Brief overview of Heavy-Ion Physics

Li Yan

Institute of Modern Physics, Fudan University

Nov. 7, CLHCP 2020

Heavy-Ion Physics: high energy \Rightarrow high multiplicity

Heavy-Ion Physics: high energy \Rightarrow high multiplicity

CMS Experiment at the LHC. CERN Data Run CMS Experiment at the LHC, CERN Data recorded: 2010-Jul-09 02:25:58 839811 GMT(04:25 58 CEST) Run / Event 139779 / 4994190 Convright CERN 2010 For the benefit of the CMS Co

Heavy-Ion Physics: high energy \Rightarrow high multiplicity

New Physics: high energy \Rightarrow high multiplicity

"Little Bang" in heavy-ion collisions

 $10^{-23} \sim 10^{-22}$ s

• Quark-Gluon Plasma: An expanding QCD fluid of energy scale Λ_{QCD}

CLHCP2020, Li Yan

2

Outline of the talk

1. Soft probes: flow, correlations

2. Hard probes: jets and heavy flavor

Heavy-Ion Physics

3. Small systems

Collective flow

Flucting spatial anisotropy Reaction plane у – defines ψ_{B} (direction of the impact parameter)

Spatial anisotropy + QGP fluid \Leftrightarrow Anisotropy in momentum spectrum \Leftrightarrow Collective flow V_n :

$$\frac{dN}{d\phi_p dp_T} \sim \sum_n v_n \exp[-in(\phi_p - \Psi_n)] \equiv \sum_n V_n(p_T) e^{-in\phi_p}$$

CLHCP2020, Li Yan

Collective flow in experiment and theory

Flow in experiment:

magnitude v_n , fluctuations $P(v_n)$, correlations, ...

Flow in theory:

• QGP thermalization/hydrodynamization

Applicability of hydro: $\mathcal{P}_L/\mathcal{P}_T \to 1$

• Relativistic hydrodynamics model,

 $\int \text{conservation law:} \quad \partial_{\mu} T^{\mu\nu} = 0$

Lattice QCD: $\mathcal{P} = \mathcal{P}(\epsilon), \quad c_s^2 = \partial \mathcal{P} / \partial \epsilon$

Inputs trans. coef.: η/s , ζ/s

• After hydro and particlization:

 \rightarrow calculate flow in exp.

Collective flow at the LHC

Fluctuations of centrality

CLHCP2020, Li Yan

6

Collective flow at the LHC

Correlations between v_2 and v_0 :

Nonlinear coupling between v_2 and v_4

Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

0.08 - iEBE-VISHNU (AMPT IC) ALICE Preliminary K⁰ Δ -Λ 0.06 iEBE-VISHNU (TRENTo IC) V4,22 i⊗ K₀⁰ 0.04 $|\eta| < 0.8$ 0.02 0.02 $\Delta V_{4,22}$ Solid markers: AMPT IC ······ -0.02 Open markers: TRENTo I 0.5 1.5 2 p_ (GeV/c)

Flow coupling between v_2 ad v_4 ,

$$V_4 = V_4^{\text{Linear}} + \underbrace{\chi_{4,22} |V_2|^2}_{V_{4,22}}$$

40-50%

New constraints on the medium transport coefficients

[[]figure from Chun Shen's QM19 talk]

CLHCP2020, Li Yan

8

Jets in Heavy-ion physics

- Produced in the initial hard scatterings: pQCD + nPDF.
- Tomographic probes of QGP: jet energy loss + properties of medium + hadronization.
- A lot of theoretical models have been proposed.

E.g., JETSCAPE: $\begin{cases} LBT \text{ with recoil} \\ Trento (2+1D) \text{ initial condition} + (2+1D) \text{ VISHNew hydro} \end{cases}$

quenching:
$$\begin{cases} R_{AA} = \frac{dN^{AA}/dp_T d\eta}{\langle N_{\rm bin} \rangle dN^{\rm pp}/dp_T d\eta} \\ \text{high-} p_T \ v_2, \text{tagged jets, Dijets, ...} \end{cases}$$

* QGP medium response to Jets.

shock, wake: Jet substructures

Jet quenching at the LHC

|v| < 2.1

R_{AA} of jets

ATLAS

a~ ₹

30 - 40%, S_{NN} = 5.02 TeV $\langle T_{,,i} \rangle$ and luminosity uncer ----0.5

0 - 10%, √s_{NN} = 5.02 TeV
30 - 40%, √s_{NN} = 2.76 TeV [PRL 114 (2015) 072302]

anti-k, R = 0.4 jets • 0 - 10%, s_{NN} = 2.76 TeV [PRL 114 (2015) 072302]

Strong evidence of jet quenching:

- R_{AA} suppression at high- p_T .
- Suppression increases with centrality.

CLHCP2020, Li Yan

Jet substructure and jet-medium interaction

11

A combined treatment of jet and medium:

jet energy loss in QGP:
$$df/dt = C[f]$$

QGP response: $\partial_{\mu}T^{\mu\nu} = j^{\mu} = \int p^{\mu}f$

- Mach cone structure is realized.
- Wake influences jets in large radii.

[Tachibana-Qin-Chang, 17]

- $\rho(r)$ describes energy deposition vs. radius.
- Medium response dominates at large r.

 R_{AA} as a function of R

- A differential measurement of quenching wrt. jet radii.
- New and strong constraints on the jet energy loss mechanism.
- Medium response is essential for understanding the results!

Open Heavy flavor

 $C[f_O]$

- Produced in the initial hard scatterings: pQCD + nPDF.
- $\bullet\,$ Tomographic probes of QGP: diffusions/transport of heavy quarks in QGP + hadronization

E.g., Heavy quark transport: $[\partial_t + \vec{v} \cdot \nabla + \vec{F} \cdot \nabla_p] f_Q =$

Open heavy flavor and magnetic field

- Generic B field created from Heavy-Ion collisions: strong $(eB \sim m_{\pi}^2)$ but short-lived!
- Magnitude and life of B field are crucial to study the topological behavior in QCD: CME.
- Heavy flavor quarks produced dominantly from initial scatterings: ideal probe for B field.

Open heavy flavor and magnetic field

• Heavy flavor quarks pushed by external B field, the effect is stronger than charged hadrons:

$$\frac{d\Delta v_1(D)}{d\eta} \gg \frac{d\Delta v_1(h^{\pm})}{d\eta}$$

• But, the effect at the LHC is opposite to that from RHIC, and theoretical expectations!

$$rac{d\Delta v_1(LHC)}{d\eta} \sim -rac{d\Delta v_1(RHIC)}{d\eta}$$

Open heavy flavor flow in small system

Fluidity in small colliding systems

[CMS collaboration, 13]

• Flow from two-point correlation can be well described by hydrodynamics [Bozek 15, Romatschke 16, Schenke 17, Zhao-Song-Zhou 19, ...]

Flow in small systems: multi-particle correlations

• Hydro predicts quantitatively the universal non-Gaussianity in pA from IC (and for v_n): [Bzdak-Bozek-McLerran 16, LY-Ollitrault-Poskanzer 16]

 $v_n\{2\} > v_n\{4\} \gtrsim v_n\{6\} \gtrsim v_n\{8\}, \qquad \text{NOT JUST} \quad `\approx'$

CLHCP2020, Li Yan

Challenges of hydro in pA: system is out-of-equilibrium!

• From AA to pA system transverse size reduces, system is not thermalized!

$$L_{pA} \sim \frac{L_{AA}}{10} \sim O(1) \text{ fm} \quad \Rightarrow \quad \text{Kn increases}$$

 $\bullet \Rightarrow$ Hydrodynamics needs to be generalized to out of equilibrium!

Out-of-equilibrium hydrodynamics

- Non-hydro modes decay w.r.t. attractor solutions, so that hydro can be extended to out-of-equilibrium by attractor.
 [M. Heller, M. Spalinski, P. Romatschke, A. Kurkela, U. Wiedemann, ...]
- Theoretical framework of attractor has been developed up to 1+1D conformal flow [Denicol, Noronha, Strickland, Martinez, Yan, Blaizot, Yin, Brewer, ...]
- Phenomenoloigical applications of attractor. [Giacalone-Mazeliauskas-Schlichting 19, Kurkela-Mazeliasukas 19]

- Comprehensive and precise measurements achieved at the LHC.
- Collective flow investigated in various aspect: fluctuations, correlations, spectrum, ...
- Jet physics and heavy flavor with more differential analyses.

Jet substructure \Leftrightarrow medium fluid response to jet

• Fluidity of QGP in small system motivated the development of hydro in out-of-equilibrium.