Discovery potential of doubly-heavy tetraquarks at the LHCb and the CEPC

Qin Qin

Huazhong University of Science and Technology

A.Ali, Parkhomenko, **QQ**, W. Wang, arXiv:1805.02535 A.Ali, **QQ**, W. Wang, arXiv:1806.09288 **QQ**, F.S.Yu, arXiv:2008.08026

The 6th China LHC Physics Workshop (Nov. 6-9, 2020)

Exotic hadronic states

1950-1960s, an era of new mesons and baryons — Quark model

[Gell-Mann,Phys.Lett.8(1964)214]

- Living with mesons and baryons for a long time, until half a century later...
- Tetraquark states (and also later pentaquarks) were found, XYZs

Their nature is still unclear

Chen, Chen, Liu, Zhu, '16; Esposito, Pilloni, Polosa, '16; Lebed, Mitchell, Swanson, '16; Guo, Hanhart, Meissner, Wang, Zhao, Zou, '17; Ali, Lange, Stone, '17; Olsen, Skwarnicki, Zieminska, '18 ...

- Exploring physics of hadronic spectrum:
 - test of quark model
 - understanding nonperturbative QCD: a mysterious area within the SM

Doubly-heavy tetraquarks

- An era of exotic hadronic states
- Recently, a new type -- singly-heavy tetraquarks: $X_{0,1}(2900)$ ($cs\bar{u}\bar{d}$)

[LHCb,2009.00025,2009.00026]

- Less recently, doubly-heavy baryons: Ξ_{cc}^{++} (*ccu*) [LHCb, 1707.07621]
- Next, more doubly heavy baryons and also doubly-heavy tetraquarks?
- A unique nice feature — weakly decaying (at least $T^{\{bb\}}_{[qq']}$)

[Eichten,Quigg,1707.09575]

A new window to tetraquark nature

• But first, are they there?

Doubly-heavy tetraquarks

- Two possibilities: yes or no.
- If no, a big problem to theorists.
- If yes, we need to find them first.
- Two questions:
 Can we?
 How can we?
- Two key issues to answer:
 ✓ Production
 ✓ Detection

Production

Heavy quark symmetry by two heavy quarks form a heavy diquark

• Hadronization from a heavy diquark jet as a heavy baryon: two steps

1. Collinear bb quarks \rightarrow diquark jet

2. Diquark jet \rightarrow fragmentation into hadrons

• Key issue: how to identify a diquark jet

[Eichten,Quigg,1707.09575]

Production: diquark jet

- To form a diquark jet: bb quarks produced collinearly.
- To quantify how collinear, we use the invariant mass

 $M_{bb-jet} < 2m_b + \Delta M$

• The diquark jet resolution parameter ΔM is determined by B_c meson production at LHCb and at Z factories

 $\Delta M = \begin{cases} (2.0^{+0.5}_{-0.4}) \text{ GeV, for LHCb,} \\ (2.7^{+1.3}_{-0.5}) \text{ GeV, for Z factories.} \end{cases}$

• The results for production rates

$$\sigma(H_{cc}, H_{bc}, H_{bb}) \approx 2.2 \times 10^2, \ 2.7 \times 10^2, \ 15 \text{ nb}$$
 at LHCb
 $B(Z \to H_{cc}, H_{bb} + X) \approx 3.0 \times 10^{-5}, \ 1.6 \times 10^{-5}$ at CEPC

[A.Ali, Parkhomenko, **QQ**, W. Wang,1805.02535] [A.Ali, **QQ**, W. Wang,1806.09288] [**QQ**, F.S.Yu, arXiv:2008.08026]

Production: fragmentation

• For cc tetraquarks (unstable), we still need the excitation-ground rate

$$\frac{f_{\Lambda_c}}{f_{\Lambda_c + \Sigma_c + \Lambda_c^*}} = 0.48 \pm 0.08$$

$$[Belle, arXiv:1706.06791]$$

$$B(Z \rightarrow T_{[\bar{u}\bar{d}]}^{\{cc\}} + X) \approx 1.1 \times 10^{-6} \quad \text{at CEPC}$$

$$\sigma(T_{[\bar{u}\bar{d}]}^{\{cc\}}) \approx 15 \text{ nb} \quad \text{at LHCb}$$

$$[A.Ali, Parkhomenko, QQ, W. Wang,1805.02535]$$

$$[A.Ali, QQ, W. Wang,1806.09288]$$

$$[QQ, F.S.Yu, arXiv:2008.08026]$$

Production: results

• Crosscheck with LHCb and NRQCD (Ξ_{cc}^{++} production at LHC)

 $\sigma(\Xi_{cc}^{++}) = \sigma(\Xi_{cc}^{+}) \approx 47 \text{ nb}$

30 ~ 130 nb 62 nb (LHCb)

(NRQCD)

[LHCb, 1902.06794] [Chang, Qiao, Wang, Wu, '06]

• A brief summary

No. of events	$T^{\{cc\}}_{[ar uar d]}$	$T^{\{bc\}}_{[ar uar d]}$	$T^{\{bb\}}_{[ar uar d]}$	Ξ_{bc}^+	Ξ_{bb}^{0}
LHCb (10 fb ⁻¹)	1.5×10^{8}	8.8×10^{8}	2.4×10^{7}	1.4×10^{9}	3.8×10^{7}
CEPC (Tera-Z)	10 ⁶		10 ⁶		1.6×10^{6}

[A.Ali, Parkhomenko, **QQ**, W. Wang,1805.02535] [A.Ali, **QQ**, W. Wang,1806.09288] [**QQ**, F.S.Yu, arXiv:2008.08026]

Detection: $T^{\{cc\}}$

• Its gold channels (possible discovery channels), highly depend on its mass

Reference	[26]	[27]	[29]	[28]	[30]	[31]	[20]	[22]	[14]	[24]
$T^{\{cc\}}_{\bar{n}\bar{n}'}$	-79	-96	-150	+53	+166	+60	-	AT	+102	+88
$T^{\{cc\}}_{\bar{n}\bar{s}}$	-9	-56	+94	+128	+255	+166	+143	AT	+179	+181
Reference	[32]	[23]	[33]	[34]	[13]	[35]	[21]	[11]	[25]	
$T^{\{cc\}}_{\bar{n}\bar{n}'}$	BT	-215	-149	-182	+7	+98	+91	+125	AT	

compared to DD^* threshold

• For different masses, we suggest

mass	most favored channel
1. Above DD* threshold (strong decay)	$T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^0 D^{*+}$
2. Between DD* and DD threshold (EM decay)	$T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^0 D^+ \gamma$
3. Below DD threshold (weak decay)	$T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^+ K^- \pi^+$

[QQ, F.S.Yu, arXiv:2008.08026]

Detection: $T^{\{bb\}}$ (H_{bb})

- In contrary to cc, H_{bb} has much lower exclusive branching ratios (~10⁻⁶) •
- Go inclusive!
- Weakly decaying H_{bb} are the only sources for displaced B_c mesons ullet $\rightarrow \overline{c}$ transition is required
 - [Gershon,Poluektov,1810.06657]

The branching ratio

 $B(\Xi_{bba} \rightarrow \bar{B}_c + X) \approx 0.8 \%$

• With the \bar{B}_c detection efficiency $B(\bar{B}_c \to J\psi + \pi^- \to \mu^+ \mu^- \pi^-) \approx 2 \times 10^{-4}$ and 10 fb⁻¹ data at LHCb, $\mathcal{O}(10^2)$ events are expected.

[Ridgway,Wise,1902.04582]

Detection: $T^{\{bc\}}$ (H_{bc})

• Some suggestions in the literature:

$$\implies B(\Xi_{bc}^0 \to pK^-) = \mathcal{O}(10^{-8} - 10^{-7})$$

[Li,Lu,Wang,Yu,Zou,1701.03284]

 $\implies B(\Xi_{bc}^+ \to \Sigma_b^+ \bar{K}^{*0}, \Xi_{bc}^0 \to \Lambda_b^0 \bar{K}^{*0}, \Omega_{bc} \to \Xi_b^0 \bar{K}^{*0}) = \mathcal{O}(1\% - 10\%)$

Small branching ratio or low detection efficiency.

• A new idea. (come out soon)

Summary

• Come back to the two questions:

✓ Can we?

Yes, if not too weird. For each doubly-heavy hadrons, **millions** will be produced at CEPC, and **more by 1 to 2 orders** at LHCb.

✓ How can we?

• For $T^{\{cc\}}_{[\bar{q}\bar{q}]}$

mass	most favored channel
1. Above DD* threshold (strong decay)	$T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^0 D^{*+}$
2. Between DD* and DD threshold (EM decay)	$T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^0 D^+ \gamma$
3. Below DD threshold (weak decay)	$T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^+ K^- \pi^+$

• For H_{bb} , a displaced B_c meson should be searched.

 $B(\Xi_{bbq}\to\bar{B}_c+X)\approx 0.8~\%$