

Beyond the Standard Model Physics

Jia Liu (刘佳) School of Physics, Peking University

The 6th China LHC Physics Workshop (CLHCP2020) 11/08/2020

The Standard Model

• A unified story for strong, weak and electromagnetic interactions.

Standard Model of Elementary Particles

The unknown BSM world

The unknown BSM world

The unknown BSM world

The hierarchy problem

- The EW scale << Planck scale
- A calculable Higgs mass

- Good candidate models
 - Supersymmetric models
 - Composite Higgs models
 - Extra dimension models ...

Supersymmetric models

- MSSM leads to unification of gauge couplings
- μ^2 is positive at high scale, EW breaking is induced radiatively
- Neutralino as an excellent candidate for cold dark matter

SUSY status

ATLAS SUSY Searches* - 95% CL Lower Limits

July 2020

Model		Si	e ∫	$\mathcal{L} dt [\mathrm{fb}^-]$	']	Ma	iss limit					Reference	
Inclusive Searches	$ ilde{q} ilde{q}, ilde{q} ightarrow q ilde{\chi}_1^0$	0 <i>e</i> , μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	139 36.1	<i>q</i> [10× <i>q</i> [1×, 4	Degen.] 8x Degen.]	0.43	0.71	1	1.9	$m(ilde{\chi}_1^0){<}400GeV\ m(ilde{q}){=}5GeV$	ATLAS-CONF-2019-040 1711.03301
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	<u>ັ</u> ຮູ ເຮ			Forbidden		2.35 1.15-1.95	$\mathfrak{m}(\widetilde{\chi}_1^0)=$ 0 GeV $\mathfrak{m}(\widetilde{\chi}_1^0)=$ 1000 GeV	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 <i>e</i> , <i>µ</i>	2-6 jets		139	ĝ					2.2	$m(\tilde{\chi}_1^0)$ <600 GeV	ATLAS-CONF-2020-047
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}^0_1$	$ee, \mu\mu$	2 jets	E_T^{miss}	36.1	<i>ğ</i>				1.2		$m(\tilde{g})$ - $m(\tilde{\chi}_1^0)$ =50 GeV	1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 <i>e</i> , μ SS <i>e</i> , μ	7-11 jets 6 jets	$E_T^{\rm miss}$	139 139	రెట రెట			1	1.15	1.97	$m(\widetilde{\chi}^0_1)$ <600 GeV $m(\widetilde{g})$ - $m(\widetilde{\chi}^0_1)$ =200 GeV	ATLAS-CONF-2020-002 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	ເຊັ່ງ ເຊັ່ງ				1.25	2.25	$m(\tilde{\chi}_{1}^{0})$ <200 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =300 GeV	ATLAS-CONF-2018-041 1909.08457
3" gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple		36.1 139	${egin{array}{c} {ar b}_1\ {ar b}_1 \end{array} \ {ar b}_1 \end{array}$	Forbidden	Forbidden	0.9 0.74		$m(\tilde{\chi}^0_1)=200G$	$m(\tilde{\chi}_1^0)$ =300 GeV, BR($b\tilde{\chi}_1^0$)=1 eV, $m(\tilde{\chi}_1^{\pm})$ =300 GeV, BR($t\tilde{\chi}_1^{\pm}$)=1	1708.09266, 1711.03301 1909.08457
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$egin{array}{c} ilde{b}_1 \ ilde{b}_1 \end{array}$	Forbidden		0.13-0.85	0.23-1.35	$\Delta m({ ilde \chi}_2^{\prime})$	$(\tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ $(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	1908.03122 ATLAS-CONF-2020-031
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	≥ 1 jet	$E_T^{\rm miss}$	139	\tilde{t}_1				1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	ATLAS-CONF-2020-003, 2004.14060
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$	1 <i>e</i> , <i>µ</i>	3 jets/1 b	E_T^{miss}	139	\tilde{t}_1		0 <mark>.44-0.</mark>	59			$m(\tilde{\chi}_1^0)=400 \text{ GeV}$	ATLAS-CONF-2019-017
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	$1 \tau + 1 e, \mu, \tau$	2 jets/1 b	E_T^{miss}	36.1	\tilde{t}_1				1.16		m($\tilde{ au}_1$)=800 GeV	1803.10178
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c\tilde{\chi}_1^0 / \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2 c	$E_T^{\rm miss}$	36.1	Č Ť.		0.46	0.85			$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)=50 \text{ GeV}$	1805.01649 1805.01649
		0 <i>e</i> , <i>µ</i>	mono-jet	$E_T^{\rm miss}$	36.1	\tilde{t}_1		0.43				$m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1)=50 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1)=5 \text{ GeV}$	1711.03301
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	1-2 <i>e</i> , <i>µ</i>	1-4 <i>b</i>	E_T^{miss}	139	\tilde{t}_1			0.067-	-1.18		$m(\tilde{\chi}_2^0)$ =500 GeV	SUSY-2018-09
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 <i>e</i> , µ	1 <i>b</i>	E_T^{miss}	139	\tilde{t}_2		Forbidden	0.86		$m(\tilde{\chi}_1^0)=$	=360 GeV, m(\tilde{t}_1)-m($\tilde{\chi}_1^0$)= 40 GeV	SUSY-2018-09
E W direct	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	3 e,μ ee,μμ	≥ 1 jet	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$\begin{array}{c} \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \\ \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \end{array}$	0.205		0.64			$\mathfrak{m}(\tilde{\chi}_1^0)=0$ $\mathfrak{m}(\tilde{\chi}_1^\pm)-\mathfrak{m}(\tilde{\chi}_1^0)=5~\mathrm{GeV}$	ATLAS-CONF-2020-015 1911.12606
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	2 <i>e</i> , <i>µ</i>		$E_T^{\rm miss}$	139	$\tilde{\chi}_1^{\pm}$		0.42				$m(\tilde{\chi}_1^0)=0$	1908.08215
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh	0-1 <i>e</i> , <i>µ</i>	$2 b/2 \gamma$	E_T^{miss}	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$	Forbidden		0.74			$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	2004.10894, 1909.09226
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$	2 <i>e</i> , <i>µ</i>		$E_T^{\rm miss}$	139	$\tilde{\chi}_1^{\pm}$			1.0			$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^{0}))$	1908.08215
	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \to \tau \tilde{\chi}_1^0$	2τ	0 into	E_T^{miss}	139	τ [τ_L , τ_{τ_L} , τ_{τ_L}	⁷ R,L ^J 0.16-0.3	0.12-0.39				$m(\tilde{\chi}_1^0)=0$	1911.06660
	$\ell_{\mathbf{L},\mathbf{R}}\ell_{\mathbf{L},\mathbf{R}},\ell{\rightarrow}\ell\chi_1^\circ$	2 e,μ ee,μμ	≥ 1 jets	E_T^{miss} E_T^{miss}	139 139	${\ell \over \tilde{\ell}}$	0.256		0.7			$m(\widetilde{\ell})^{0}=0$ $m(\widetilde{\ell})$ - $m(\widetilde{\chi}_{1}^{0})=10~GeV$	1908.08215 1911.12606
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 <i>e</i> , μ 4 <i>e</i> , μ	$\geq 3 b$ 0 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	36.1 139	Η̈́ Η̈́	0.13-0.23	0.55	0.29-0.88			$ \begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array} $	1806.04030 ATLAS-CONF-2020-040

See Jin Wang's SUSY talk

- For electroweakino, the exp constraints assumes 100% BR.
 - Pretty close in most cases, but could overestimate the constraints

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}$

Composite Higgs models

- Pion in the QCD: no hierarchy problem, cut-off at Λ_{QCD}
- SM Higgs as pseudo-Nambu-Goldstone boson
 - Looking for resonance in strong sector
 - Looking for deviation in Higgs couplings

Higgs precision test

- NP models can modify Higgs coupling
- Electroweak phase transition

Precision Higgs Physics at the CEPC, CPC 2019

Higgs factories: precision measurement is necessary

precision reach of the 12-parameter EFT fit (Higgs basis)

Flavor: 3 generation and masses

- SM Yukawa couplings and masses are free parameters
- Why 3 gen? $m_t/m_e \sim 3.4 \times 10^5$?
- Any underline physics?

See Yuming Wang, Liming Zhang, Yanxi Zhang, Wenbin Qian's talk

- EFT as a good framework
- Looking for exotics in B, D, K mesons
 - E.g. lepton universality in B > K I+ I- decay
 - Synergy between hadron collider LHCb and electron collider BaBar, Belle-II and BES-III

Neutrino mass and mixing

- Neutrino mass origin: the sub-eV scale
- Mixing pattern: flavor structure in lepton sector
- Dirac or Majorana?
- See-saw models
- More extended models
 - Inverse or linear seesaw
- EW scale v_s searches at the LHC

Lepton number violation via Majorana neutrino

• Displaced searches

Helo, Hirsch, Kovalenko 2013; A. Maiezza, Nemevsek, Nesti 2015 ... etc

EW scale v_s searches at the LHC

$$\mathcal{L} = \frac{g\sin\theta}{\sqrt{2}} \left(W_{\mu}\bar{\ell}_{L}\gamma^{\mu}N + h.c. \right) - \frac{g\cos\theta\sin\theta}{2\cos\theta_{w}} Z_{\mu} \left(\bar{\nu}_{L}\gamma^{\mu}N + \bar{N}\gamma^{\mu}\nu_{L} \right) + \frac{g\sin^{2}\theta}{2\cos\theta_{w}} Z_{\mu}\bar{N}\gamma^{\mu}P_{L}N,$$

- Displaced searches: good for small mixing
 - Smaller mass m_N for large $c\tau$

$$c\tau \simeq 12 \text{ km} \times \left(\frac{10^{-12}}{\sin^2 \theta}\right) \left(\frac{10 \text{ GeV}}{m_N}\right)^5$$

• $m_N < 10$ GeV is a good target

EW scale v_s displaced searches @LHC

$$\mathcal{L} = \frac{g\sin\theta}{\sqrt{2}} \left(W_{\mu}\bar{\ell}_{L}\gamma^{\mu}N + h.c. \right) - \frac{g\cos\theta\sin\theta}{2\cos\theta_{w}} Z_{\mu} \left(\bar{\nu}_{L}\gamma^{\mu}N + \bar{N}\gamma^{\mu}\nu_{L} \right) + \frac{g\sin^{2}\theta}{2\cos\theta_{w}} Z_{\mu}\bar{N}\gamma^{\mu}P_{L}N,$$

- Displaced searches: good for small mixing
 - Smaller mass m_N for large $c\tau$
 - m_N< 10 GeV is a good target
- Typical method: displaced vertex reconstruction and inv mass
 - Non-isolated leptons: bkg from SM mesons
 - Our method: displaced track search

JL, Z. Liu, L.T. Wang, X.P Wang JHEP 2019

$$c\tau \simeq 12 \text{ km} \times \left(\frac{10^{-12}}{\sin^2 \theta}\right) \left(\frac{10 \text{ GeV}}{m_N}\right)^5$$

Courtesy of Kalliopi Petraki

- What is the particle nature of the Dark Matter?
- Not a particle in SM!

 $DM + DM \rightarrow SM + SM$ $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{cm}^3/\text{s}$ $\sim \alpha^2 / m_W^2$

• The WIMP miracle!

Dark matter at collider

See Tongguang Chen's DM talk

- The DM pair can be produced at LHC
 - mono-X search: X = photon, Z, jet, Higgs … SM DM EFT operators SM DM Simplified models SM, SM DM Mediator searches g_q g_{DM} SM SM SM DM g SM SM

See Jun Guo's exotic searches talk

Dark matter at collider

See Tongguang Chen's talk

- The DM pair can be produced at LHC
 - mono-X search: X = photon, Z, jet, Higgs ...
 - EFT operators
 - Simplified models
 - Mediator searches
- Direct synergy with DM direct detection

From dark matter to dark sector

[cm²

Ion

- The existence of dark matter
 - do not interact with strong, weak, or electromagnetic forces
 - A zoo of similar particles in the dark sector as in the visible sector
- The null detection of dark matter
 - Secluded annihilation: DM + DM \rightarrow X + X
 - X is light and very weakly coupled to visible sector

X can be long-lived!

Long-lived particle @ colliders

See also Chaochen Yuan and Mingxuan Du's talks

- Feeble couplings: Dark sector models, R-parity violating Supersymmetry, sterile neutrinos
- Suppression from heavy mass scale: muon/charged pion, gauge mediated spontaneous breaking Supersymmetry
- Near degenerate state: higgsino-like chargino/neutralino, or anomaly-mediated spontaneous breaking Supersymmetry
- Approximate symmetry: K_L to three pions (accidental PS suppression)

Long-lived particle signatures

• Spatial discrimination: mostly related with displaced-vertex, and track-based

 Lifetime is a different of angle to think about NP

Time delay signature of LLP

Long-lived particle X decay, X-> a b

$$\Delta t = \frac{\ell_X}{\beta_X} + \frac{\ell_a}{\beta_a} - \frac{\ell_{\rm SM}}{\beta_{\rm SM}}$$

Signal arrival time - SM bkg ref time

 $\beta_X \lesssim O(1)$ $\beta_a \simeq \beta_{\rm SM} \simeq 1$

• Lower bound from slow X

$$\Delta t \ge \frac{\ell_X}{\beta_X} - \frac{\ell_X}{1} = \ell_X(\beta_X^{-1} - 1)$$

- LLPs are significantly delayed comparing with SM backgrounds!
- Already applied by CMS collaboration PLB 797 (2019) 134876

- Endcap replacement
- Pile-up suppression etc ...
- Own triggers
- Tracker with silicon cell 0.5~1 cm² for EM and most HA calos
- Angular resolution of 5x10⁻³ rad standalone from high granularity (improvement by combining with ID trackers)
- Timing resolution ~ 25 ps from silicon sensor
- Semi-central coverage good for forward LLP Collinear enhancement Pt PS suppression

What is the HGCAL sensitivity for LLP?

- Endcap replacement
- Pile-up suppression etc ...
- Own triggers
- Tracker with silicon cell 0.5~1 cm² for EM and most HA calos
- Angular resolution of 5x10⁻³ rad standalone from high granularity (improvement by combining with ID trackers)
- Timing resolution ~ 25 ps from silicon sensor
- Semi-central coverage good for forward LLP Collinear enhancement Pt PS suppression

What is the HGCAL sensitivity for LLP?

- The first LLP study @HGCAL
- More NP proposals needed

Dark sectors at colliders

• The dark sector particles can couple to SM H and Z

Summary

- We have a lot of open questions in BSM
- Theory motivated
- Experimental motivated
- Need to turn every stones to look for BSM
- Synergy between energy/intensity/cosmic frontiers
- Powerful discovery potential from complementary exp approáches!

