

Recent highlights on CPV and rare decays from the LHCb experiment

钱文斌 (Wenbin Qian) 中国科学院大学 (University of Chinese Academy of Sciences) 2020/11/08

Outline

• Introduction

- Recent highlights on SM candle measurements $CKM angle \gamma, |V_{ub}|, |V_{cb}| etc.$
- Recent highlights on New Physics probe

 ϕ_s , charmless b decays, FCNC, LFU etc.

• Conclusion

New Physics search

- All SM particles, including Higgs, have been found;
- However new mechanism needed for DM, matter-antimatter asymmetry, hierarchy problems etc.;
- Two ways to search for New Physics: direct search and indirect search through precision measurements;
- Examples in history: many beyond "current" model New Physics first found through indirect search

New Physics search at flavor sector

• Sensitive to New Physics scale much higher than direct search: 1-10⁴ TeV

- Also "tasteful", not only can tell there is New Physics, but also tell properties of New Physics based on flavor it couples to
- Statistics or precision is key for flavor program: New Physics scale, i.e. Dim = 6, proportional to $\sqrt[4]{statistics}$ or $1/\sqrt{Uncertainty}$,

Fundamental questions

• If there are new CPV mechanism needed to explain the large matter-antimatter asymmetry observed in Universe; and what are they?

- If there are New Physics coupling to flavor sector? Their energy scale and properties?
- Two main streams: CPV + rare decay, core physics programs at LHCb

CKM Physics

• SM CPV offered by CKM mechanism; however, orders of magnitude smaller than matter-antimatter asymmetry observed in Universe

- CKM mechanism can explain what has been observed in current experiments, though still ~20% space for New Physics; More precision needed
- Strategy:
 - SM candle: tree level measurements such as γ,
 |V_{ub}|, |V_{cb}| etc.
 - New Physics search: finding deviations in loop level processes w.r.t SM predictions

Key parameter: angle γ

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix}$$

- Angle γ is the phase response for CPV in SM, directly related to the triangle of b quarks
- Measured through $b \to u$ and $b \to c$ interference with $B \to D^{(*)} K^{(*)}$ etc., theoretically clean

- Indirect measurements give: $\gamma = (65.7^{+1.0}_{-2.5})^{\circ}$ [CKMFitter19]
- Before LHCb, precision from B-factories around 14°

Two-body D decays

• GLW/ADS measurements now performed with full Run1+Run2 data, for $B \rightarrow$

DK, $D\pi$ and partially reconstructed $B \rightarrow D^*K$, $D^*\pi$ [LHCB-PAPER-2020-036 (in preparation)]

Three-body D decays

• BPGGSZ (GLW/ADS over Dalitz plot) measurements now performed with full

Run1+Run2 data, for $B \rightarrow DK$, $D \rightarrow Ks\pi\pi$, KsKK

[arXiv:2010.08483]

Combination between the two

 $\left[\circ\right] ^{M} M^{150}$ LHCb LHCb $^{MQ}_{MQ} \gamma^{M150}$ preliminary preliminary $100 \cdot$ $100 \cdot$ $50 \cdot$ 68% C.L. 5095% C.L. 99.7% C.L. $D \rightarrow K_s^0 h^+ h^-$ 00∔ 0.06 50 100 1500.08 0.10 0.12 0.140 γ [°] r_B^{DK}

[LHCB-PAPER-2020-036 (in preparation), arXiv:2010.08483]

- Good agreement between the two modes (expected)
- Much better sensitivity when combined \rightarrow key feature for γ measurements
- Important to add more channels and compare between them

New story from B_s decays

• $b \rightarrow u$ and $b \rightarrow c$ interference can also came with B_s mixing

• Other stories in B_s decays to $D^{(*)}\phi$ can be found in X. Zhou's talk in parallel session

New y combination

LHCb-CONF-2020-003 (in preparation)

- Now precision mainly from B⁺ decays, large potential from other b hadrons
- New average on γ from LHCb: $\gamma = (67 \pm 4)^\circ$, compared to 14° in B-factories
- Also now much closer to indirect determination: $\gamma = (65.7^{+1.0}_{-2.5})^{\circ}$

Unforeseen measurements on V_{ub}, V_{cb}

- $|V_{ub}|$ and $|V_{cb}|$ are key elements for CKM triangle global fit; Tensions observed in exclusive and inclusive measurements of $|V_{ub}|$ and $|V_{cb}|$ from B-factories;
- Suppose to be impossible at LHCb, now we have two new measurements, one

 $|V_{ub}|/|V_{cb}|$ from $B_s \to K\mu\nu_{\mu}$, and the other $|V_{cb}|$ from $B_s \to D_s^{(*)-}\mu\nu_{\mu}$

 $|V_{\rm ub}| / |V_{\rm cb}| ({\rm low}) = 0.0607 \pm 0.0015 ({\rm stat}) \pm 0.0013 ({\rm syst}) \pm 0.0008 ({\rm D_s}) \pm 0.0030 (FF)$

 $|V_{\rm ub}| / |V_{\rm cb}| ({\rm high}) = 0.0946 \pm 0.0030 ({
m stat})^{+0.0024}_{-0.0025} ({
m syst}) \pm 0.0013 ({
m D_s}) \pm 0.0068 (FF)$

• Discrepancy found in high and low q² region with different form factors, further investigation from both experimental and theoretical parts needed

Tree-level determination and new physics probe

• Using γ and $|V_{ub}|/|V_{cb}|$, CKM triangle can already be determined; though real story is more complicated

- Based on CKM global determination, predictions can be made for various New Physics sensitive parameters, like $\phi_s, B_s \rightarrow \mu\mu$ etc.
- Can also help understanding CPV from tree-level and loop-level interference, see talk from Y. Yang on $B \rightarrow \pi\pi\pi$

$K\pi$ puzzle

- CPV from interference between suppressed tree-level process and QCD/EW penguin is sensitive for New Physics, $K\pi$ puzzle as an example [LHCb-PAPER-2020-040]
- Simple version of $K\pi$ puzzle: Isopin violated as $A_{CP}(B^+ \to K^+\pi^0) A_{CP}(B^0 \to K^+\pi^-) = 0.122 \pm 0.022$ (HFLAV); More complicated version involves full analysis of $K\pi$ system and tension also found inside.

$$A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+})\frac{B(K^{0}\pi^{+})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = A_{CP}(K^{+}\pi^{0})\frac{2B(K^{+}\pi^{0})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0})\frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})}$$

• Very difficult measurements in hadron colliders

 $\begin{aligned} &A_{CP}(B^+ \to K^+ \pi^0) \\ &= 0.025 \pm 0.015(\text{stat.}) \\ &\pm 0.006(\text{syst.}) \pm 0.003(\text{ext.}) \end{aligned}$

Strengthen the $K\pi$ puzzling and motivate further investigation in $B^0 \rightarrow K^0\pi^0$

$B_S \rightarrow \mu\mu$ updates

- B_s → μμ has been measured by all the three experiments at LHC with Run1 + part of Run2 data; sensitive to New Physics as very suppressed in SM
- Now combination made with the three experiments on branching fractions and on lifetime

$$\mathcal{B}(B_q^0 \to \mu^+ \mu^-)_{\exp}^{\mathrm{SM}} = \frac{\tau_{B_q} G_F^4 M_W^4 \sin^4 \theta_W}{8\pi^5} (C_{10}^{\mathrm{SM}} V_{tb} V_{tq}^*|^2 + f_{B_q}^2 n_{B_q} m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_q}^2} \frac{1 + y_q}{1 - y_q^2}},$$

Around 2.1σ deviation from SM predictions

• Combined results

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(2.69^{+0.37}_{-0.35}\right) \times 10^{-9}$$

$$\tau(B_s^0 \to \mu^+ \mu^-) = 1.91^{+0.37}_{-0.35} \,\mathrm{ps}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.6(1.9) \times 10^{-10}(*)$$

• Ratio also matters, smaller uncertainties, only NP violates MFV can change

 $\mathcal{R} = 0.0206^{+0.0302}_{-0.0246}$

New physics probe in FCNC processes

Similar to B_s → μμ, b → sll processes can relate to more Wilson coefficients, and anomalies have been found previously in FCNC processes and in LFU test;

$$\mathcal{H}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} V_{\text{CKM}} \sum_i \mathcal{C}_i \mathcal{O}_i$$

• Use Wilson coefficients c_i to effectively describing the processes

2020/11/08

- New Physics effects can either modify Wilson coefficients c_i or adding new operators
- Different q² region sensitive to different Wilson coefficients c_i

 $\mathcal{O}_7^{(\prime)} = \frac{m_b}{e} \left(\bar{s} \sigma^{\mu\nu} P_{\mathrm{R(L)}} b \right) F_{\mu\nu} ,$

 $\mathcal{O}_{9}^{(\prime)} = \left(\overline{s}P_{\mathrm{L(R)}}b\right)\left(\overline{\ell}\gamma^{\mu}\ell\right) ,$

 $\mathcal{O}_{10}^{(\prime)} = \left(\overline{s}P_{\mathrm{L(R)}}b\right)\left(\overline{\ell}\gamma^{\mu}\gamma^{5}\ell\right) ,$

Low-q² region: $K^{*0}e^+e^-$

New angular analysis performed at low-q² region [0.0008, 0.257] GeV²/c² for B⁰ → K^{*0}e⁺e⁻ with full Run1 + Run2 data, constraining photon polarization, predominately left-handed in SM, while NP can alter

High-q² region: $K^{*0(+)}\mu^+\mu^-$

- Two new results $B^0 \to K^{*0}\mu^+\mu^-$ with Run1 + 2016 data and $B^+ \to K^{*+}\mu^+\mu^-$ with full Run1+Run2 data and deepen the anomalies [LHCb-PAPER-2020-041]
- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$: global discrepancy to SM remains, ~ 3.3 σ , fit favors $\Delta Re(C_9) \sim -$ 1.0 scenario
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$: use large q² bin [15,19] GeV²/c², deviation from SM by 3.1 σ , fit favors $\Delta Re(C_9) \sim -1.9$
- Constant deviation from SM in Dim-6 FCNC processes may indicate NP inside

Conclusion

- We are entering an era of flavor, an era of precision measurements
- Great New Physics discovery potential in Flavor physics, access to energy scale much higher than collision energy
- Precision measurements ongoing both in SM candle channels and in New Physics sensitive channels
- Some anomalies already found, need more data/measurements to clear the situation

Thank you for your attention

