第六届中国LHC物理会议 清华大学 2020.11.6-9

LHCb Heavy Flavor Production and Spectroscopy (conventional)

张艳席 北京大学

2020年11月8号

Contents

- Introduction
- Conventional spectroscopy
 - > Observation of new excited Ξ_c^0 states
 - > Observation of a new excited D_s^+ state
 - > Precise measurement of Ξ_{cc}^{++} mass
 - Studies of beauty baryons
- Heavy flavor production
 - > X(3872) production with event activity
 - Associated production of two heavy flavor

The strong interaction

- Strong interaction and QCD less known than EW in the Standard Model Critical in precision SM test and searching for new physics
- Studies of QCD properties
 - Hadron spectroscopy: quark-quark/gluon interaction in confinement regime
 - > Heavy flavor production: perturbative and non-perturbative, factorization

Nuclear matter: multiple particle system

Conventional spectroscopy

Observation of new excited D_s^+

Chen Chen (Nov.6)

- Spectrum known better than baryons
- But still hard to establish SU(3) for D_s^{**+} , D^{**}
 - Large discrepancy with predicted masses
- Missing states accessible in beauty decays: clean and allows to determine J^{PC}

LHCb studied $B^0 \rightarrow D^- D^+ K^+ \pi^-$, looking for excited D_s^+ in $D^+ K^+ \pi^-$ 3-body final states

Amplitude fit for $m(K^+\pi^-) < 0.75$ GeV region, dominated by $K_0^*(700)^0$ s-wave $\gg J^P = 0^-$ preferred, 1⁺, 2⁻ rejected by >15 σ $\gg m_R = 2591 \pm 6 \pm 7$ MeV $\Gamma_R = 89 \pm 16 \pm 12$ MeV

Consistent with the $D_s(2^1S_0)^+$ state. But mass 80 MeV lower than prediction, though width is compatible!

Precision Ξ_{cc}^{++} mass

- Ξ_{cc}^{++} the only established doubly charmed baryon by experiment
 - > Observed in $\Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_c^+ \pi^+$ decays
 - ► Weak decay: $\tau = 0.256^{+0.024}_{-0.022} \pm 0.014$ ps
 - ➤ Mass: $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.80$ MeV, consistent with models and LQCD
- $m(\Xi_{cc}^{++})$ updated using almost full Run II data, combining both known modes

Beauty baryons

• Ground states $j=0, J^P=\frac{1}{2}^+$ $j = 1, J^P = \frac{1}{2}^+$ $j = 1, J^P = \frac{3^+}{2}$ S Σ_b^0 Σ_b^* Σ_b^{*0} Σ_b^+ Σ_b^{*+} Λ_b^0 Σ_b^- 0 $\Xi_b^{\prime 0}$ Ξ_b' Ξ_b^* Ξ_b^{*0} Ξ_b^0 Ξ_b 1 $\Omega_h^ \Omega_h^*$ 2 6.8 Ξ_b 38 _____ Ξ_b' 6.6 6.6 PRD 98 (2018) 031502 3S = 2P 35 6.6 3S PRD 98 (2018) 074032 6.6 **2P** 6.4 6.4 1D 2P = 1D Mass (in GeV) 909 Mass (in GeV) BΛ 6.4 2S = 1D 6.2 $\Sigma_b^* \mathbf{K}$ $\Sigma_b \mathbf{K}$ 1D = 1P Spectrum poorly 28 6.2 6.2 E_b(6227)[−] 6.0 $\Lambda_b \mathbf{K}$ $\Xi_b^* \pi$ $\Xi_b' \pi$ $\Lambda_{b}(5920)^{0}$ established $1P \underbrace{\blacksquare}_{\Lambda_b(5912)^0}$ $\Sigma_{b}^{*}(5835)^{-}$ 6.0 $1S = \frac{\Xi_b^*(5955)^-}{\bullet}$ -160 $1S \frac{1}{\Sigma_b(5815)^{-1}}$

5.6 18 $\Lambda_b(5620)^0$

 Λ_{F}

5.8

CLHCP 2020

Ξ_b(5935)⁻

5.8

5.6

 Σ_b

5.8 18 $\pm_{b}(5795)^{-1}$

 $\Xi_b \pi$

5.8

Excited Λ_b^0 baryons

Excited Λ_b^0 baryons

• $\Lambda_b^0 \pi^+ \pi^-$ mass spectrum

JHEP 06 (2020) 136

Mass and width agree with 2S state

All known Λ_b^0 states

State	Mass (MeV)	Width (MeV)
$\Lambda_{b}^{0}(5620)$	5620.60 ± 0.17	-
$\Lambda_{b}^{0}(5912)$	5912.20 ±0.21	< 0.66
$\Lambda_{b}^{0}(5920)$	5919.92 ±0.19	< 0.83
$\Lambda_{b}^{0}(6072)$	6072.3 ± 3.0	72 <u>+</u> 11
$\Lambda_{b}^{0}(6146)$	6146.2 ± 0.4	2.9 ± 1.3
$\Lambda_{b}^{0}(6152)$	6152.5 ± 0.4	2.1 ± 0.9

But other assignments exist

PRD 102 (2020) 014009

CLHCP 2020

Excited Λ_h^0 baryons

Spin triplet Ξ_b baryons

• $\Xi_h \pi$ mass spectrum Low mass JHEP 05 (2016) 161 Entries per 0.45 MeV/ c^2 PRL 114 (2015) 062004 60 140 LHCb Entries per 0.45 MeV/ c^2 LHCb 50 120 40 100 Ξ_b^{*0} Intries $\rightarrow \Xi_b^- \pi^+$ 30 80 $\delta m [MeV/c^2]$ 60 20 $\Xi_b^{\prime-}$ Ξ_b^{*-} 40 10 20 20 30 10 $\delta m [MeV/c^2]$ 20 30 40 10 Ξ_{b}^{*0} first seen by CMS [PRL 108 (2012) 252002] $\delta m [MeV/c^2]$ Width (MeV) Mass (MeV) Ξ_h State Ξ_b^- 5797.0 ± 0.6 Mass (in GeV) Ξ_b^0 5791.9 ± 0.5 $\Xi_b^* \pi$ $\Xi_b' \pi$ $\Xi_b'(5935)^-$ 5935.01 ± 0.05 < 0.05 1S ==== $1/2^{+}$ 5.8 18 = 5.8 58 $\Xi_b^*(5955)^-$ 5955.33 ± 0.13 1.65 ± 0.33 $3/2^{+}$ $\Xi_b^* (5952)^0$ $\Xi_b^{\prime 0}$ below $\Xi_b^- \pi^+$ threshold 5952.3 ± 0.6 0.90 ± 0.18 $3/2^{+}$

张艳席(北京大学)

Excited Ξ_b^- baryons

Excited Ξ_b^- baryons

CLHCP 2020

Excited Ξ_{h}^{0} baryons

Excited Ω_b^- baryons

CLHCP 2020

Excited Ω_b^- baryons: matching

• Five 1P states with one state not detected

$$\left(\frac{1}{2}\right)^{-}, \left(\frac{1}{2}\right)^{-}, \left(\frac{3}{2}\right)^{-}, \left(\frac{3}{2}\right)^{-}, \left(\frac{5}{2}\right)^{-}$$

States	Ref.1	Ref.2	Ref.3	Ref.4	Ref.5	Ref.6	Ref.7
$\Omega_b(6316)^-$	$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$ or $\frac{3}{2}^{-}$	$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$ or $\frac{3}{2}^{-}$
$\Omega_b(6330)^-$	$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$ or $\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}$ -	$\frac{1}{2}^{-}$	$\frac{3}{2}$ -	$\frac{1}{2}^{-}$
$\Omega_b(6340)^-$	$\frac{3}{2}$ -	$\frac{3}{2}^{-}$ or $\frac{5}{2}^{-}$	$\frac{3}{2}$ -	$\frac{1}{2}$ -	$\frac{5}{2}$ -	$\frac{3}{2}$ -	$\frac{3}{2}$ -
$\Omega_b(6350)^-$	$\frac{3}{2}$ -	$\frac{1}{2}^{-}$ or $\frac{5}{2}^{-}$	$\frac{3}{2}$ -	$\frac{3}{2}$ -	$\frac{3}{2}$ -	$\frac{5}{2}$ -	$\frac{3}{2}$ -

• Baryon-meson molecule? Thresholds far away.

Main channel	$\Xi_b' \bar{K}$	$\Xi_b^* \bar{K}$	$\Xi ar{B}$	$\Xi ar{B}^*$
Threshold mass	6431	6451	6598	6643

- 1. PRD 102 (2020) 014207
- 2. EPJC 80 (2020) 279
- 3. arXiv:2010.10697
- 4. J. Phys. Conf. Ser. 1610 (2020) 012011
- 5. IJMPA 35 (2020) 2050043
- 6. EPJC 80 (2020) 198
- 7. PRD 101 (2020) 114013

Beauty vs charm baryons

• Still many nearby states missing

Production in nuclear environment

Quarkonia nuclear break-up

- Quarkonia break up by co-moving particles
 - Excited state easier to disassociate due to smaller binding energy
 - Disassociation increases with event activity

Charmonium binding energies $(2m_D - m_H)$						D	D [*] Molecu	le
state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'	X(3872)	
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69	3.872	
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05	$\begin{array}{c} 0.00001 \pm \\ 0.00027 \end{array}$	

Hadronic comovers PLB 749 (2015) 98

 ψ' more suppressed than J/ψ , similarly for $\Upsilon(3S)$ over $\Upsilon(1S)$, comovers?

张艳席(北京大学)

X(3872) break-up

• X(3872) production relative to $\psi(2S)$ as a function of event activity > From *b*-decay: no significant change. Produced out of collision environment > Prompt: increasing suppression relative to $\psi(2S)$

- Explanation using comover model [arXiv:2006.15044]
 - Break-up rate too small compared to expectation in molecule picture
 - Consistent with tightly bound state \rightarrow large component of $|c\bar{c} > (?)$

Enhancement of double parton scattering

- If two collisions uncorrelated: DPS cross-section $\sigma^{H_{Q_1}H_{Q_2}} = \kappa \frac{\sigma^{H_{Q_1}\sigma^{H_{Q_2}}}}{\sigma_{\text{eff}}}$ σ_{eff} : related to geometry, final state independent, universal
- DPS production enhanced in heavy ion collisions, compared to AB scaling

 $\sigma_{(pA)}^{\text{DPS}} = \sigma_{(pA)}^{\text{DPS},1} + \sigma_{(pA)}^{\text{DPS},2}$ PRL 118 (2017) 122001

Enhancement factor is about three in pPb collisions

CLHCP 2020

Associated charm production in *p*Pb data

- Like-sign *DD*, opposite-sign $D\overline{D}$ and $J/\psi D$ in *p*Pb collisions
- Like-sign over opposite-sign ratio about 3 times of that in pp data

Nuclear enhancement

• $\sigma_{\rm eff}$ extracted using $D^0 D^0$ and $J/\psi D^0$ production, assuming solely DPS

Nuclear modification factor $R_{pPb} = \frac{\sigma_{pPb}}{208\sigma_{pp}}$ Pair+|y| $D^{0}D^{0}$ 1.3 ± 0.2 4.2 ± 0.8 $J/\psi D^{0}$ 1.5 ± 0.5 4.6 ± 1.3

- Consistent with factor 3 enhancement
- ➤ Value for $J/\psi D^0$ smaller than $D^0 D^0$: → SPS contamination for $J/\psi D^0$?
- Proton direction (+|y|) larger than lead direction (- |y|))

→ hint of position dependent nuclear PDF modification

```
PRD 101 (2020) 054036
```

Summary

- LHCb progresses establishing heavy hadron spectroscopy
 - > Three new excited Ξ_c^0 states
 - > New excited D_s^+ state (2¹S₀?)
 - > Precision measurement of Ξ_{cc}^{++} mass
 - > New beauty baryons

Excited $\Lambda_b^0, \Sigma_b, \Xi_b, \Omega_b^-$ states

- Heavy flavor production to probe nuclear effect
 - > Comover interactions with quarkonium
 - > Enhancement of double parton scattering
- Run3: gain precision in hadronic final states: more lumi. + software trigger

Thank you for your attention

Backups

Observation of Ξ_c^{*0} states

Zhihao Xu (Nov.6)

 $m(\Omega_c(3050)^0) - m(\Xi_c(2923)^0) \simeq m(\Xi_c(2923)^0) - m(\Sigma_c(2800)^0) \simeq 125 \,\text{MeV},$ $m(\Omega_c(3065)^0) - m(\Xi_c(2939)^0) \simeq 125 \,\text{MeV},$ $m(\Omega_c(3090)^0) - m(\Xi_c(2965)^0) \simeq 125 \,\text{MeV}.$

Observation of new D_s^{*+} states

Precision B_c^+ mass measurement

- B_c^+ has unique properties
 - Consists of two different heavy quarks
 - Excited spectroscopy similar to heavy quarkonia
 - Production and decay properties distinct from quarkonia

A special system to test QCD and effective models

 Mass measured combining almost all decay modes, mostly observed by LHCb

Competing between statistical and systematic uncertainties

 $m(B_c^+) = 6274.47 \pm 0.32 \text{ MeV}$

Compared with:

PDG: 6274.9 ± 0.8 MeV

LQCD: $6278 \pm 6 \pm 4$ MeV

LHCb

C

JHEP 07 (2020) 123

 $\overline{\mathbf{h}}$

LHCb detector

Excellent vertex and IP, decay time resolution:

• $\sigma(\text{IP}) \approx 20 \ \mu\text{m}$ for high- p_{T} tracks

• $\sigma(\tau) \approx 45$ fs for $B_s^0 \to J/\psi\phi$ and $B_s^0 \to D_s^-\pi^+$ decays Very good momentum resolution:

- $\delta p/p \approx 0.5\% 1\%$ for $p \in (0,200)$ GeV
- $\sigma(m_B) \approx 24$ MeV for two-body decays

Hadron and Muon identification

- $\epsilon_{K \to K} \approx 95\%$ for $\epsilon_{\pi \to K} \approx 5\%$ up to 100 GeV
- $\epsilon_{\mu \to \mu} \approx 97\%$ for $\epsilon_{\pi \to \mu} \approx 1 3\%$ Data good for analyses
- > 99%

LHCb fully instrumented in the forward region (2 < η < 5)
➢ Heavy ion studies in a unique kinematic area: low p_T, large y, very small or large x
➢ Complementary to other LHC experiments

X(3872)

• Interpretation of X(3872) structure

Compact tetraquark/pentaquark

Diquark-diquark *PRD 71, 014028 (2005) PLB 662 424 (2008)*

Hadrocharmonium/ adjoint charmonium PLB 666 344 (2008) PLB 671 82 (2009)

Hadronic Molecules

PLB 590 209 (2004) PRD 77 014029 (2008) PRD 100 0115029(R) (2019)

Mixtures of exotic +conventional states

$$X = a \left| c \bar{c} \right\rangle + b \left| c \bar{c} q \bar{q} \right\rangle$$

PLB 578 365 (2004) PRD 96 074014 (2017)

• "Binding" energies E_b for disassociation $(2m_D - m_H)$

D D * Molecule

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'	X(3872)	
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69	3.872	
$\Delta E \ [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05	0.00001 ± 0.00027	J. Phys. G 32 (3) 2006

张艳席(北京大学)

Effective cross-section: σ_{eff}

DPS in heavy ion data

• DPS enhanced in proton-lead collisions

PRL 118 (2017) 122001

$$\sigma_{(pA)}^{\text{DPS}} = \sigma_{(pA)}^{\text{DPS},1} + \sigma_{(pA)}^{\text{DPS},2}$$

 $\sigma_{pPb}^{SPS} \sim A \times \sigma_{pp}^{SPS}, A=208, \text{ Glauber model [Ann.Rev.Nucl.Part.Sci. 57 (2007) 205]}$ $\sigma_{pPb}^{DPS} \sim [A + A^{4/3}/\pi] \times \sigma_{pp}^{DPS} \approx 3A \times \sigma_{pp}^{DPS}$ $\sigma_{eff,pPb} \approx \frac{A \times \sigma_{eff,pp}}{3} = 1 \text{ b for } \sigma_{eff,pp} = 15 \text{ mb}$ $\approx 3 \text{ b without nuclear enhancement}$

- DPS enhancement even larger for AA collisions
- Heavy ion data are cleaner environment to study DPS

 q_1

Open charm pairs in *p*Pb

• LS production mostly DPS: DPS/SPS ~ 20

PLB 800 (2020) 135084

• OS production largely SPS: DPS/SPS ~ 0.5

 $\sigma_{\rm eff}^{pp}$ by LHCb

Adv.Ser.Direct.High Energy Phys. 29 (2018) 141

Hatched green: $\sigma_{\text{eff}}^{pp} = 14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb}$

张艳席(北京大学)

Pair mass distributions

Charm pair production in *p*Pb data

LHCb-PAPER-2020-010

- Invariant mass
 - $\blacktriangleright DD \text{ pair harder than } D\overline{D}$
 - > $D\overline{D}$ well produced by Pythia8
- $\Delta \phi(DD)$
 - $\succ \quad \text{Flat for } DD$
 - Peaking at 0 for DD, only qualitatively modeled by Pythia8
- *DD* events have larger event activity

Heavy quarkonium production

Heavy quarkonia production

• Factorization methods

Color singlet mechanism (CSM): $Q\overline{Q}[n]$ color singlet state, coincides with final state quarkonium J^{PC} quantum number

Non-relativistic QCD approach (NRQCD): Both color singlet and octet, all viable J^{PC} states allowed with varying probabilities (long distance matrix elements, LDME)

LDME non perturbative, universal, obtained from data

□ Leading LDMEs for J/ψ production: ${}^{3}S_{1}^{[1]}$, ${}^{3}S_{1}^{[8]}$, ${}^{1}S_{0}^{[8]}$, ${}^{3}P_{J}^{[8]}$

> Color evaporation model: fixed rate for all $Q\bar{Q}$ pairs with $m_{Q\bar{Q}} < 2m_{H_0}$

 $\Box \text{ Improved version: } m_{H_{QQ}} < m_{Q\bar{Q}} < 2m_{H_Q}$

Different predications for p_T spectrum and polarization!

CLHCP 2020

η_c production

• Data saturated by color singlet $O^{\eta_c}({}^1S_0^{[1]})$, relatively small CO contributions, different from J/ψ and ψ' .

Brief summary of quarkonia production

- Polarization needs more work
 - \succ Experiment: higher p_T range, better precision, more states
 - > Theory: are LDMEs the only/right solution? Extending calculations at low p_T .

JHEP 12 (2018) 057, JHEP 01 (2014) 056