XYZ states: window to subatomic structure

Sun Zhentian (孙振田)

IHEP

Sep. 11, 2020

Frontier of human knowledge

Micro-scale: What are we composed of? Whether matter is infinitely dividable? Cosmic scale: Where are we from? Where to go?

Well accommodated Atoms

nucleus

electron

Atom Particles

proton neutron

0

门捷列夫 **Dmitri Ivanovich Mendeleev** Дми́трий Ива́нович Менделе́ев 1834-1907

3

Quark model

Murray Gell-Mann 1929-2019

'quark'

1964 u,d, s quarks Proposed, SU(3)

George Zweig 1937-

'Ace'

Meson: Integer Spin two quarks

Baryon:

Half Integer Spin

Three quarks

Discovery of c quark

SU(3) Octet of Vector \rightarrow SU(4) 16-plet

SU(3) Octet of hadron \rightarrow SU(4) 20-plet

丁肇中(Samuel Ting)

Burton Richter

exotic states - XYZ states

- The exotic states: Molecule, Tetraquark, Hadro-quarkonium, Glueball, Hybrid, Penta-Quark
- Here are two pics from two papers

N. Brambilla, S. Eidelman, C. Hanhart et al. / Physics Reports 873 (2020) 1–154

Part I: Y states $e^+e^- \rightarrow \psi(1^{--})$ (well established charmonium) $\rightarrow ...$ or $e^+e^- \rightarrow Y(1^{--})$ (Charmonium like, maybe exotic) $\rightarrow ...$

Y(4260),Y(4360) : some history

Y(4260) PDG value without BES result: Mass= 4251±9 MeV width= 120±12 MeV

Y(4360) PDG value without BES result: mass= 4346±6 MeV Width= 102±10 MeV

Why Y(4260) exotic?

Y(4260), Y(4360) don't have corresponding
 level with (cc̄) potential model.
 J/ψ(1S), ψ(3686)(2S), ψ(4040)(3S), ψ(4415)(4S).
 ψ(3770)(1D), ψ(4160)(2D)

Cornell potential: $V^{(0)}(r) = -\frac{\kappa}{r} + \sigma r + C.$

Why Y(4260) exotic?

□Y(4260), Y(4360) doesn't correspond to a peak in R scan spectrum.

Y(4260) has much smaller coupling to

open charm compare with observed ψ states,

which is not an expected behavior of charmonium in open charm range

Cross section of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

Y(4260):Mass=4251±9 MeV, width= 120±12 MeV → Y(4220):M = (4222.0±3.1±1.4) MeV, Γ = (44.1±4.3±2.0) MeV Y(4360):Mass=4346±6 MeV, width 102±10 MeV → M = (4320.0±10.4±7) MeV, Γ = (101.4±25±10) MeV

3.86fb-1 at 8 energy points taken at 2017, and 3.9fb-1 at 8 energy points taken at 2019 can give more precise result.

Cross section of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$

The measured cross section compared with $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ Satisfy the isospin symmetry.

In the fitting, the parameter of Y(4320) are fixed. And the measured parameter of Y(4220) also agree with that in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$.

Y(4220):M = (4220.4 \pm 2.4 \pm 2.3) MeV, Γ = (46.2 \pm 4.7 \pm 2.1) MeV

Y(4230) in other channels

The mass of Y(4230) now is much smaller than the threshold of DD1(2420)~4285MeV, this reduce the probability (DD1(2420)) molecular description but can't rule it out.

Tetraquark mode (qQ)($\overline{q}\overline{Q}$) = 4.244 GeV (sQ)($\overline{s}\overline{Q}$) = 4.466 GeV

Coupled channels fit

•The fit give χ^2 /ndf=0.97, which indicate that the two same states assumption is reasonable.

•There are multi-solution problem. Each column Corresponding to one solution.

→Ambiguity in couple fraction between Y states and these channels.

Extraction of Γ_{ee} of Y(4230)

- Γ_{ee} is the decay width of Y(4230) to e⁺e⁻.
- Different model predicted Γ_{ee}: Hybrid: ~40eV (CPC40, 081002(2006)) DD1(2420) Molecule: ~500eV (PRD94, 054035(2016))

4 ³S₁ *cc*̄ states: ~1KeV (PRD79,094004 (2009)) 3 ³D₁ *cc*̄ states: ~44eV

• In Arxiv:2002.05641, they performed a fit to all the Y(4230) decay channels

$$\begin{split} \Gamma_{tot}(s) =& \Gamma_{J/\psi\pi\pi}(s) + \Gamma_{h_c\pi\pi}(s) + \Gamma_{D\bar{D}^*\pi}(s) + \Gamma_{\psi(2S)\pi\pi}(s) + \Gamma_{\omega\chi_{c0}} + \Gamma_{J/\psi\eta} \\ &+ \Gamma_{D_s^*\bar{D}_s^*} + \Gamma_{D\bar{D}} + \Gamma_{D\bar{D}^*} + \Gamma_{D^*\bar{D}^*} + \Gamma_0. \end{split}$$

$$\Gamma_{e^+e^-} =& \frac{4\alpha}{3} \frac{g_0^2}{M_X}.$$

$$\sigma_{e^+e^- \to X(4260) \to f} =& \frac{3\pi}{k^2} |\frac{\sqrt{s\Gamma_{ee}\Gamma_f}}{s - M_X^2 + i\sqrt{s}\Gamma_{tot}(s)} + \sum_i \frac{c_i e^{i\phi_i}}{s - M_i^2 + i\sqrt{s}\Gamma_i} + \tilde{c}|^2, \end{split}$$

Result : Γ_{ee} =1.302KeV with Ds*Ds* , Γ_{ee} =0.466KeV without Ds*Ds* Exclude the Hybrid or pure ³D₁ model

$e^+e^- \rightarrow open charm mesons$

Y(4230) has much smaller coupling to open charm compare with observed
 ψ states, which is not an expected behavior of charmonium states.

About the fitting-Unitarity

• Sum of Breit-Wigners doesn't satisfy the S-matrix's unitarity, while K-matrix does.

Timofey Uglov

arXiv:1611.07582v2

Fitting Belle's open charm result with K-matrix method

Fitted well with only $oldsymbol{\psi}$ states

Part II: Zc states Isospin non-zero charmonium like states

Z_c(4430)⁻

 \Box The first Zc state is observed by Belle in B \rightarrow K $\pi^-\psi'$

M=4433 \pm 4 \pm 2 MeV Γ =45 $^{+18+30}_{-13-13}$ MeV

J^p prefer to be 1⁺

Other Zc states observed in B decay \Box Zc(4050),Zc(4250) in B \rightarrow K $\pi^{-}\chi_{c1}$, Belle, PRD 78 (2008) 072004 \Box Zc(4200) in B \rightarrow K $\pi^{-}J/\psi$, Belle, PRD 90 (2014) 112009

$Zc(3900)^{\pm,0}$ in $\pi^{+}\pi^{-}J/\psi$, $\pi^{0}\pi^{0}J/\psi$

The mass of Zc(3900) is in opencharm range and strongly coupled to charm → it should contain a (ccbar) pair.
Zc(3900)[±] is charged → need at least two more quarks to form a charge unit.

Z_c(3900) is a four quark states? Tetraquark states? Phys. Rev. D89,054019(2014); Phys. Rev. D90,054009(2014); Zc(3900) is near the threshold of (DD*) \rightarrow A molecular states? Arxiv:1303.6608, 1304.2882 OR other explanation?

Zc(3900), Zc(4020)

$\Gamma(Z_c(3900) \rightarrow DD^*) / \Gamma(Z_c(3900) \rightarrow \pi J/\psi)$

- This ratio is important for discriminating the Zc model.
- Experiment result without interference considered $\Gamma(Zc \rightarrow DD^*)/\Gamma(Zc \rightarrow \pi J/\psi) = 6.2 \pm 2.7$
- Theoretical work, PRD94, 094017 (2016)

$$\begin{split} \succ \text{TetraQuark} \qquad & \Gamma(Z_c^+ \to J/\psi + \pi^+) = (4.3^{+0.7}_{-0.6}) \text{ MeV}, \\ & \Gamma(Z_c^+ \to \eta_c + \rho^+) = (8.0^{+1.2}_{-1.0}) \text{ MeV}, \\ & \Gamma(Z_c^+ \to \bar{D}^0 + D^{*+}) \propto 10^{-9} \text{ MeV}, \\ & \Gamma(Z_c^+ \to \bar{D}^{*0} + D^+) \propto 10^{-9} \text{ MeV}. \end{split}$$

≻Molecule

$$\begin{split} &\Gamma(Z_c^+ \to J/\psi + \pi^+) = (1.8 \pm 0.3) \text{ MeV}, \\ &\Gamma(Z_c^+ \to \eta_c + \rho^+) = (3.2^{+0.5}_{-0.4}) \text{ MeV}, \\ &\Gamma(Z_c^+ \to \bar{D}^0 + D^{*+}) = (10.0^{+1.7}_{-1.4}) \text{ MeV}, \\ &\Gamma(Z_c^+ \to \bar{D}^{*0} + D^+) = (9.0^{+1.6}_{-1.3}) \text{ MeV}. \end{split}$$

Determination of J^p of Zc(3900)

DPWA with helicity formalism taking $\pi^+\pi^-J/\psi$ as final states **D**Simultaneous fit to data samples at 4.23GeV and 4.26GeV **D** $\pi^+\pi^-$ spectrum is parameterized with σ , f₀(980), f₂(1270) and f₀(1370)

Determination of J^p of Zc(3900)

• Zc is parameterized with Flatte formula

$$BW(s, M, g'_1, g'_2) = \frac{1}{s - M^2 + i[g'_1\rho_1(s) + g'_2\rho_2(s)]}$$

• M=(3901.5±2.7±38.0)MeV, g₁'=(0.075±0.006±0.025)GeV², g₂'/g₁'=27.1±2.0±1.9

Which corresponding to pole Mass= $(3881.2 \pm 4.2 \pm 52.7)$ MeV, pole width= $(51.8 \pm 4.6 \pm 36.0)$ MeV

- J^p of Zc favor to be 1⁺ with statistical significance larger than7σ over other quantum numbers
- The significance of Zc(4020) process is found to be 3σ

PWA of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$

Simultaneous fit of 4 energy points near Y(4230).

J^p of Zc⁰ favor to be 1⁺ confirmed

 $\sigma(e^+e^- \rightarrow \pi^0 Z_c^0 \rightarrow \pi^0 \pi^0 J/\psi)$

Parameters	Solution I	Solution II	
$p_0(c^2/\text{MeV})$	0.0 ± 11.3		
p_1	$(1.8 \pm 1.9) \times 10^{-2}$		
$M(R)$ (MeV/ c^2)	4231.9 ± 5.3		
$\Gamma_{\rm tot}(R)$ (MeV)	41.2 ± 16.0		
$\Gamma_{\rm ee}\mathcal{B}_{R\to\pi^0 Z_c(3900)^0}({\rm eV})$	0.53 ± 0.15	0.22 ± 0.25	
$\phi(R)$	$(-103.9 \pm 33.9)^{\circ}$	$(112.7 \pm 43.0)^{\circ}$	

• A hint of correlation between Y(4220) and Zc(3900)

Evidence of $e^+e^- \rightarrow \pi Z_c^{(\prime)}, Z_c^{(\prime)} \rightarrow \rho^{\pm}\eta_c$

Nine $η_c$ channels are used to reconstruct $η_c$. **After the** $η_c$ and ρ mass window, a hint of Z_c (3900) peak can be seen on the recoiled mass of the bachelor π.

The blue histogram is η_c sideband. Z_c parameter are fixed to latest measurement.

□Strong evidence of Zc(3900) →ρη_c is observed at Vs=4.23GeV, with statistical significance 4.3σ(3.9σ including systematic uncertainty)
 □No significant Zc'(4020)→ρη_c observed. (statistical significance 1.0σ)

 $R_{Z_c} = Br(Z_c \rightarrow \rho \eta_c) / Br(Z_c \rightarrow \pi J/\psi)$

TABLE III. Comparison of the measured $R_{Z_c(3900)}$ and $R_{Z_c(4020)}$ with the theoretical predictions.

Ratio	Measurement	Tetraquark	Molecule
$R_{Z_c(3900)}$	2.3 ± 0.8 [29]	230 ⁺³³⁰ ₋₁₄₀ [12]	$0.046^{+0.025}_{-0.017}$ [12]
		$0.27^{+0.40}_{-0.17}$ [12]	1.78 ± 0.41 [17]
		0.66 [13]	6.84×10^{-3} [18]
		0.56 ± 0.24 [14]	0.12 [19]
		0.95 ± 0.40 [15]	
		1.08 ± 0.88 [16]	
		1.28 ± 0.37 [17]	
		1.86 ± 0.41 [17]	
$R_{Z_{c}(4020)}$	<1.2 [4]	$6.6^{+56.8}_{-5.8}$ [12]	$0.010^{+0.006}_{-0.004}$ [12]

BESIII result Theoretical prediction

Lineshape at different energy points

The line shape of Zc agree Better with Zc as molecule.

Challenge in the PWA of XYZ data

Ambiguity in ππ parametrization:
 Sum of Breit-wigners, N/D method, K-matrix method.
 Different method causing big difference to Zc result.

- Parameterization of Zc: BW, Flatte, Theoretical model dependent line-shape.
- Coherently understanding of all energy points and all data channels.

Part III: X(3872)

About X(3872)

□ Most recent measurement of mass/width by LHCb: arXiv:2005.13419 Breit-wigner

 $m_{\chi_{c1}(3872)} = 3871.695 \pm 0.067 \pm 0.068 \pm 0.010 \,\mathrm{MeV}$

 $\Gamma_{\rm BW}=1.39\pm0.24\pm0.10\,{\rm MeV}$

• Very close to threshold : $M(D^0 \overline{D}^{*0})=3871.70\pm0.11$ MeV

Determination of the absolute branching fractions of X(3872) decays

• PRD.100.094003(2019)

Fitting to the measured branching fraction give by different Collaborations.

The average branching fraction of X(3872) decay.

		χ _{c1} (3872) DE	CAY MODES	
	Mode		Fraction (Γ_i/Γ)	
Γ1	e^+e^-			
Γ2	$\pi^+\pi^- J/\psi(1S)$		> 3.2 %	
Г ₃	$ ho^0 J/\psi(1S)$			
Γ ₄	$\omega J/\psi(1S)$		> 2.3 %	
Γ ₅	$D^0 \overline{D}{}^0 \pi^0$		>40 %	
Г _б	$D^{*0} D^0$		>30 %	
Γ ₇	$\gamma \gamma$			
Г ₈				
وا	D^+D^-	DDC		
10	$\gamma \chi_{c1}$	PDG		
11	$\gamma \chi_{c2}$			
12	$\pi^{\circ}\chi_{c2}$		> 0.0 %	
13	$\pi^0 \chi_{c1}$		> 2.8 %	
- 14 Гаг	$\sim 1/2b$		$> 7 \times 10^{-3}$	
Γ ₁₆	$\gamma \psi(2S)$		> 4 %	
Γ ₁₇	$\pi^{+}\pi^{-}n_{c}(1S)$		not seen	
Γ10	$\pi^{+}\pi^{-}\chi_{c1}$		not seen	
	$p\overline{p}$		not seen	
19				

Parameter index	Decay mode	Branching fraction
1	$X(3872) \rightarrow \pi^+\pi^- J/\psi$	$(4.1^{+1.9}_{-1.1})\%$
2	$X(3872) \rightarrow D^{*0}\bar{D}^0 + \text{c.c.}$	$(52.4^{+25.3}_{-14.3})\%$
3	$X(3872) \rightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
4	$X(3872) \rightarrow \gamma \psi(3686)$	$(2.4^{+1.3}_{-0.8})\%$
5	$X(3872) \rightarrow \pi^0 \chi_{c1}$	$(3.6^{+2.2}_{-1.6})\%$
6	$X(3872) \rightarrow \omega J/\psi$	$(4.4^{+2.3}_{-1.3})\%$
7	$B^+ \rightarrow X(3872)K^+$	$(1.9 \pm 0.6) \times 10^{-4}$
8	$B^0 \rightarrow X(3872)K^0$	$(1.1^{+0.5}_{-0.4}) \times 10^{-4}$
	$X(3872) \rightarrow$ unknown	$(31.9^{+18.1}_{-31.5})\%$

X(3872) exclusive decay modes evidence of X(3872) $\rightarrow \gamma J/\psi$

PRL124, 242001 (2020)

TABLE I. Relative branching ratios and UL on branching ratios compared with $X(3872) \rightarrow \pi^+\pi^- J/\psi$ [18,27], where systematic uncertainties have been taken into account.

Mode	Ratio	UL
$\gamma J/\psi$	0.79 ± 0.28	
$\gamma \psi'$	-0.03 ± 0.22	< 0.42
$\gamma D^0 \overline{D^0}$	0.54 ± 0.48	< 1.58
$\pi^0 D^0 \overline{D^0}$	-0.13 ± 0.47	< 1.16
$D^{*0}\bar{D^0} + { m c.c.}$	11.77 ± 3.09	
$\gamma D^+ D^-$	$0.00^{+0.48}_{-0.00}$	< 0.99
$\omega J/\psi$	$1.6^{+0.4}_{-0.3} \pm 0.2$ [18]	
$\pi^0 \chi_{c1}$	$0.88^{+0.33}_{-0.27} \pm 0.10$ [27]	

Evidence of X(3872) $\rightarrow \gamma J/\psi$

- Improved uplimit of $R_{\psi} = \frac{B[X(3872) \rightarrow \gamma \psi']}{B[X(3872) \rightarrow \gamma J \psi]} < 0.59$
- Previous measurement of R_ψ BaBar: 3.4±1.4 LHCb: 2.46±0.64±0.29 Belle: <2.1 (CL. 90%)
- If BaBar or LHCb's result are correct, X(3872) prefer to be a charmonium
- If the result of BESIII is correct, X(3872) prefere to be molecule or a combination of molecule and charmonium.

Observation of X(3872) $\rightarrow \pi^0 \chi_{c1}(1P)$

PRL122,202001 (2019)

Data sets used:
 9.0fb⁻¹ for 4.15<E_{cm}<4.30 GeV
 0.7fb⁻¹ for 4.00<E_{cm}<4.15 GeV
 2.8fb⁻¹ for 4.30<E_{cm}<4.60 GeV

□ With in range of 4.15< E_{cm} <4.30 GeV For the sum of events in all the three χ_{cJ} range, a clear X(3872) signal is seen with events number=16. 9^{+5.2}_{-4.5}, and Significance= 4.8 σ

D No evidence of X(3872) in other E_{cm}

Observation of X(3872) $\rightarrow \pi^0 \chi_{c1}(1P)$

37

Comparison between experiment and theory

 $\Box \quad \text{If we use the previous fitted} \\ Br(X(3872) \rightarrow \pi^0 \chi_{c1})$

Parameter index	Decay mode	Branching fraction
1	$X(3872) \rightarrow \pi^+\pi^- J/\psi$	$(4.1^{+1.9}_{-1.1})\%$
2	$X(3872) \rightarrow D^{*0}\bar{D}^0 + \text{c.c.}$	$(52.4^{+25.3}_{-14.3})\%$
3	$X(3872) \rightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
4	$X(3872) \rightarrow \gamma \psi(3686)$	$(2.4^{+1.3}_{-0.8})\%$
5	$X(3872) \rightarrow \pi^0 \chi_{c1}$	$(3.6^{+2.2}_{-1.6})\%$

□ If X(3872) were the $\chi_{c1}(2p)$ state of charmonium, then From the estimation of [Dubynskiy, Voloshin, PRD 77, 014013 (2008)], $\Gamma(X(3872) \rightarrow \pi^0 \chi_{cJ}) \sim 0.06 \ keV$ Which would imply an unrealistically small $\Gamma_{TOT}(X(3872)) \sim 1.7 \ keV$

\Box So this measurement disfavor the $\chi_{c1}(2p)$ interpretation of the X(3872).

e⁺e⁻ \rightarrow γX(3872), X(3872) \rightarrow π⁺π⁻J/ψ

□BESIII observed $e^+e^- \rightarrow \gamma X(3872)$, $X(3872) \rightarrow \pi^+\pi J/\psi$. □ $e^+e^- \rightarrow \gamma X(3872)$ → Charge parity of X(3872)=+1. □It seems that X(3872) is from the radiative transition of Y(4260)

 $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \omega J/\psi$

(1). Cross section measurement of $e^+e^- \rightarrow \gamma X(3872)$ for (mid) $\omega J/\psi$ and (right) $\pi^+\pi^- J/\psi$ channel

(2). Simultaneous fit to the cross section with a single Breit-Wigner resonance

$$M[Y(4200)] = 4200.6^{+7.9}_{-13.3} \pm 3.0 \text{ MeV}/c^{2}$$

$$\Gamma[Y(4200)] = 115^{+38}_{-26} \pm 12 \text{ MeV}$$

$$\mathcal{R} = \frac{\mathcal{B}[X(3872) \to \omega J/\psi]}{\mathcal{B}[X(3872) \to \pi^{+}\pi^{-}J/\psi]} = 1.6^{+0.4}_{-0.3} \pm 0.2$$

prospect

• At the summer of 2019, BEPCII has made a small upgrade to increase the beam energy up to 2.45GeV (Ecm=4.9 GeV). And the upgrade of luminosity by a factor of 2 is under discussion

- BESIII has taken more data points around E_{cm} =4.23GeV and above 4.6GeV. More precise cross section shape can be obtained.
- And more states can be searched in higher energy region. Search for Zcs, Zc(4430),Y(4660) at BESIII

Summary

- A lot of observation of structures from experiment
- More precise measurement of states parameters
- More decay channels observed
- Now we have more constrains for the theoretical models.

• 1777(Oxygen named) \rightarrow 1869(the periodic table of

elements) \rightarrow 1897(electron discovered) \rightarrow 1918(proton discovered) \rightarrow 1932(neutron discovered)

• Which stage are we at?