 \ge 1$ *b*-tagged jet at 85% efficiency working point with $p_T > 65$ GeV and $|\eta| < 2.5$

$$j_1 \ge 1$$
 jet with $p_T > 60$ GeV and $3.2 < |\eta| < 4.5$

$$j_2 \ge 1$$
 jet with $p_{\rm T} > 30$ GeV and $|\eta| < 4.5$

 $| p_{\mathrm{T},bb} > 150 \,\mathrm{GeV}$

Central Channel Event Selection

$$b_{1,b_{2}} \ge 2 b$$
-tagged jets at 77% efficiency working point with $p_{T} > 65$ GeV and $|\eta| < 2.5$

$$f_1 \ge 1$$
 for whith $p_1 \ge 100$ GeV and $|\eta| < 5.1$

$$j_2 \ge 1$$
 jet with $p_T > 30$ GeV and $|\eta| < 4.5$

no jets with $p_{\rm T} > 60$ GeV and $3.2 < |\eta| < 4.5$

 $p_{T,bb} > 150 \text{ GeV}, m_{jj} > 800 \text{ GeV}$

VBF all-hadronic: MVA

- VBF all-hadronic channel use Adversarial Neural network (ANN)
 - Training is optimised to have little correlation between ANN score and mbb
- Signal is modelled with MC sample and parameterised with Burkin function as well
- Background shape is take from control regions with one or more selection inverted

VBF all-hadronic: Distribution

- Both Higgs boson and Z boson yields shared among categories
- Clear peaks in most sensitivity regions

VBF all-hadronic: results

Results	Inclusive Production	VBF Production	$p_{\rm T} > 200 { m GeV}$
Expected significance	2.9σ	2.8σ	2.3σ
Observed significance	2.7σ	2.6σ	2.2σ
Expected signal strength	$1.00^{+0.37}_{-0.36}$	$1.00^{+0.38}_{-0.37}$	$1.00^{+0.45}_{-0.43}$
Observed signal strength	$0.95^{+0.37}_{-0.35}$	$0.95^{+0.38}_{-0.36}$	$0.93^{+0.45}_{-0.43}$

Uncertainty	$\sigma(\mu_{H \to b \bar{b}})$
Statistics	±0.31
NR Background Bias	±0.15
Embedded Z	±0.05
Experimental	+0.10/-0.05
Trigger	+0.07/-0.03
Jet	+0.06/-0.04
Flavor Tagging	+0.02/-0.01
Other	+0.02/-0.01
Signal Theory	+0.06/-0.03

With all-hadronic only, about 2.7 σ significance observed. Analysis is still dominated by statistical uncertainty

VBF: combined results

Results	Inclusive Production	VBF Production
Expected significance	3.0σ	2.9σ
Observed significance	3.0σ	2.9σ
Expected signal strength	$1.00^{+0.35}_{-0.34}$	$1.00^{+0.36}_{-0.34}$
Observed signal strength	$0.99^{+0.35}_{-0.33}$	$0.99^{+0.36}_{-0.34}$

 Combining both all-hadronic and photon channel, a 3σ significance observed for H→bb. Analysis is still limited by data statistics Event display

m=120 GeV Higgs candidate

- VBF (H->bb) analysis with full run-II dataset has been finalised
 - Both VBF all-hadronic and VBF+photon analysis presented
- Almost 4 times statistics compared to 2015+2016 dataset
 - Result is still dominated by the statistical uncertainty
- Both analysis have dedicated triggers and perform MVA to separate signal and large QCD backgrounds
 - VBF+photon use BDT method
 - VBF all-hadronic channel use ANN
- * A combined result show an evidence of $H \rightarrow bb$ in VBF production mode
 - Even with increased luminosity, these channel is still dominated by the statistical uncertainty
 - Run-III data results would be more interesting

Backup

Variable definition

- 1. $\Delta \eta(jj)$, the η difference between the two VBF jets;
- 2. $p_{\rm T}^{\rm balance}$, the transverse momentum balance for selected final state objects, defined as

$$p_{\rm T}^{\rm balance} = \frac{|\vec{p}_{\rm T}^{\,b\,1} + \vec{p}_{\rm T}^{\,b\,2} + \vec{p}_{\rm T}^{\,j\,1} + \vec{p}_{\rm T}^{\,j\,2} + \vec{p}_{\rm T}^{\,\gamma}|}{p_{\rm T}^{\,b\,1} + p_{\rm T}^{\,b\,2} + p_{\rm T}^{\,j\,1} + p_{\rm T}^{\,j\,2} + p_{\rm T}^{\,\gamma}};\tag{1}$$

- 3. m_{jj} , the invariant mass of the two VBF jets;
- 4. centrality(γ , j1, j2), the rapidity of the photon with respect to the VBF jet rapidities, defined as

centrality
$$(\gamma, j1, j2) = \left| \frac{y_{\gamma} - \frac{y_{j1} + y_{j2}}{2}}{y_{j1} - y_{j2}} \right|;$$
 (2)

- 5. $\Delta R(b1, \gamma)$, the angular distance between the leading *b*-jet and the photon;
- 6. $\Delta R(b2, \gamma)$, the angular distance between the subleading *b*-jet and the photon;
- 7. $\cos \theta$, the cosine of the angle between the VBF jets plane and *b*-jets plane in the centre-of-mass frame of the $b\bar{b}jj$ system ²;
- 8. $\Delta \phi(b\bar{b}, jj)$, the azimuthal angle difference between the *bb*-jet system and the VBF jet system;
- 9. $p_{\rm T}^{jj}$, the transverse momentum of the VBF jets system; and
- 10. $\Delta R(b1, j1)$, the angular distance between the leading *b*-jet and the leading VBF jet.

VBF all-hadron: CR defintion

.

	Forward Channel CR Event Selection
b_1	≥ 1 <i>b</i> -tagged jet at 77% efficiency working point with $p_{\rm T} > 85$ GeV and $ \eta < 2.5$
<i>b</i> ₂	\geq 1 <i>b</i> -tagged jet at 85% efficiency working point with $p_{\rm T}$ > 65 GeV and $ \eta $ < 2.5
j_1	\geq 1 jet with $p_{\rm T}$ > 60 GeV, 3.2 < $ \eta' $ < 4.5, and $ \eta $ < 2.5
j 2	\geq 1 jet with $p_{\rm T}$ > 30 GeV, $ \eta' $ < 4.5, and $ \eta $ < 2.5
	$p_{\mathrm{T},bb} > 150 \mathrm{GeV}$
	no jets with $p_{\rm T} > 60$ GeV, $3.2 < \eta < 4.5$
	no jet pair (not including b_1, b_2) with $m_{jj} > 800 \text{ GeV}$
	$m'_{ii} > 800 \text{GeV}$

Central Channel CR Event Selection

b_1, b_2	≥ 2 b-tagged jets at 77% efficiency working point with $p_{\rm T} > 65$ GeV and $ \eta < 2.5$
j_1	\geq 1 jet with $p_{\rm T}$ > 160 GeV and $ \eta $ < 3.1
j 2	\geq 1 jet with $p_{\rm T}$ > 30 GeV and $ \eta $ < 4.5
	no jets with $p_{\rm T}$ > 60 GeV and 3.2 < $ \eta $ < 4.5
	$p_{T,bb} > 150 \text{ GeV}, m_{jj} < 800 \text{ GeV}$
	$\Delta \phi_{jj} > \pi/4$
	$m'_{jj} > 800 \text{ GeV}$

Categorization

Step1: only count SRI Step2: only count SRI+SRII

$$\left|-rac{b^2}{\sigma_b^2}\ln\left[1+rac{\sigma_b^2s}{b(b+\sigma_b^2)}
ight]
ight)
ight]^{1/2}$$
 Sensitivity = $\sqrt{\sum Z^2}$

* Background uncertainty quoted is the envelop of fitted band

* The relative uncertainty has been studies as a function of number of background events in mass signal region [100, 140]

