

$4\ell + \text{MET}$: Status Report

Abdualazem Fadol

September 21, 2020

中国科学院高能物理研究所
Institute of High Energy Physics
Chinese Academy of Sciences

INSTITUTE FOR
COLLIDER
PARTICLE
PHYSICS

UNIVERSITY OF THE WITWATERSRAND

Background model

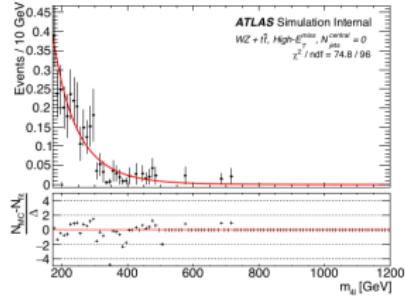
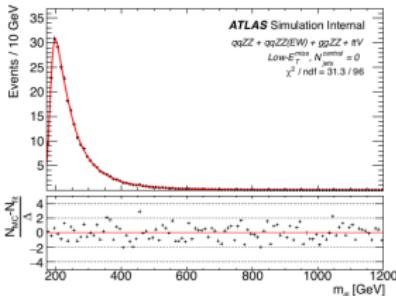
Template fit

- The $qqZZ$ and $ggZZ$ backgrounds were modeled using three functions, see slides 16 and 17 [here](#).
- Now we combined background processes into different templates, depending on their shapes.
- Then use the functions below to fit the templates:

$$f_{qqZZ, ggZZ, qqZZEW, VVV, WZ, t\bar{t}}(m_{4\ell}) = C_0 H(m_0 - m_{4\ell})(f_2(m_{4\ell})) + H(m_{4\ell} - m_0)f_3(m_{4\ell}),$$

where:

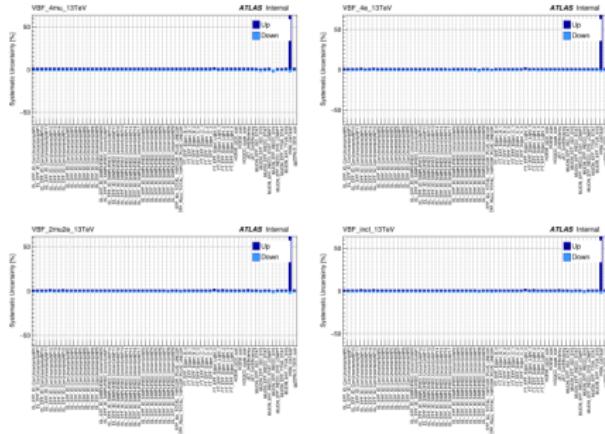
$$f_2(m_{4\ell}) = \left\{ \frac{1}{2} + \frac{1}{2} \operatorname{erf} \left(\frac{m_{4\ell} - b_1}{b_2} \right) \right\} \frac{1}{1 + \exp \left(\frac{m_{4\ell} - b_1}{b_3} \right)} \left\{ \frac{1}{2} + \frac{1}{2} \operatorname{erf} \left(\frac{m_0 - b_1}{b_2} \right) \right\} \frac{1}{1 + \exp \left(\frac{m_0 - b_1}{b_3} \right)},$$



$$f_3(m_{4\ell}) = \left(1 - \frac{m_{4\ell}}{13000} \right)^{c_1} \left\{ \left(\frac{m_{4\ell}}{13000} \right)^{c_2} + c_3 \log \left(\frac{m_{4\ell}}{13000} \right) \right\} \frac{1}{1 - \frac{1-m_0}{13000}^{c_1}} \left\{ \left(\frac{m_0}{13000} \right)^{c_2} + c_3 \log \left(\frac{m_0}{13000} \right) \right\},$$

$$C_0 = \frac{f_3(m_0)}{f_2(m_0)}.$$

- Notice that, we removed the exponential function that describes the lower mass region.
- Because we rise the lower range to be > 170 GeV for the new model.

Background model


Template fit

- In total, we have three templates:
 - $qqZZ$, $qqZZ(EW)$, $ggZZ$, and $t\bar{t}V$
 - WZ and $t\bar{t}$
 - VVV
- The plots are shown for $\text{Low}E_T^{\text{miss}}$ and $N_{\text{jets}}^{\text{central}}$ category only.
- We decided to remove the $Z + \text{jets}$ background from the fit.
- Because it has only about one event for all the categories together, see the cutflow table on the [backup slides](#).

Summary

- We studied a new background model by merging backgrounds together.
- The model fit using analytical function seems to describe background templates.
- AZH samples are ready [JIRA](#)., and DAOD request is almost [done](#)
- I started looking at the optimization procedures.
- The bug on the systematic code is fixed, but now there's a problem with PRW.

Thank you!

Event Selection

QUADRUPLET SELECTION	<ul style="list-style-type: none"> - Require at least one quadruplet of leptons consisting of two pairs of same-flavour opposite-charge leptons fulfilling the following requirements: - p_T thresholds for three leading leptons in the quadruplet: 20, 15 and 10 GeV - At most 1 calo-tagged, stand-alone or silicon-associated muon per quadruplet - Leading di-lepton mass requirement: $50 < m_{12} < 106$ GeV - Sub-leading di-lepton mass requirement: $m_{\text{threshold}} < m_{34} < 115$ GeV - $\Delta R(\ell, \ell') > 0.10$ for all lepton pairs in the quadruplet - Remove quadruplet if alternative same-flavour opposite-charge di-lepton gives $m_{\ell\ell} < 5$ GeV - Keep all quadruplets passing the above selection
ISOLATION NEEDS UPDATING	<ul style="list-style-type: none"> - Contribution from the other leptons of the quadruplet is subtracted - Muon track isolation ($\Delta R = 0.30$): $\Sigma p_T/p_T < 0.15$ - Muon calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_T/p_T < 0.30$ - Electron track isolation ($\Delta R = 0.20$): $\Sigma E_T/E_T < 0.15$ - Electron calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_T/E_T < 0.20$
IMPACT PARAMETER SIGNIFICANCE	<ul style="list-style-type: none"> - Apply impact parameter significance cut to all leptons of the quadruplet - For electrons: $d_0/\sigma_{d_0} < 5$ - For muons: $d_0/\sigma_{d_0} < 3$
BEST QUADRUPLET	<ul style="list-style-type: none"> - If more than one quadruplet has been selected, choose the quadruplet with highest Higgs decay ME according to channel: 4μ, $2e2\mu$, $2\mu2e$ and $4e$
VERTEX SELECTION	<ul style="list-style-type: none"> - Require a common vertex for the leptons: - $\chi^2/\text{ndof} < 5$ for 4μ and < 9 for others decay channels

Additional slides

Cutflow table

	$qqZZ^*$	$ggZZ^*$	$qqZZ^* \text{ EW}$	$t\bar{t}V$	VVV	$Z + \text{jets}$	WZ	$t\bar{t}$	Expected
4ℓ	2516.52 ± 4.50	348.96 ± 0.71	32.85 ± 0.28	8.60 ± 0.05	19.04 ± 0.11	10.35 ± 8.28	5.12 ± 0.34	2.68 ± 0.20	2944.13 ± 14.48
b-veto	2451.45 ± 4.47	341.64 ± 0.70	30.67 ± 0.27	2.14 ± 0.02	18.48 ± 0.11	10.35 ± 8.28	4.96 ± 0.33	1.77 ± 0.15	2861.46 ± 14.34
$N_{\text{jets}}^{\text{central}} = 0$	1625.63 ± 3.87	212.93 ± 0.56	3.10 ± 0.11	0.41 ± 0.01	9.40 ± 0.07	9.69 ± 8.27	2.85 ± 0.26	0.78 ± 0.08	1864.79 ± 13.23
$p_T^{\text{dR}} > 30 \text{ & metSig} > 2.0$	82.73 ± 0.94	21.12 ± 0.18	0.51 ± 0.03	0.33 ± 0.01	7.22 ± 0.07	0.32 ± 0.32	1.69 ± 0.19	0.53 ± 0.07	114.44 ± 1.80
$p_T^{\text{dR}} > 15 \text{ & metSig} > 1.5$	258.04 ± 1.74	58.30 ± 0.29	0.99 ± 0.04	0.37 ± 0.01	8.17 ± 0.07	1.82 ± 1.54	2.13 ± 0.21	0.65 ± 0.07	330.47 ± 3.99
$N_{\text{jets}}^{\text{meta}} \geq 1$	825.82 ± 2.24	128.71 ± 0.43	27.56 ± 0.25	1.73 ± 0.02	9.08 ± 0.08	0.66 ± 0.35	2.11 ± 0.21	0.99 ± 0.12	996.67 ± 3.71
$p_T^{\text{dR}} > 10 \text{ & metSig} > 3.5$	10.46 ± 0.23	2.25 ± 0.06	0.30 ± 0.02	0.93 ± 0.02	4.68 ± 0.06	0.01 ± 0.01	0.76 ± 0.13	0.63 ± 0.11	20.02 ± 0.63
$p_T^{\text{dR}} > 0 \text{ & metSig} > 2.5$	51.55 ± 0.66	10.66 ± 0.13	1.35 ± 0.05	1.25 ± 0.02	6.19 ± 0.07	0.01 ± 0.01	1.09 ± 0.15	0.75 ± 0.11	72.83 ± 1.19

- The ZZ^* estimated to be 97% of the total background.
- 85% from $qqZZ$, 11% from $ggZZ$, and 1% from $qqZZ(EW)$.
- The rest of backgrounds combined are $\sim 3\%$.