## **SUSY Search at the CEPC**

Jiarong Yuan Nankai University, Institute of High Energy Physics CLHCP2020 2020/11/8

#### **Supersymmetry Introduction**

. . .



 The Supersymmetry is one of the most appealing BSM theories, which can be helpful for: dark matter candidate, hierarchy problem, grand unification of gauge couplings

#### **Overview**

- Search for sleptons and electroweakinos at CEPC.
- Show search results in final states with two opposite sign (OS) charged muons.
- Signal scenarios
  - Direct production of smuon pairs (can explain g-2 excess)
  - > Production of chargino pairs decaying via W bosons (Bino LSP, large cross section)
  - > Production of chargino pairs decaying via W bosons (Higgsino LSP, interesting related with higgs)



#### **Technical detail**

• About CEPC

ECM=240GeV, higgs factory, 100 km circumference, 2 interaction points. ILD-like detector

Software

**Signal samples: MadGraph+Pythia8** Simulation: Mokka Reconstruction: Marlin

• Normalized to  $5050 \text{ fb}^{-1}$ 

#### • Dominant backgrounds: SM processes with two- $\mu$ or two- $\tau$ final states

| process                                | Cross Section [fb] |
|----------------------------------------|--------------------|
| $\mu\mu$                               | 4967.58            |
| ττ                                     | 4374.94            |
| $WW \to \ell \ell$                     | 392.96             |
| $ZZorWW \rightarrow \mu\mu\nu\nu$      | 214.81             |
| $ZZorWW \rightarrow \tau \tau \nu \nu$ | 205.84             |
| $\nu Z, Z  ightarrow \mu \mu$          | 43.33              |
| $ZZ  ightarrow \mu\mu u u$             | 18.17              |
| $\nu Z, Z 	o \tau \tau$                | 14.57              |
| $ZZ \to \tau \tau \nu \nu$             | 9.2                |
| $\nu\nu H, H \rightarrow \tau\tau$     | 3.07               |





#### **Direct smuon: Optimization Strategy**

- Select events with 2 OS muons with energy > 0.5GeV.
- Perform a multi-dimension optimization, considering variables:

 $\Delta R(\mu,\mu), \Delta R(\mu,recoil), \Delta \varphi(\mu,\mu), \Delta \varphi(\mu,recoil), M_{\mu\mu}, M_{recoil}, E_{\mu\mu}, P_T^{\mu\mu}, E_{\mu}, P_T^{\mu}$ 

- Check for both upper cut and down cut for each variable.
- Use  $\frac{S}{\sqrt{B+dB^2}}$  as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty).



 $\mu^{\pm}$ 

 $\mu^{\mp}$ 

 $e^{\pm}$ 

 $\tilde{\mu}$ 

ũ

#### **Direct smuon: SR & Results**

• Three SRs are defined for different  $\Delta m(\tilde{\mu}, \tilde{\chi}_1^0)$ .

| SR-highDeltaM                      | SR-midDeltaM                | SR-lowDeltaM                |  |  |  |  |  |  |  |  |
|------------------------------------|-----------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| $2 \mu$ (OS, both energy > 0.5GeV) |                             |                             |  |  |  |  |  |  |  |  |
| $\Delta R(\mu, recoil) < 3$        | $\Delta R(\mu, recoil) < 3$ | $\Delta R(\mu, recoil) < 2$ |  |  |  |  |  |  |  |  |
| $E_{\mu}$ >40 $GeV$                | $E_{\mu} < 50 GeV$          | $E_{\mu} < 45 GeV$          |  |  |  |  |  |  |  |  |
| $M_{\mu\mu} < 60 GeV$              | $p_T > 55 GeV/c$            |                             |  |  |  |  |  |  |  |  |
| $M_{recoil} > 25 GeV$              |                             |                             |  |  |  |  |  |  |  |  |

| process                                | SR-high∆m       | SR-mid∆m        | SR-low∆m       |  |  |
|----------------------------------------|-----------------|-----------------|----------------|--|--|
| ττ                                     | 38.59+-9.36     | 118.04+-16.37   | 276.94+-25.07  |  |  |
| $\nu\nu H, H \to \tau\tau$             | 0+-0            | 0+-0            | 1.71+-0.51     |  |  |
| $ZZorWW \rightarrow \tau \tau \nu \nu$ | 0+-0            | 4.12+-2.06      | 35.02+-6.01    |  |  |
| $ZZ \rightarrow \tau \tau \nu \nu$     | 0+-0            | 0+-0            | 0+-0           |  |  |
| $\nu Z, Z \to \tau \tau$               | 0+-0            | 0+-0            | 1.48+-1.05     |  |  |
| $ZZorWW \rightarrow \mu\mu\nu\nu$      | 889.64+-30.82   | 2585.63+-52.55  | 398.36+-20.63  |  |  |
| $ZZ \rightarrow \mu\mu\nu\nu$          | 94.11+-11.41    | 40.14+-7.45     | 1.38+-1.38     |  |  |
| $WW \to \ell \ell$                     | 53.20+-7.38     | 376.46+-19.62   | 51.15+-7.23    |  |  |
| $\nu Z$ , $Z \to \mu \mu$              | 100.17+-10.56   | 70.12+-8.83     | 4.45+-2.23     |  |  |
| μμ                                     | 1570.45+-97.77  | 925.22+-75.05   | 420.00+-50.56  |  |  |
| total background                       | 2746.16+-104.37 | 4119.73+-95.83  | 1190.5+-60.89  |  |  |
| Ref. point (100,10)                    | 8264.62+-267.30 | 6207.11+-231.65 | 406.32+-59.27  |  |  |
| Ref. point (100,50)                    | 4469.46+-196.57 | 20151.5+-417.38 | 821.28+-84.26  |  |  |
| Ref. point (100,90)                    | 0+-0            | 0+-0            | 5420.42+-216.4 |  |  |



#### **Direct smuon: Sensitivity map**

• Assuming 10% systematic uncertainty, the discovery sensitivity reaches up to 115 GeV.



#### Chargino pair (Bino LSP): Optimization Strategy

- Select events with 2 OS muons with energy > 10 GeV.
- Perform a multi-dimension optimization considering variables:

 $\Delta R(\mu,\mu), \Delta R(\mu,recoil), \Delta \varphi(\mu,\mu), \Delta \varphi(\mu,recoil), M_{\mu\mu}, M_{recoil}, E_{\mu\mu}, P_T^{\mu\mu}, E_{\mu}, P_T^{\mu}$ 

- Check for both upper cut and down cut for each variable.
- Use  $\frac{S}{\sqrt{S+B+dB^2}}$  as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty).



θ±

 $\tilde{\chi}_1^0$ 

 $W^{\pm}$ 

 $W^{\exists}$ 

 $\tilde{\chi}_1^{\pm}$ 

 $\tilde{\chi}_1^{\dagger}$ 

 $e^{\mp}$ 

#### Chargino pair (Bino LSP): SR & Results

• One signal region is defined.



#### Chargino pair (Bino LSP): Sensitivity map

 Assuming 10% systematic uncertainty, the discovery sensitivity can still reach up to all the mass phase space.



### Chargino pair (Higgsino LSP): Optimization Strategy

- Select events with 2 OS muons.
- Perform a multi-dimension optimization considering variables:

 $\Delta R(\mu,\mu), \Delta R(\mu,recoil), \Delta \varphi(\mu,\mu), \Delta \varphi(\mu,recoil), M_{\mu\mu}, M_{recoil}, E_{\mu\mu}, P_T^{\mu\mu}, E_{\mu}, P_T^{\mu}$ 

W

- Check for both upper cut and down cut for each variable.
- Use  $Z_n = \sqrt{2} \operatorname{erf}^{-1}(1-2p)$  as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty).



#### Chargino pair (Higgsino LSP): SR & Results

• One signal region is defined.



#### Chargino pair (Higgsino LSP): Sensitivity map

• Assuming 10% systematic uncertainty, the discovery sensitivity can reach up to 110 GeV except several points.



13



- A preliminary SUSY sensitivity study has been performed to direct smuon production and chargino pair production (Bino LSP and Higgsino LSP) in CEPC, which is promising. With assuming 10% systematic uncertainty:
  - For direct smuon production, the discovery sensitivity reaches up to 115 GeV.
  - For chargino pair production (Bino LSP), the discovery sensitivity can still reach up all the mass phase space.
  - For chargino pair production (Higgsino LSP), the discovery sensitivity can reach up to 110 GeV.
- Stau search prospects measurement is still on-going.
- Internal note draft is almost done.

# Thank you.

Backup

#### Electrpwikinos mass split



Standard wino-bino
case: large △m
between N1 and C1/N2;
MET + hard leptons

N1,N2,C1 almost degenerate: experimental challenging; → MET + soft leptons

- → Lower xsec than higgsino LSP;
- → WW+MET dominant;



• Direct smuon

• Chargino pair(Bino LSP)

• Chargino pair(Higgsino LSP)



Signal significance  $Z_n$  $Z_n = \sqrt{2} \operatorname{erf}^{-1}(1-2p)$ , where  $p \propto \int_0^\infty db G(b; N_b, \delta b) \sum_{i=N_s+b}^\infty \frac{e^{-b}b^i}{i!}$ 

|             |        | е      | + e -  | - →    | $\tilde{\chi}_1^0 \hat{\chi}_1^0$ | $\tilde{\chi}_{1}^{0}$ (n | n <sub>I1,2</sub> | = 10   | 00G    | eV,    | CEF    | PC@    | 240    | )Gel   | /)     |        |
|-------------|--------|--------|--------|--------|-----------------------------------|---------------------------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| N -         | 0.0339 | 0.03   | 0.0264 | 0.023  | 0.02                              | 0.0173                    | 0.0148            | 0.0124 | 0.0104 | 0.0084 | 0.0068 | 0.0053 | 0.0039 | 0.0027 | 0.0017 | 0.0009 |
| 4.          |        |        |        |        | 0.0488                            | 0.042                     | 0.036             | 0.0303 | 0.0251 | 0.0202 | 0.0161 | 0.0122 | 0.0089 | 0.006  | 0.0036 | 0.0017 |
| 9 -         |        |        |        |        |                                   | 0.0484                    | 0.0415            | 0.0346 | 0.0285 | 0.0231 | 0.0181 | 0.0138 | 0.01   | 0.0067 | 0.0039 | 0.0017 |
| æ .         |        |        |        |        |                                   | 0.0508                    | 0.043             | 0.0361 | 0.0297 | 0.024  | 0.0188 | 0.0143 | 0.0102 | 0.0068 | 0.0039 | 0.0017 |
| 10          |        |        |        |        |                                   |                           | 0.0439            | 0.0369 | 0.0303 | 0.0245 | 0.0191 | 0.0145 | 0.0103 | 0.0068 | 0.0039 | 0.0016 |
| 12          |        |        |        |        |                                   |                           | 0.0444            | 0.0371 | 0.0306 | 0.0246 | 0.0192 | 0.0145 | 0.0104 | 0.0068 | 0.0038 | 0.0016 |
| 14          |        |        |        |        |                                   |                           | 0.0447            | 0.0373 | 0.0305 | 0.0247 | 0.0194 | 0.0145 | 0.0104 | 0.0068 | 8600.0 | 0.0015 |
| 15          |        |        |        |        |                                   |                           | 0.0446            | 0.0377 | 0.0308 | 0.0249 | 0.0193 | 0.0146 | 0.0103 | 0.0068 | 8600.0 | 0.0015 |
| 16          |        |        |        |        |                                   |                           | 0.045             | 0.0374 | 0.0307 | 0.0248 | 0.0193 | 0.0144 | 0.0103 | 0.0068 | 0.0038 | 0.0015 |
| 18          |        |        |        |        |                                   |                           | 0.0447            | 0.0374 | 0.0308 | 0.0248 | 0.0193 | 0.0145 | 0.0103 | 0.0067 | 0.0037 | 0.0015 |
| 20          |        |        |        |        |                                   |                           | 0.0449            | 0.0375 | 0.0309 | 0.0249 | 0.0194 | 0.0146 | 0.0103 | 0.0066 | 0.0037 | 0.0014 |
| 22          |        |        |        |        |                                   |                           | 0.0448            | 0.0373 | 0.0309 | 0.0246 | 0.0193 | 0.0145 | 0.0102 | 0.0067 | 0.0037 | 0.0014 |
| 24          |        |        |        |        |                                   |                           | 0.045             | 0.0375 | 0.0308 | 0.0247 | 0.0192 | 0.0145 | 0.0103 | 0.0066 | 0.0037 | 0.0014 |
| 26          |        |        |        |        |                                   |                           | 0.0449            | 0.0372 | 0 031  | 0.0247 | 0.0194 | 0.0145 | 0.0103 | 0.0066 | 0.0037 | 0.0014 |
| <b>d</b> 8. |        |        |        |        |                                   |                           | 0.045             | 0.0375 | 0.0307 | 0.0248 | 0.0192 | 0.0145 | 0.0103 | 0.0067 | 0.0037 | 0.0014 |
| ۳           |        |        |        |        |                                   |                           | 0.0451            | 0.0376 | 0.0308 | 0.0248 | 0.0192 | 0.0144 | 0.0102 | 0.0066 | 0.0036 | 0.0014 |
| 34          |        |        |        |        |                                   |                           | 0.0448            | 0.0376 | 0.0309 | 0.0247 | 0.0193 | 0.0145 | 0.0103 | 0.0066 | 0.0037 | 0.0014 |
| 36          |        |        |        |        |                                   |                           | 0.045             | 0.0376 | 0.0309 | 0.0248 | 0.0193 | 0.0144 | 0.0102 | 0.0066 | 0 0036 | 0.0014 |
| 85 -        |        |        |        |        |                                   |                           | 0.0449            | 0.0375 | 0.0307 | 0.0248 | 0.0194 | 0.0145 | 8.0102 | 0.0066 | 0.0036 | 0.0014 |
| 40          |        |        |        |        |                                   |                           | 0.045             | 0.0376 | 0.0309 | 0.0246 | 0.0193 | 0.0144 | 8.0102 | 0.0066 | 0.0036 | 0.0014 |
| 42          |        |        |        |        |                                   |                           | 0.0449            | 0.0373 | 0.0308 | 0.0248 | 0.0191 | 0.0144 | 8.0102 | 0.0066 | 0.0036 | 0.0014 |
| 44          |        |        |        |        |                                   |                           | 0.0449            | 0.0374 | 0.0308 | 0.0247 | 0.8192 | 0.0144 | 8.0192 | 0.0066 | 0.0036 | 0.0014 |
| 46          |        |        |        |        |                                   |                           | 0.045             | 0.0375 | 0.0308 | 0.0246 | 0.0192 | 0.0144 | 0.0102 | 0.0066 | 0.0036 | 0.0014 |
| 8 -         |        |        |        |        |                                   |                           | 0.0449            | 0.0374 | 0.0308 | 0.0246 | 0.0193 | 0.0143 | 0.0101 | 0.0066 | 0.0036 | 0.0013 |
| 20          |        |        |        |        |                                   |                           | 0.0449            | 0.0374 | 0.0308 | 0 0246 | 0.0193 | 0.0144 | 0.0101 | 0.0066 | 0.0036 | 0.0014 |
| 25          |        |        |        |        |                                   |                           | 0.0448            | 0.0377 | 0.0308 | 0.0246 | 0.0193 | 0.0144 | 0.0102 | 0.0065 | 0.0036 | 0.0013 |
| 54          |        |        |        |        |                                   |                           | 0.0449            | 0.0374 | 0.0306 | 0.0246 | 0.0193 | 0.0145 | 0.0102 | 0.0065 | 0.0036 | 0.0013 |
| 36          |        |        |        |        |                                   |                           | 0.0449            | 0.0375 | 0.0307 | 0.0247 | 0.0191 | 0.0144 | 0.0101 | 0.0066 | 0.0036 | 0.0013 |
| 85 -        |        |        |        |        |                                   |                           | 0.0451            | 0.0374 | 0.0306 | 0.0247 | 0.0191 | 0.0143 | 0.0102 | 0.0065 | 0.0036 | 0.0013 |
| 60          | 0.1064 | 0.0938 | 0.0823 | 0.0715 | 0.0619                            | 0.053                     | 0.045             | 0.0376 | 0.0306 | 0.0246 | 0.0192 | 0.0144 | 0.0102 | 0.0065 | 0.0036 | 0.0013 |
| _           | 90     | 92     | 94     | 96     | 98                                | 100                       | 102               |        | eV1    | 108    | 110    | 112    | 114    | 116    | 118    | 12     |

چ cross section [fb]

0.04

6.02

|            | $e^+e^- \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_2 (m_{l_{1,2}} = 100 GeV, CEPC@240 GeV)$ |        |        |        |        |        |        |        |        |        |        |        |        |        |         |
|------------|----------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| n -        | 0.028                                                                                        | 0.0245 | 6.0211 | 0.0182 | 0.0155 | 0.013  | 0.0107 | 0.0087 | 0.0069 | 0.0053 | 0.0039 | 0.0027 | 0.0017 | 0.000B | 0.00025 |
| 4.         | 0.0648                                                                                       |        |        |        | 0.0354 | 0.0295 | 0.0242 | 0.0195 | 0.0154 | 0.0117 | 0.0084 | 0.0056 | 0.0033 | 0.0015 | 0.00029 |
| 9.         | 0.0741                                                                                       |        |        |        |        | 0.0336 | 0.0275 | 0.0221 | 0.0173 | 0.013  | 0.0093 | 0.0062 | 0.0035 | 0.0015 | 0.0002  |
| æ .        | 0.0777                                                                                       |        |        |        |        | 0.0349 | 0.0287 | 0.0229 | 0.0179 | 0.0134 | 0.0096 | 0.0063 | 0.0035 | 0.0015 | 0.00015 |
| 11         | 0.0793                                                                                       |        |        |        |        | 0.0354 | 0.0291 | 0.0233 | 0.0182 | 0.0137 | 0.0097 | 0.0063 | 0.0035 | 0.0014 | 0.00011 |
| 12         | 0.08                                                                                         |        |        |        |        | 0.0358 | 0.0293 | 0.0235 | 0.0182 | 0.0137 | 0.0097 | 0.0063 | 0.0035 | 0.0014 | 9e 05   |
| 14         | 0.0803                                                                                       |        |        |        |        | 0.0359 | 0.0294 | 0.0236 | 0.0184 | 0.0136 | 0.0097 | 0.0063 | 0.0035 | 0.0013 | 8e-05   |
| 51         | 0.0807                                                                                       |        |        |        |        | 0.0362 | 0.0295 | 0.0237 | 0.0182 | 0.0137 | 0.0096 | 0.0062 | 0.0034 | 0.0013 | 7e-05   |
| 16         | 0.0807                                                                                       |        |        |        |        | 0.0362 | 0.0295 | 0.0236 | 0.0183 | 0.0137 | 0.0096 | 0.0062 | 0.0034 | 0.0013 | 6e 05   |
| BI -       | 0.0808                                                                                       |        |        |        |        | 0.0358 | 0.0295 | 0.0236 | 0.0183 | 0.0137 | 0.0097 | 0.0062 | 0.0034 | 0.0013 | 5e-05   |
| 20         | 0.0811                                                                                       |        |        |        |        | 0.036  | 0.0297 | 0.0236 | 0.0183 | 0.0137 | 0.0096 | 0.0062 | 0.0034 | 0.0013 | 5e-05   |
| 57         | 0.0811                                                                                       |        |        |        |        | 0.036  | 0.0296 | 0.0237 | 0.0183 | 0.0136 | 0.0096 | 0.0062 | 0.0034 | 0.0013 | 4e-05   |
| 24         | 0.0808                                                                                       |        |        |        |        | 0.0362 | 0.0295 | 0.0236 | 0.0183 | 0.0136 | 0.0096 | 0.0062 | 0.0034 | 0.0013 | 4e-05   |
| 26         | 0.0812                                                                                       |        |        |        |        | 0.0364 | 0.0296 | 0.0237 | 0.0183 | 0.0136 | 0.0096 | 0.0061 | 0.0034 | 0.0012 | 4e-05   |
| <i>ت</i> ۽ | 0.0508                                                                                       |        |        |        |        | 0.0362 | 0.0293 | 0.0236 | 0.0183 | 0.0136 | 0.0096 | 0.0062 | 0.0033 | 0.0012 | 3e-05   |
| rar<br>"   | 0.081                                                                                        |        |        |        |        | 0.0362 | 0.0295 | 0.0237 | 0.0182 | 0.0137 | 0.0096 | 0.0061 | 0.0034 | 0.0012 | 3e-05   |
| 34         | 0.0811                                                                                       |        |        |        |        | 0.0361 | 0.0297 | 0.0236 | 0 0183 | 0.0135 | 0.0096 | 0.0061 | 0.0033 | 0.0012 | 3e-05   |
| 9E         | 0.0811                                                                                       |        |        |        |        | 0.0363 | 0.0296 | 0.0236 | 0 0183 | 0.0136 | 0.0096 | 0.0061 | 0.0033 | 0.0012 | 3e-05   |
| 88         | 0.081                                                                                        |        |        |        |        | 0.0362 | 0.0295 | 0.0236 | 0 0183 | 0.0135 | 0.0095 | 0.0061 | 0.0033 | 0.0012 | 3e-05   |
| 9 -        | 8.081                                                                                        |        |        |        |        | 0.036  | 8.0297 | 0.0235 | 0 0182 | 0.0136 | 0.0095 | 0 0061 | 0.0033 | 0.0012 | 3e-05   |
| 42         | 0.0808                                                                                       |        |        |        |        | 0 0362 | 0.0295 | 0.0236 | 0 0183 | 0.0136 | 0.0095 | 0 0061 | 0.0033 | 0.0012 | 2e-05   |
| 4 -        | 0.0812                                                                                       |        |        |        |        | 0 0362 | 0.0295 | 0.0236 | 0 0182 | 0.0136 | 0.0096 | 0.0061 | 0.0033 | 0.0012 | 2e-05   |
| - 46       | 0.0811                                                                                       |        |        |        |        | 0.0361 | 0.0294 | 0.0236 | 0 0182 | 0.0136 | 0.0095 | 0.0061 | 0.0033 | 0.0012 | 2e-05   |
| 8-         | 0.081                                                                                        |        |        |        |        | 0.0364 | 0.0296 | 0.0236 | 0 0182 | 0.0136 | 0.0096 | 0 0061 | 0.0033 | 0.0012 | 2e-05   |
| 6          | 0.0812                                                                                       |        |        |        |        | 0.0363 | 0.0296 | 0.0235 | 0 0182 | 0.0136 | 0.0095 | 0.0061 | 0.0033 | 0.0012 | 2e-05   |
| g -        | 0.0809                                                                                       |        |        |        |        | 0.0361 | 0.0295 | 0.0235 | 0 0184 | 0.0136 | 0.0095 | 0.0061 | 0.0033 | 0.0012 | 2e-05   |
| 54         | 0.0811                                                                                       |        |        |        |        | 0.0362 | 0.0296 | 0.0234 | 0.0182 | 0.0136 | 0.0095 | 0.0061 | 0.0033 | 0.0012 | 2e-05   |
| 56         | 0.0813                                                                                       |        |        |        |        | 0.0361 | 0.0294 | 0.0235 | 0.0184 | 0.0136 | 0.0095 | 0.0061 | 0.0033 | 0.0012 | 2e-05   |
| 85         | 0.0808                                                                                       |        |        |        |        | 0.0361 | 0.0294 | 0.0235 | 0.0182 | 0.0136 | 0.0095 | 0.0061 | 0.0033 | 0.0012 | 2e-05   |

0.0362 0.0295 0.0237

100

98

μ[GeV]

0.0182 0.0136 0.0095 0.0061 0.0033

106

108 110 112 20

0.06

0.05

َة cross section [fb]

0.03

- 0.02

- 0.01

0.0012 2e-05

116 114

118

| 2 | [dd]    |
|---|---------|
|   | section |
| 0 | cross   |

-0.8

- 0.4

|        | $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- (m_{l_{1,2}} = 100 GeV)$ |       |       |       |       |       |       |             |     |       | , CEPC@240GeV) |       |       |       |       |       |  |  |
|--------|--------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------------|-----|-------|----------------|-------|-------|-------|-------|-------|--|--|
| ~      | 2.002                                                                          |       |       | 1 886 |       |       |       |             |     |       |                |       |       |       | 0.934 | 0.723 |  |  |
| 4      | 1.972                                                                          |       |       |       |       |       |       |             |     |       |                |       |       | 1.012 | 0.834 | 0.571 |  |  |
| 9      | 1.965                                                                          |       |       |       |       |       |       |             |     |       |                |       |       | 0.975 | 0.777 | 0.489 |  |  |
|        | 1.963                                                                          |       |       |       |       |       |       |             |     |       |                |       |       | 0.949 | 0.745 | 0.434 |  |  |
| 10     | 1.965                                                                          |       |       |       |       |       |       |             |     |       |                |       |       | 0.943 | 0.727 | 0.398 |  |  |
| 12     | 1.967                                                                          |       |       |       |       |       |       |             |     |       |                |       |       | 0.927 | 0.716 | 0.374 |  |  |
| 14     | 1.952                                                                          |       |       |       |       |       |       |             |     |       |                |       |       | 0.918 | 0.706 | 0.35  |  |  |
| 15     | 1.956                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.076 | 0.92  | 0.698 | 0.337 |  |  |
| 16     | 1.951                                                                          |       |       |       |       |       |       |             |     |       |                |       |       | 0.913 | 0.69  | 0.324 |  |  |
| BT     | 1.957                                                                          |       |       |       |       |       |       |             |     |       |                |       |       | 0.908 | 0.688 | 0.312 |  |  |
| 20     | 1.957                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.075 | 0.906 | 0.682 | 0.304 |  |  |
| 22     | 1.956                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.068 | 0.907 | 0.682 | 0.295 |  |  |
| 24     | 1.952                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.072 | 0.899 | 0.677 | 0.29  |  |  |
| 26     | 1.956                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.066 | 0.9   | 0.677 | 0.283 |  |  |
| nβ     | 1.942                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.067 | 0 898 | 0.675 | 0.279 |  |  |
| å<br>s | 1.946                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.07  | 0.898 | 0.67  | 0.273 |  |  |
| 34     | 1.953                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.071 | 0 895 | 0.669 | 0.268 |  |  |
| 36     | 1.96                                                                           |       |       |       |       |       |       |             |     |       |                |       | 1.065 | 0 896 | 0.67  | 0.265 |  |  |
| 38     | 3.947                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.063 | 0 893 | 0.666 | 0.262 |  |  |
| 6      | 1.96                                                                           |       |       |       |       |       |       |             |     |       |                |       | 1.065 | 0.89  | 0.666 | 0.258 |  |  |
| 42     | 1.947                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.059 | 0 893 | 0.666 | 0.256 |  |  |
| 4      | 1.954                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.065 | 0 889 | 0.664 | 0.252 |  |  |
| 5      | 1.947                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.062 | 0 889 | 0.663 | 0.25  |  |  |
| 8      | 1.949                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.058 | 0 895 | 0.659 | 0.248 |  |  |
| 20     | 1.953                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.051 | 0 889 | 0.662 | 0.246 |  |  |
| 25     | 1.95                                                                           |       |       |       |       |       |       |             |     |       |                |       | 1.064 | 0.893 | 0.658 | 0.243 |  |  |
| 54     | 1.947                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.054 | 0 891 | 0.66  | 0.241 |  |  |
| 36     | 1.956                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.061 | 0.886 | 0.659 | 0.239 |  |  |
| 8      | 1.954                                                                          |       |       |       |       |       |       |             |     |       |                |       | 1.058 | 0.895 | 0.657 | 0.238 |  |  |
| 60     | 1.944                                                                          | 1.918 | 1.869 | 1.826 | 1.775 | 1.723 | 1.655 | 1.591       | 1.5 | 1.414 | 1.321          | 1.199 | 1.059 | 0.887 | 0.656 | 0.236 |  |  |
|        | 90                                                                             | 92    | 94    | 96    | 98    | 100   | 102   | $\mu^{104}$ | eV] | 108   | 110            | 112   | 114   | 116   | 118   | 120   |  |  |

|        |          | $e^+e^- \rightarrow \tilde{\chi}^0_1  \tilde{\chi}^0_2  (m_{l_{1,2}} = 100 GeV,$ |    |      |       |       |       |       |       | eV,   | , CEPC@240GeV) |       |       |       |       |       |       |  |
|--------|----------|----------------------------------------------------------------------------------|----|------|-------|-------|-------|-------|-------|-------|----------------|-------|-------|-------|-------|-------|-------|--|
| ,      | 1.08     |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.564 | 0.465 | 0.323 |  |
|        | r - 1.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.53  | 0.421 | 0.254 |  |
|        | p = 1.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0 513 | 0.402 | 0.217 |  |
| 1      | n - 1.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.509 | 0.385 | 0.193 |  |
| -      | 2 - 1.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.499 | 0.381 | 0.177 |  |
| ;      | :- 1.0e  |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.499 | 0.375 | 0.164 |  |
| ;      | ; - 1.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.496 | 0.372 | 0.155 |  |
| ;      | 1.07     |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.495 | 0.368 | 0.148 |  |
| ;      | - 1.07   |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.492 | 0.366 | 0.142 |  |
| 5      | - 1.0e   |                                                                                  | 47 |      |       |       |       |       |       |       |                |       |       |       | 0.491 | 0.365 | 0.136 |  |
| 5      | 2 - 1.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.488 | 0.363 | 0.133 |  |
| 5      | 8 - 1.07 |                                                                                  | 48 |      |       |       |       |       |       |       |                |       |       |       | 0.488 | 0.363 | 0.129 |  |
| ;      | z - 1.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.49  | 0.359 | 0.126 |  |
| ;      | ą - 1.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.486 | 0.36  | 0.123 |  |
| η<br>Ω | Q - 1.07 |                                                                                  | 49 |      |       |       |       |       |       |       |                |       |       |       | 0.484 | 0.361 | 0.12  |  |
| , בפ   | g - 1.06 |                                                                                  | 49 |      |       |       |       |       |       |       |                |       |       |       | 0.483 | 0.359 | 0.118 |  |
| ;      | g - 3.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.488 | 0.36  | 0.116 |  |
| 2      | q - 1.0  |                                                                                  | 47 |      |       |       |       |       |       |       |                |       |       |       | 0.488 | 0.358 | 0.115 |  |
| ;      | g - 3.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.486 | 0.358 | 0.113 |  |
| :      | ⊋ - 1.06 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.484 | 0.359 | 0.111 |  |
| :      | ¥ - 1.06 |                                                                                  | 49 |      |       |       |       |       |       |       |                |       |       |       | 0.485 | 0.356 | 0.11  |  |
| :      | ; - 1.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.485 | 0.357 | 0.109 |  |
| :      | ç - 1.0  |                                                                                  | 48 |      |       |       |       |       |       |       |                |       |       |       | 0 485 | 0.357 | 0.108 |  |
| 5      | ç - 1.0  |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.483 | 0.354 | 0.106 |  |
| 1      | g - 1.07 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.483 | 0.353 | 0.105 |  |
| ;      | - 1.06   |                                                                                  | 49 |      |       |       |       |       |       |       |                |       |       |       | 0.483 | 0.354 | 0.104 |  |
| ;      | r - 1.07 |                                                                                  | 46 |      |       |       |       |       |       |       |                |       |       |       | 0.484 | 0.354 | 0.104 |  |
| ;      | g - 1.06 |                                                                                  |    |      |       |       |       |       |       |       |                |       |       |       | 0.482 | 0.355 | 0.102 |  |
| 1      | g - 1.07 |                                                                                  | 46 |      |       |       |       |       |       |       |                |       |       |       | 0.485 | 0.354 | 0.101 |  |
| -      | g = 1.0  | 7 1.0                                                                            | 51 | 1.03 | 1.002 | 0.976 | 0.944 | 0.907 | 0.868 | 0 825 | 0.773          | 0.722 | 0.657 | 0.579 | 0.483 | 0.353 | 0.101 |  |
|        | 90       | 93                                                                               | 2  | 94   | 96    | 98    | 100   | 102   | µ́[G  | eV]   | 108            | 110   | 112   | 114   | 116   | 118   | 120   |  |

cross section [pb]

-04

- 0.2

č

21