

Exotic hadrons at LHCb

CLHCP 2020 (Nov 6-9, 2020)

Outline

Introduction

Exotic baryons at LHCb

- □ 1st evidence of $J/\psi \Lambda$ resonance in $\Xi_b^- \to J/\psi \Lambda K^-$ decays
- Search for pentaquarks in $\eta_c p$ system
- Search for open-charm pentaquarks in $\Lambda_c^+ K^+$ system
- Exotic mesons at LHCb
 - □ 1st observation of open-charm tetraquark candidates in D^-K^+ system
 - □ 1st observation of full charmed tetraquark candidate in di- J/ψ system
 - □ X(3872) lineshape
- Summary and prospects

Introduction

- Hadron spectroscopy provides opportunities to study QCD in the non-perturbative region
 - Extensive and precise spectroscopy combined with a thorough theoretical analysis, will add substantially to our knowledge
- Complex exotic hadrons can reveal new or hidden aspects of the dynamics of strong interactions
 - Predicted in quark model
 - Recent results show strong evidence for their existence

[1] H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu, Phys. Rept. 639 (2016) 1-121.
[2] A. Ali, J. Lange, S. Stone, Prog. Part. Nucl. Phys. 97 (2017) 123-198.
[3] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B.-S. Zou, Rev. Mod. Phys. 90 (2018) 015004.
[4] S. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90 (2018) 15003.
[5] Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu and S.-L. Zhu, Prog. Part. Nucl. Phys. 107 (2019) 237-320.

[6] F.-K. Guo, X.-H. Liu and S. Sakai, Prog. Part. Nucl. Phys. 112 (2020) 103757

hybrid ?

••• EXOTIC

Tetra and pentaquark candidates

Confirmation of Z(4430)⁻

[PRL 112 (2014) 222002]

 Observation of four J/ψφ structures

[PRL 118 (2017) 022003]

 Observation of narrow charmonium pentaquarks

> [PRL 115 (2015) 072001, PRL 122 (2019) 222001]

 Evidence of exotic contribution in Cabibbosuppressed decays

[PRL 117 (2016) 082003]

Liming Zhang

Evidence of $J/\psi \Lambda$ resonance: data sample

- Hidden-charm pentaquark with strangeness P_{cs} is predicted, and suggested to search for in $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ [JJ Wu PRL 105 (2010) 232001; HX Chen PRC 93(2016) 064203]
- $\Lambda \rightarrow p\pi^-$ reconstructed by Long-Long, or Downstream-Downstream tracks

Evidence of $J/\psi \Lambda$ resonance: amplitude fit

- Modelled by one *P*_{cs}
 - Adding a P_{cs} improves 2 ln L by 43 units, statistical significance of 4.3σ evaluated by toy experiments
 - Including various syst. uncertainty, the smallest significance is 3.1σ
 - Look-elsewhere effect is included in both cases
- Statistics not enough for J^P determination

Zooms in to P_{cs} signal region. Visible improvement.

[LHCb-PAPER-2020-039] in preparation

SINGH

Liming Zhang

Evidence of $J/\psi \Lambda$ resonance: discussion

• The peak position is consistent with $\Xi_c^0 \overline{D}^{*0}$ molecule model prediction

Predicts two states with $J^P 1/2(3/2)^-$

System	$[\Xi_c ar{D}^*]_{rac{1}{2}}$	$[\Xi_c\bar{D}^*]_{\frac{3}{2}}$
ΔE	$-17.8^{+3.2}_{-3.3}$	$-11.8^{+2.8}_{-3.0}$
M	$4456.9^{+3.2}_{-3.3}$	$4463.0_{-3.0}^{+2.8}$

- Two-peak hypothesis is allowed
 - More data is required to distinguish onepeak vs two-peak
- $\mathcal{Z}_c^0 \overline{D}^{*0}$ SU(3) partner is $\Lambda_c^+ \overline{D}^{*0}$, not $\mathcal{\Sigma}_c \overline{D}^*$ for observed $P_c(4440)^+$ and $P_c(4457)^+$
 - Indicit $\Lambda_c^+ \overline{D}^{*0}$ molecule exist?
 - The theory paper disfavors it, but should be examined by experiments

Mass is about 19 MeV below $\Xi_c^0 \overline{D}^{*0}$ threshold

State	$M_0 \; [\mathrm{MeV}\;]$	Γ [MeV]	FF (%)
$P_{cs}(4459)^0$	$4458.8 \pm 2.9 {}^{+4.7}_{-1.1}$	$17.3 \pm 6.5 {}^{+8.0}_{-5.7}$	$2.7^{+1.9}_{-0.6}{}^{+0.7}_{-1.3}$

[Bo Wang, Lu Meng, Shi-Lin Zhu, PRD 101 (2020) 034018, arXiv:1912.12592] Predict two states

[LHCb-PAPER-2020-039] in preparation 7

1st observation of $\Lambda_b^0 \rightarrow \eta_c p K^-$

[arXiv:2007.11292] Accepted by PRD

- Same quark contents as $\Lambda_b^0 \to J/\psi p K^-$. Provide unique environment for P_c studies
- If $P_c(4312)^+$ is $\Sigma_c \overline{D}$ molecule, predicted

[PRD 100 (2019) 034020, 100 (2019) 074007, 102 (2020) 036012]

- LHCb run2 data (5.5 fb^{-1})
 - η_c reconstructed using $\eta_c \rightarrow p\bar{p}$
- Fit 2D mass spectrum to confirm the existence

 $\frac{\mathcal{B}(P_c(4312)^+ \to \eta_c p)}{\mathcal{B}(P_c(4312)^+ \to J/\psi p)} \sim 3$

Search for P_c^+ in $\eta_c p$ system

[arXiv:2007.11292] Accepted by PRD

- Check background-subtracted $\eta_c p$ mass spectrum
 - sPlot technique. 2D mass as discriminating variable.

No significant $P_c(4312)^+$ contribution (~2 σ)

Relative P_c^+ production rates

 $R(P_c(4312)^+) < 0.24 @ 95\%$ C.L.

(Uncertainty is too large to give any conclusion yet)

• The $\Lambda_b^0 \to \eta_c p K^-$ branching fraction measured

 $\frac{\mathcal{B}(\Lambda_b^0 \to \eta_c p K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \, p K^-)} = 0.333 \pm 0.050 \,\,(\text{stat.}) \pm 0.019 \,\,(\text{syst.}) \pm 0.032 \,\,(\mathcal{B})$

Search for pentaquark in $\Lambda_c^+ K^+$ system

Candidates/(4MeV

Weighted candidates/(30MeV/ $m{c}^2)$

200

100

LHCb

(a)

preliminary

5500

3500

LHCb

3000

5600

- Potential open-charm pentaquark $[c\bar{s}uud]$ decay to $\Lambda_c^+K^+$
- Run1 data (3 fb⁻¹)
 - $\Box \quad \Lambda_c^+ \text{ reconstructed using } \Lambda_c^+ \to p K^- \pi^+$
 - $\Lambda_b^0 \to \Lambda_c^+ D_s^-$ used for normalization channel
- 1st observation of $\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-$

 $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = (9.26 \pm 0.29 \pm 0.46 \pm 0.26) \times 10^{-2},$ $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-) = (1.02 \pm 0.03 \pm 0.05 \pm 0.10) \times 10^{-3}$

- No excess observed in $m(\Lambda_c^+K^+)$ spectrum
- Will search with more data and can also look for pentaquark [$c\bar{s}udd$] in $\Lambda_c^+K^+\pi^-$ system

Observation of D^-K^+ **structure: data sample**

Amplitude analysis

[arXiv:2009.00026] Accepted by PRD

- Add two D^-K^+ states (BW) at ~2.9 GeV, J^P=0⁺, 1⁻
 - □ Improve $2 \ln \mathcal{L}$ by >300 units

- Need more intricate theoretical studies
 - Very close to D^*K^* , D_1K thresholds. Rescattering ?

Candidates for the 1st open-charm tetraquarks (four different flavors)!

 $X_0(2900): \quad M = 2.866 \pm 0.007 \pm 0.002 \,\text{GeV}/c^2 \,, \qquad \Gamma = 57 \pm 12 \pm 4 \,\text{MeV}$ $X_1(2900): \quad M = 2.904 \pm 0.005 \pm 0.001 \,\text{GeV}/c^2 \,, \qquad \Gamma = 110 \pm 11 \pm 4 \,\text{MeV}$

X(6900) in di- J/ψ system \bigcirc

- Search for di- J/ψ structure using full data
 - DPS + NRSPS cannot well describe data
 - A di- J/ψ resonance X(6900) significantly improves the fit
 - Two fit models: both has $> 5\sigma$ significance of *X*(6900)
 - A first candidate for the $T_{c\bar{c}c\bar{c}}$ tetraquark state

Model 1: No interference between NRSPS and BW

 $M(6900) = 6905 \pm 11 \pm 7 \text{ MeV}$

 $\Gamma(6900) = 80 \pm 19 \pm 33 \text{ MeV}$

Model 2: Interference between NRSPS and a broad BW

 $M(6900) = 6886 \pm 11 \pm 11 \text{ MeV}$

 $\Gamma(6900) = 168 \pm 33 \pm 69 \text{ MeV}$

X(3872) lineshape

- X(3872) nature is still uncertain, although many studies are performed since 2003
 - □ J^{PC} = 1⁺⁺ [Phys. Rev. D92 (2015) 011102(R)]
 - Mass = 3871.69 ± 0.17 MeV
 - Width < 1.2 MeV @90% CL</p>

 $\delta E = (m_{D^{*0}} + m_{D^0}) - m_{X(3872)} = 0.01 \pm 0.20 \text{ MeV}$ [PDG 2020]

- Molecular interpretation requires δE > 0, the knowledge is limited by the mass precision of X(3872)
- Current precision is dominated by CDF results 10 years ago

$\chi_{c1}(3872)$ MASS FROM $J/\psi X$ MODE

VALUE (MeV)	EVTS		DOCUMENT ID		TECN
3871.69 ± 0.17	OUR AVERAGE				
3871.9 ±0.7 ±0.2	20 ±5		ABLIKIM	2014	BES3
3871.95 ±0.48 ±0.12	0.6k		AAIJ	2012H	LHCB
3871.85 ±0.27 ±0.19	~ 170	1	CHOI	2011	BELL
$3873 \stackrel{+1.8}{_{-1.6}} \pm 1.3$	27 ±8	2	DEL-AMO- SANCH	2010B	BABR
3871.61 ±0.16 ±0.19	6k	3, 2	AALTONEN	2009AU	CDF2
$3871.4 \pm 0.6 \pm 0.1$	93.4		AUBERT	2008Y	BABR
$3868.7 \pm 1.5 \pm 0.4$	9.4		AUBERT	2008Y	BABR
3871.8 ±3.1 ±3.0	522	4, 2	ABAZOV	2004F	D0

LHCb results with Breit-Wigner fit

- Two measurements using $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ related to $\psi(2S)$
 - □ Inclusive $b \rightarrow X(3872)$ + anything
 - Exclusive $B^+ \to X(3872)K^+$
- Mass resolution is 2-3 MeV

Meas.	Yield	$M_{ m BW}$ (MeV)	$\Gamma_{\! m BW}$ (MeV)
Inclusive [arXiv:2005.13419]	~15.6k (more bkg)	$\begin{array}{c} 3871.695\pm 0.067\\ \pm 0.068\pm 0.010 \end{array}$	$1.39 \pm 0.24 \pm 0.10$
Exclusive [arXiv:2005.13422]	~4.2k (less bkg)	$\begin{array}{c} 3871.59\pm0.06\\ \pm0.03\pm0.010 \end{array}$	$0.96^{+0.19}_{-0.18}\pm0.21$

LHCb average

 $M_{BW} = 3871.64 \pm 0.06 \pm 0.01 \text{ MeV}; \Gamma_{BW} = 1.19 \pm 0.19 \text{ MeV}$ $\delta E = M(D^0) + M(\overline{D}^{*0}) - M(\chi_{c1}(3872)) = 0.07 \pm 0.12 \text{ MeV}$

Liming Zhang Uncertainty on δE is now dominated by knowledge of kaon masses

Flatté function also investigated, precision is limited by mass resolution

Prospects

- LHCb is now boosting the data to a new level
 - Expect to 7x more data (14x hadronic events) by 2029 than current, half of these by 2023
 - Could have another 6x increase from Upgrade II

 $\chi_{c1}(3872)$ lineshape from multi-channels

 Z_c (4430), also explore $B \to D_{(s)}^{(*)} \overline{D}_{(s)} K^-$? Doubly-charmed tetraquark $\mathcal{T}_{cc}^+ \to D_s^+ D^0$

More information for pentaquarks

[*] updated according to the latest result

Summary

- LHC is a heavy-quark hadron factory, with LHCb detector dedicated for flavour physics, we can also
 - Explore meson and baryon excitation spectra
 - Study exotic hadron spectroscopy

Many interesting results

- Observations of first candidates for open-charm tetraquark $X_{0,1}(2900)$, full charmed tetraquark X(6900)
- Evidence of first candidate for hidden-charm pentaquark with strangeness $P_{cs}(4459)^0$

Backup

LHCb detector and performance

Liming Zhang

[arXiv:2006.16957] To appear in Science Bulletin

20

NERSIT

SING

The LHC as a Beauty and Charm factory

the state of the second state

ATLAS

SPS_7 km

Proton-Proton Collisions at $\sqrt{s} = 13$ TeV ~ 20 000 $b\bar{b}$ pairs per second, x 20 of $c\bar{c}$ pairs

LHCb-

Pro ante

CERN Prévessin

High B-baryon production fraction

 $B^+: B^0: B^0_s: A^0_b$ $(u\overline{b}) (d\overline{b}) (s\overline{b}) (udb)$ 4: 4: 1: 2Unique dataset

LHC 27 km

CMS

SUISSE

FRANCE

LHCb collected luminosity

A HONIST

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

Breit-Wigner mass and width

[arXiv: 2005.13422]

A SANCE AND A SANC

➤World average

✓ Before: $M_{\rm BW} = 3871.68 \pm 0.17 \text{ MeV}/c^2$; $\Gamma_{\rm BW} < 1.2 \text{ MeV}/c^2$ at 90% C.L. ✓ After: $M_{\rm BW} = 3871.64 \pm 0.06 \text{ MeV}/c^2$; $\Gamma_{\rm BW} = 1.19 \pm 0.19 \text{ MeV}/c^2$

≻LHCb average

 $\checkmark M_{\rm BW} = 3871.64 \pm 0.06 \pm 0.01 \,\,{\rm MeV}/c^2; \,\Gamma_{\rm BW} = 1.19 \pm 0.19 \,\,{\rm MeV}/c^2$ $\checkmark \delta E = M(D^0) + M(\overline{D}^{*0}) - M(\chi_{c1}(3872)) = 0.07 \pm 0.12 \,\,{\rm MeV}/c^2$

*Small statistical overlap between the two samples is considered

≻Opening up of $D^0\overline{D}^{*0}$ threshold distorts the lineshape from Breit-Wigner ⇒

Amplitude analysis

[arXiv:2009.00026] Accepted by PRD

