

 \Box DiHiggs to 4ℓ analysis

 $\Box 4\ell + E_{T}^{miss}$ analysis

 \Box $E_{\rm T}^{\rm miss}$ Performance

	Non-Res	$qar{q} ightarrow ZZ$	$q \bar{q} ightarrow ZZ$ (EW)	tīZ	VVV	Z
Preselection	0.125±0.005	928.41±3.80	12.21±0.16	75.40±0.87	9.23±0.10	$0.0039 {\pm} 0.0000$
0/1-SFOS	0.063±0.003	28.54±0.92	0.24±0.02	38.02±0.62	4.26±0.07	0.0075±0.0000
$ m_{Z_2} - m_Z < 25 \text{ GeV}$	0.024±0.002	16.79±0.74	0.14±0.01	8.68±0.30	3.62±0.06	0.0045±0.0000
$ m_{Z_2} - m_Z > 20 \text{ GeV}$	0.029±0.002	1.34±0.18	0.02±0.00	0.96±0.10	0.21±0.02	0.0182±0.0001
2-SFOS	0.061±0.248	899.87±30.00	11.97±3.46	37.38±6.11	4.97±2.23	0.0020±0.0022
$ m_{Z_1} - m_Z > 25 \text{ GeV}$	0.030±0.002	18.03±0.66	0.67±0.03	5.48±0.24	2.08 ± 0.05	0.0058 ± 0.0000

3

Table: Before removing the D_0/Z_0 from the electrons

	Non-Res	$qar{q} ightarrow ZZ$	$q\bar{q} ightarrow ZZ$ (EW)	tīZ	VVV	Z
Preselection	0.125±0.005	928.41±3.80	12.21±0.16	75.40±0.87	9.23±0.10	$0.0039 {\pm} 0.0000$
0/1-SFOS	0.063±0.003	28.54±0.92	0.24±0.02	38.02±0.62	4.26±0.07	0.0075 ± 0.0000
$ m_{Z_2} - m_Z < 25 \text{ GeV}$	0.025±0.002	17.70±0.75	0.15±0.01	8.76±0.30	3.66±0.06	0.0046 ± 0.0000
$ m_{Z_2} - m_Z > 20 \text{ GeV}$	0.030±0.002	1.44±0.18	0.02±0.00	0.97±0.10	0.22±0.02	0.0187±0.0001
2-SFOS	0.061±0.248	899.87±30.00	11.97±3.46	37.38±6.11	4.97±2.23	0.0020±0.0022
$ m_{Z_1} - m_Z > 25 \text{ GeV}$	0.031±0.002	18.88±0.69	0.67±0.03	5.58±0.24	2.10 ± 0.05	0.0059 ± 0.0001

Table: After removing the D_0/Z_0 from the electrons

$4\ell + E_{\mathrm{T}}^{\mathrm{miss}}$ analysis Upper limits on the xs times the branching ratio

_	4

mass point = m_R , m_H [GeV]	-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$
390, 220	0.064	0.085	0.119	0.177	0.246
410, 220	0.046	0.062	0.086	0.129	0.180
430, 220	0.038	0.051	0.071	0.106	0.149
450, 220	0.037	0.049	0.069	0.103	0.144
580, 220	0.031	0.041	0.057	0.086	0.121
450, 250	0.033	0.045	0.062	0.089	0.127
800, 220	0.028	0.038	0.052	0.079	0.112
880, 220	0.028	0.037	0.051	0.078	0.111
800, 300	0.020	0.027	0.037	0.054	0.079
670, 500	0.036	0.048	0.066	0.097	0.143
800, 500	0.012	0.017	0.023	0.034	0.051
1380, 220	0.026	0.035	0.048	0.072	0.103
1500, 220	0.026	0.034	0.048	0.072	0.103
1500, 250	0.021	0.029	0.040	0.059	0.087
1170, 1000	0.033	0.044	0.061	0.092	0.146
1500, 1000	0.007	0.009	0.012	0.019	0.031

5

Thank you!

