XYZ states：window to subatomic structure

Sun Zhentian（孙振田）

IHEP
Sep．11， 2020

Frontier of human knowledge

Micro-scale: What are we composed of? Whether matter is infinitely dividable?

Cosmic scale: Where are we from? Where to go?

Well accommodated Atoms

Quark model

Murray Gell-Mann 1929-2019
'quark'

1964
u,d, s quarks Proposed, SU(3)

George Zweig 1937-
'Ace'

Meson:
Integer Spin two quarks

Baryon:
Half Integer Spin Three quarks

Discovery of c quark

SU(3) Octet of Vector \rightarrow SU(4) 16-plet

$\mathrm{SU}(3)$ Octet of hadron $\rightarrow \mathrm{SU}(4)$ 20-plet

Burton Richter

exotic states - XYZ states

- The exotic states: Molecule, Tetraquark, Hadro-quarkonium, Glueball, Hybrid, Penta-Quark
- Here are two pics from two papers

N. Brambilla, S. Eidelman, C. Hanhart et al. / Physics Reports 873 (2020) 1-154

> | Part I: Y states |
| :--- |
| $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi\left(1^{--}\right)($well established charmonium $) \rightarrow$... |
| or |
| $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}\left(1^{-}\right)($Charmonium like, maybe exotic $) \rightarrow$... |

$Y(4260), Y(4360)$: some history

Y(4360) PDG value without BES result:
mass $=4346 \pm 6 \mathrm{MeV}$
Width $=102 \pm 10 \mathrm{MeV}$

$$
Y(4260) \sim Y(4230) \sim Y(4220)
$$

Why $Y(4260)$ exotic?

$\square Y(4260), Y(4360)$ don't have corresponding level with ($c \bar{c}$) potential model. $\mathrm{J} / \psi(1 \mathrm{~S}), \boldsymbol{\psi}(3686)(2 \mathrm{~S}), \boldsymbol{\psi}(4040)(3 \mathrm{~S}), \psi(4415)(4 \mathrm{~S})$. $\psi(3770)(1 \mathrm{D}), \psi(4160)(2 \mathrm{D})$

Cornell potential: $V^{(0)}(r)=-\frac{\kappa}{r}+\sigma r+C$.

9

Why $Y(4260)$ exotic?

$\square \mathrm{Y}(4260), \mathrm{Y}(4360)$ doesn't correspond to a peak in R scan spectrum.

$\square \mathrm{Y}(4260)$ has much smaller coupling to
open charm compare with observed ψ states, which is not an expected behavior of charmonium in open charm range

Cross section of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-J} / \psi$

Belle: ee $\rightarrow Y_{\text {ISR }} \pi^{+} \pi^{-} \mathrm{J} / \Psi$
Phys. Rev. Lett. 110, 252002(2013)

$\mathrm{Y}(4260):$ Mass=4251 $\pm 9 \mathrm{MeV}$, width $=120 \pm 12 \mathrm{MeV} \rightarrow \mathrm{Y}(4220): \mathrm{M}=(4222.0 \pm 3.1 \pm 1.4) \mathrm{MeV}, \quad \Gamma=(44.1 \pm 4.3 \pm 2.0) \mathrm{MeV}$ $\mathrm{Y}(4360):$ Mass $=4346 \pm 6 \mathrm{MeV}$, width $102 \pm 10 \mathrm{MeV} \quad \rightarrow \quad \mathrm{M}=(4320.0 \pm 10.4 \pm 7) \mathrm{MeV}, \quad \Gamma=(101.4 \pm 25 \pm 10) \mathrm{MeV}$
$3.86 \mathrm{fb}-1$ at 8 energy points taken at 2017 , and $3.9 \mathrm{fb}-1$ at 8 energy points taken at 2019 can give more precise result.

Cross section of e $\mathrm{e}^{+} \rightarrow \pi^{0} \pi^{0} \mathrm{~J} / \psi$

The measured cross section compared with $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-J} / \psi$ Satisfy the isospin symmetry.

In the fitting, the parameter of $Y(4320)$ are fixed. And the measured parameter of $Y(4220)$ also agree with that in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-\mathrm{J}} / \psi$.
$\mathrm{Y}(4220): \mathrm{M}=(4220.4 \pm 2.4 \pm 2.3) \mathrm{MeV}, \quad \Gamma=(46.2 \pm 4.7 \pm 2.1) \mathrm{MeV}$

$Y(4230)$ in other channels

The mass of $Y(4230)$ now is much smaller than the threshold of DD1(2420)~4285MeV, this reduce the probability (DD1(2420)) molecular description but can't rule it out.

Tetraquark mode
$(q Q)(\bar{q} \bar{Q})=4.244 \mathrm{GeV}$
$(s Q)(\bar{s} \bar{Q})=4.466 \mathrm{GeV}$

Coupled channels fit

arXiv:1805.03565

Extraction of $\Gamma_{e e}$ of $\mathrm{Y}(4230)$

- $\Gamma_{e e}$ is the decay width of $\mathrm{Y}(4230)$ to $\mathrm{e}^{+} \mathrm{e}^{-}$.
- Different model predicted $\Gamma_{e e}$: Hybrid: $\sim 40 \mathrm{eV}($ (CPC40, 081002(2006))

DD1(2420) Molecule: ~500eV (PRD94, 054035(2016))
$\mathbf{4}^{\mathbf{3}} \boldsymbol{S}_{\mathbf{1}} \boldsymbol{c} \overline{\boldsymbol{c}}$ states: $\sim \mathbf{1 K e V}$ (PRD79,094004 (2009))
$3{ }^{3} \mathrm{D}_{1} \boldsymbol{c} \bar{c}$ states: $\sim 44 \mathrm{eV}$

- In Arxiv:2002.05641, they performed a fit to all the $\mathrm{Y}(4230)$ decay channels

$$
\begin{aligned}
\Gamma_{t o t}(s)= & \Gamma_{J / \psi \pi \pi}(s)+\Gamma_{h_{c} \pi \pi}(s)+\Gamma_{D \bar{D}^{*} \pi}(s)+\Gamma_{\psi(2 S) \pi \pi}(s)+\Gamma_{\omega \chi_{c 0}}+\Gamma_{J / \psi \eta} \\
& +\Gamma_{D_{z}^{*} \bar{D}_{s}^{*}}+\Gamma_{D \bar{D}}+\Gamma_{D \bar{D}^{*}}+\Gamma_{D^{*} \bar{D}^{*}}+\Gamma_{0} . \\
\Gamma_{e^{+} e^{-}}= & \frac{4 \alpha}{3} \frac{g_{0}^{2}}{M_{X}} .
\end{aligned}
$$

$$
\sigma_{e^{+} e^{-} \rightarrow X(4260) \rightarrow f}=\frac{3 \pi}{k^{2}}\left|\frac{\sqrt{s \Gamma_{e e} \Gamma_{f}}}{s-M_{X}^{2}+i \sqrt{s \Gamma_{t o t}(s)}}+\sum_{i} \frac{c_{i} e^{i \phi_{i}}}{s-M_{i}^{2}+i \sqrt{s \Gamma_{i}}}+\tilde{c}\right|^{2}
$$

Result : $\Gamma_{e e}=1.302 \mathrm{KeV}$ with Ds*Ds*,$\Gamma_{e e}=0.466 \mathrm{KeV}$ without Ds*Ds*
Exclude the Hybrid or pure ${ }^{3} \mathrm{D}_{1}$ model

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ open charm mesons

$\square \mathrm{Y}(4230)$ has much smaller coupling to open charm compare with observed ψ states, which is not an expected behavior of charmonium states.

About the fitting-Unitarity

- Sum of Breit-Wigners doesn't satisfy the S-matrix's unitarity, while K-matrix does.

Timofey Uglov
arXiv:1611.07582v2
Fitting Belle's open charm result with K -matrix method

Fitted well with only ψ states

Part II: Zc states

Isospin non-zero charmonium like states

$Z_{c}(4430)^{-}$

\square The first Zc state is observed by Belle in $\mathrm{B} \rightarrow \boldsymbol{\operatorname { C o }} \boldsymbol{\pi}^{-} \boldsymbol{\psi}^{\prime}$
$\mathrm{M}=4433 \pm 4 \pm 2 \mathrm{MeV}$
$\Gamma=45_{-13}^{+18+30} \mathrm{MeV}$
$\square \mathrm{Jp}^{\mathrm{p}}$ prefer to be $\mathbf{1}^{+}$

Other Zc states observed in B decay
$\square \mathrm{Zc}(4050), \mathrm{Zc}(4250)$ in $\mathrm{B} \rightarrow \mathrm{K} \boldsymbol{\pi}^{-} \chi_{c 1}$, Belle, PRD 78 (2008) 072004
$\square \mathrm{Zc}(4200)$ in $\mathrm{B} \rightarrow \mathrm{K} \boldsymbol{\pi}^{-} \mathrm{J} / \boldsymbol{\psi}$, Belle, PRD 90 (2014) 112009

$\mathbf{Z c}(\mathbf{3 9 0 0})^{ \pm, 0}$ in $\pi^{+} \pi^{-} \mathbf{J} / \Psi, \pi^{0} \pi^{0} \mathrm{~J} / \Psi$

-The mass of $\mathrm{Zc}(3900)$ is in opencharm range and strongly coupled to charm \rightarrow it should contain a (ccbar) pair.
$\cdot Z c(3900)^{ \pm}$is charged \rightarrow need at least two more quarks to form a charge unit.
$Z_{c}(3900)$ is a four quark states?
TTetraquark states?
Phys. Rev. D89,054019(2014);
Phys. Rev. D90,054009(2014);
$\square \mathrm{Zc}(3900)$ is near the threshold of (DD*) \rightarrow A molecular states?
Arxiv:1303.6608, 1304.2882
OR other explanation?

Zc(3900), Zc(4020)

$\Gamma\left(\mathrm{Z}_{\mathrm{c}}(3900) \rightarrow \mathrm{DD}^{*}\right) / \Gamma\left(\mathrm{Z}_{\mathrm{c}}(3900) \rightarrow \pi \mathrm{J} / \psi\right)$

- This ratio is important for discriminating the Zc model.
- Experiment result without interference considered

$$
\Gamma\left(\mathrm{Zc} \rightarrow \mathrm{DD}^{*}\right) / \Gamma(\mathrm{Zc} \rightarrow \pi J / \psi)=6.2 \pm 2.7
$$

- Theoretical work, PRD94, 094017 (2016)
$>$ TetraQuark

$$
\begin{aligned}
\Gamma\left(Z_{c}^{+} \rightarrow J / \psi+\pi^{+}\right) & =\left(4.3_{-0.6}^{+0.7}\right) \mathrm{MeV}, \\
\Gamma\left(Z_{c}^{+} \rightarrow \eta_{c}+\rho^{+}\right) & =\left(8.0_{-1.0}^{+1.2}\right) \mathrm{MeV}, \\
\Gamma\left(Z_{c}^{+} \rightarrow \bar{D}^{0}+D^{*+}\right) & \propto 10^{-9} \mathrm{MeV}, \\
\Gamma\left(Z_{c}^{+} \rightarrow \bar{D}^{* 0}+D^{+}\right) & \propto 10^{-9} \mathrm{MeV} .
\end{aligned}
$$

>Molecule

$$
\begin{aligned}
\Gamma\left(Z_{c}^{+} \rightarrow J / \psi+\pi^{+}\right) & =(1.8 \pm 0.3) \mathrm{MeV}, \\
\Gamma\left(Z_{c}^{+} \rightarrow \eta_{c}+\rho^{+}\right) & =\left(3.2_{-0.4}^{+0.5}\right) \mathrm{MeV}, \quad \text { prefered } \\
\Gamma\left(Z_{c}^{+} \rightarrow \bar{D}^{0}+D^{*+}\right) & =\left(10.0_{-1.4}^{+1.7}\right) \mathrm{MeV}, \\
\Gamma\left(Z_{c}^{+} \rightarrow \bar{D}^{* 0}+D^{+}\right) & =\left(9.0_{-1.3}^{+1.6}\right) \mathrm{MeV} .
\end{aligned}
$$

Determination of Jp of $\mathrm{Zc}(3900)$

PRL 119, 072001 (2017)

$\mathrm{Vs}=4.23 \mathrm{GeV}$

-PWA with helicity formalism taking $\pi^{+} \pi \pi^{-J} / \psi$ as final states
\square Simultaneous fit to data samples at 4.23 GeV and 4.26 GeV
$\square \pi^{+} \pi$ spectrum is parameterized with $\sigma, f_{0}(980), f_{2}(1270)$ and $f_{0}(1370)$

Determination of Jp of $\mathrm{Zc}(3900)$

- Zc is parameterized with Flatte formula

$$
B W\left(s, M, g_{1}^{\prime}, g_{2}^{\prime}\right)=\frac{1}{s-M^{2}+i\left[g_{1}^{\prime} \rho_{1}(s)+g_{2}^{\prime} \rho_{2}(s)\right]}
$$

- $\mathrm{M}=(3901.5 \pm 2.7 \pm 38.0) \mathrm{MeV}, \mathrm{g}_{1}{ }^{\prime}=(0.075 \pm 0.006 \pm 0.025) \mathrm{GeV}^{2}$,

$$
\mathrm{g}_{2}^{\prime} / \mathrm{g}_{1}^{\prime}=27.1 \pm 2.0 \pm 1.9
$$

Which corresponding to pole Mass= $(3881.2 \pm 4.2 \pm 52.7) \mathrm{MeV}$, pole width $=(51.8 \pm 4.6 \pm 36.0) \mathrm{MeV}$

- J^{p} of Zc favor to be 1^{+}with statistical significance larger than7 $\mathbf{\sigma}$ over other quantum numbers
- The significance of $\mathbf{Z c}(\mathbf{4 0 2 0})$ process is found to be $\mathbf{3 \sigma}$

PWA of $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\pi}^{0} \mathbf{J} / \boldsymbol{\psi}$

PRD 102, 012009 (2020)

$M_{\mathrm{r}^{2} / \operatorname{lig}_{\varphi}}\left(\mathrm{GeV} / \mathrm{C}^{2}\right)$

$M_{\mathrm{r}^{2} \mathrm{~K}^{0}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

Simultaneous fit of 4 energy points near Y(4230).
\mathbf{J}^{p} of $\mathbf{Z c}^{\mathbf{0}}$ favor to be $\mathbf{1}^{+}$confirmed

$\sigma\left(e^{+} e^{-} \rightarrow \pi^{0} Z_{c}^{0} \rightarrow \pi^{0} \pi^{0} \mathrm{~J} / \psi\right)$

- A hint of correlation between $\mathrm{Y}(4220)$ and $\mathrm{Zc}(3900)$

Parameters	Solution I	Solution II
$p_{0}\left(c^{2} / \mathrm{MeV}\right)$	0.0 ± 11.3	
p_{1}	$(1.8 \pm 1.9) \times 10^{-2}$	
$M(R)\left(\mathrm{MeV} / c^{2}\right)$	4231.9 ± 5.3	
$\left.\Gamma_{\text {tot }}(R)\right)(\mathrm{MeV})$	$41.2 \pm$	16.0
$\Gamma_{\mathrm{ee}} \mathcal{B}_{R \rightarrow \pi^{0} Z_{c}(3900)^{\circ}}(\mathrm{eV})$	0.53 ± 0.15	0.22 ± 0.25
$\phi(R)$	$(-103.9 \pm 33.9)^{\circ}$	$(112.7 \pm 43.0)^{\circ}$

Evidence of $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \boldsymbol{\pi} \boldsymbol{Z}_{\boldsymbol{c}}^{(1)}, \boldsymbol{Z}_{\boldsymbol{c}}^{(\prime)} \rightarrow \boldsymbol{\rho}^{ \pm} \boldsymbol{\eta}_{\boldsymbol{c}}$

\square Nine η_{c} channels are used to reconstruct η_{c}.
\square After the η_{c} and ρ mass window, a hint of $Z_{c}(3900)$ peak can be seen on the recoiled mass of the bachelor π.
\square The blue histogram is η_{c} sideband. Z_{c} parameter are fixed to latest measurement.
\square Strong evidence of $\mathrm{Zc}(3900) \rightarrow \rho \eta_{c}$ is observed at $\mathrm{Vs}=4.23 \mathrm{GeV}$, with statistical
significance 4.3σ (3.9σ including systematic uncertainty)
\square No significant $Z^{\prime}(4020) \rightarrow \rho \eta_{c}$ observed. (statistical significance 1.0 σ)

$\mathrm{R}_{\mathrm{Zc}}=\operatorname{Br}\left(\mathrm{Z}_{\mathrm{c}} \rightarrow \boldsymbol{\rho} \boldsymbol{\eta}_{\boldsymbol{c}}\right) / \operatorname{Br}\left(\mathrm{Z}_{\mathrm{c}} \rightarrow \boldsymbol{\pi} \mathrm{J} / \boldsymbol{\psi}\right)$

TABLE III. Comparison of the measured $R_{Z_{c}(3900)}$ and $R_{Z_{c}(4020)}$ with the theoretical predictions.

Ratio	Measurement	Tetraquark	Molecule
$R_{Z_{c}(3900)}$	$2.3 \pm 0.8[29]$	$230_{-140}^{+330}[12]$	$0.046_{-0.017}^{+0.025}[12]$
		$0.27_{-0.17}^{+0.40}[12]$	$1.78 \pm 0.41[17]$
		$0.66[13]$	$6.84 \times 10^{-3}[18]$
		$0.56 \pm 0.24[14]$	$0.12[19]$
		$0.95 \pm 0.40[15]$	
		$1.08 \pm 0.88[16]$	
		$1.28 \pm 0.37[17]$	
		$1.86 \pm 0.41[17]$	
$R_{Z_{c}(4020)}$	$<1.2[4]$	$6.6_{-5.8}^{+56.8}[12]$	$0.010_{-0.004}^{+0.006}[12]$

[^0]A.Esposito et.al., PLB 746(2015), 194-201

Tetraquak Type-1
Ietraquak rype-1

Lineshape at different energy points

The line shape of Zc agree Better with Zc as molecule.

Challenge in the PWA of XYZ data

- Ambiguity in $\pi \pi$ parametrization:

Sum of Breit-wigners, N/D method, K-matrix method. Different method causing big difference to Zc result.

- Parameterization of Zc: BW, Flatte, Theoretical model dependent line-shape.
- Coherently understanding of all energy points and all data channels.

Part III: X(3872)

About X(3872)

- X(3872) was first observed in 2003 by Belle, PRL 91.262001 (2003)
$\ln \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \mathbf{J} / \boldsymbol{\psi}$
- JPC $\mathbf{1}^{++}$(CDF, LHCb)
\square Most recent measurement of mass/width by LHCb: arXiv:2005.13419 Breit-wigner

$$
\begin{aligned}
& m_{\chi_{c 1}(3872)}=3871.695 \pm 0.067 \pm 0.068 \pm 0.010 \mathrm{MeV} \\
& \Gamma_{\mathrm{BW}}=1.39 \pm 0.24 \pm 0.10 \mathrm{MeV}
\end{aligned}
$$

\bullet Very close to threshold : $\mathrm{M}\left(D^{0} \bar{D}^{* 0}\right)=3871.70 \pm 0.11 \mathrm{MeV}$

Determination of the absolute branching fractions of $X(3872)$ decays

- PRD.100.094003(2019)

Fitting to the measured branching fraction give by different Collaborations.
The average branching fraction of $X(3872)$ decay.
$\chi_{c 1}(3872)$ DECAY MODES

Mode		Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$e^{+} e^{-}$	
Γ_{2}	$\pi^{+} \pi^{-} J / \psi(1 S)$	$>3.2 \%$
Γ_{3}	$\rho^{0} J / \psi(1 S)$	
Γ_{4}	$\omega J / \psi(1 S)$	$>2.3 \%$
Γ_{5}	$D^{0} \overline{D^{0}} \pi^{0}$	$>40 \%$
Γ_{6}	$\bar{D}^{* 0} D^{0}$	$>30 \%$
Γ_{7}	$\gamma \gamma$	
Γ_{8}	$D^{0} \bar{D}^{0}$	
Γ_{9}	$D^{+} D^{-}$	
Γ_{10}	$\gamma \chi_{c 1}$	
Γ_{11}	$\gamma \chi_{c 2}$	
Γ_{12}	$\pi^{0} \chi_{c 2}$	
Γ_{13}	$\pi^{0} \chi_{c 1}$	
Γ_{14}	$\pi^{0} \chi_{c 0}$	
Γ_{15}	$\gamma J / \psi$	
Γ_{16}	$\gamma \psi(2 S)$	
Γ_{11}	$\pi^{+} \pi^{-} \eta_{c}(1 S)$	
Γ_{18}	$\pi^{+} \pi^{-} \chi_{c 1}$	
Γ_{19}	$p \bar{p}$	

Parameter index	Decay mode	Branching fraction
1	$X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi$	$\left(4.1_{-1.1}^{+1.9}\right) \%$
2	$X(3872) \rightarrow D^{* 0} \bar{D}^{0}+$ c.c.	$\left(52.4_{-14.3}^{+25.3}\right) \%$
3	$X(3872) \rightarrow \gamma J / \psi$	$\left(1.1_{-0.6}^{+0.6}\right) \%$
4	$X(3872) \rightarrow \gamma \psi(3686)$	$\left(2.4_{-0.8}^{+1.3}\right) \%$
5	$X(3872) \rightarrow \pi^{0} \chi_{c 1}$	$\left(3.6_{-1.6}^{+2.6} \%\right.$
6	$X(3872) \rightarrow \omega J / \psi$	$\left(4.4_{-1.3}^{+2.3}\right) \%$
7	$B^{+} \rightarrow X(3872) K^{+}$	$(1.9 \pm 0.6) \times 10^{-4}$
8	$B^{0} \rightarrow X(3872) K^{0}$	$\left(1.1_{-0.4}^{+0.5}\right) \times 10^{-4}$
	$X(3872) \rightarrow$ unknown	$\left(31.9_{-31.5}^{+18.1}\right) \%$

X(3872) exclusive decay modes evidence of $\mathrm{X}(3872) \rightarrow \gamma J / \psi$

PRL124, 242001 (2020)
TABLE I. Relative branching ratios and UL on branching ratios compared with $X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi[18,27]$, where systematic uncertainties have been taken into account.

Mode	Ratio	UL
$\gamma J / \psi$	0.79 ± 0.28	\ldots
$\gamma \psi^{\prime}$	-0.03 ± 0.22	<0.42
$\gamma D^{0} \overline{D^{0}}$	0.54 ± 0.48	<1.58
$\pi^{0} D^{0} \overline{D^{0}}$	-0.13 ± 0.47	<1.16
$D^{* 0} \overline{D^{0}}+$ c.c.	11.77 ± 3.09	\cdots
$\gamma D^{+} D^{-}$	$0.00_{-0.00}^{+0.48}$	<0.99
$\omega J / \psi$	$1.6_{-0.3}^{+0.4} \pm 0.2[18]$	\cdots
$\pi^{0} \chi_{c 1}$	$0.88_{-0.27}^{+0.33} \pm 0.10[27]$	\cdots

Evidence of $\mathrm{X}(3872) \rightarrow \gamma \mathrm{J} / \psi$

- Improved uplimit of
$\boldsymbol{R}_{\psi}=\frac{B\left[X(3872) \rightarrow \gamma \psi^{\prime}\right]}{B[X(3872) \rightarrow \gamma J \psi]}<0.59$
- Previous measurement of \boldsymbol{R}_{ψ}

BaBar: 3.4 ± 1.4
LHCb: $2.46 \pm 0.64 \pm 0.29$
Belle: <2.1 (CL. 90\%)

- If BaBar or LHCb's result are correct, X(3872) prefer to be a charmonium
- If the result of BESIII is correct, $X(3872)$ prefere to be molecule or a combination of molecule and charmonium.

Observation of $\mathrm{X}(3872) \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\chi}_{\boldsymbol{c 1}}(\mathbf{1 P})$

PRL122,202001 (2019)
\square Data sets used:
$9.0 \mathrm{fb}^{-1}$ for $4.15<\mathrm{E}_{\mathrm{cm}}<4.30 \mathrm{GeV}$
$0.7 \mathrm{fb}^{-1}$ for $4.00<\mathrm{E}_{\mathrm{cm}}<4.15 \mathrm{GeV}$
$2.8 \mathrm{fb}^{-1}$ for $4.30<\mathrm{E}_{\mathrm{cm}}<4.60 \mathrm{GeV}$
\square With in range of $4.15<\mathrm{E}_{\mathrm{cm}}<4.30 \mathrm{GeV}$ For the sum of events in all the three $\chi_{c J}$ range, a clear $\mathrm{X}(3872)$ signal is seen with events number $=16.9_{-4.5}^{+5.2}$, and Significance= 4.8σ
\square No evidence of $X(3872)$ in other $E_{c m}$

Observation of $\mathrm{X}(3872) \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\chi}_{\boldsymbol{c 1}}(\mathbf{1 P})$

$\square 10.8_{-3.1}^{+3.8} \mathrm{X}(3872)$ signal observed in $\chi_{c 1}$ range with statistical significance $\mathbf{5 . 2 \sigma}$
\square The branching ratio

$$
\begin{aligned}
& R_{J}=B\left(X \rightarrow \pi^{0} \chi_{c 1}\right) / B\left(X \rightarrow \pi^{+} \pi^{-} J / \psi\right) \\
& \mathbf{R}_{0}<19(90 \% \text { U.L. }) \\
& \mathbf{R}_{1}=\mathbf{0 . 8 8}+-0.23 \pm 0.10 \\
& \mathbf{R}_{2}<\mathbf{1 . 1}(90 \% \text { U.L. })
\end{aligned}
$$

Comparison between experiment and theory

\square If we use the previous fitted

$$
\operatorname{Br}\left(X(3872) \rightarrow \pi^{0} \chi_{c 1}\right)
$$

Parameter index	Decay mode	Branching fraction
1	$X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi$	$\left(4.1_{-1.1}^{+1.9}\right) \%$
2	$X(3872) \rightarrow D^{* 0} \bar{D}^{0}+$ c.c.	$\left(52.4_{-1.4 .3}^{+2.3}\right) \%$
3	$X(3872) \rightarrow \gamma J / \psi$	$\left(1.1_{-0.3}^{+0.6}\right) \%$
4	$X(3872) \rightarrow \gamma \psi(3686)$	$\left(2.4_{-0.8}^{+1.3}\right) \%$
5	$X(3872) \rightarrow \pi^{0} \chi_{c 1}$	$\left(3.6_{-1.6}^{+2.2}\right) \%$

\square If $X(3872)$ were the $\chi_{c 1}(2 p)$ state of charmonium, then
From the estimation of [Dubynskiy, Voloshin, PRD 77, 014013 (2008)],

$$
\Gamma\left(X(3872) \rightarrow \pi^{0} \chi_{c J}\right) \sim 0.06 \mathrm{keV}
$$

Which would imply an unrealistically small

$$
\Gamma_{\text {тот }}(X(3872)) \sim 1.7 \mathrm{keV}
$$

\square So this measurement disfavor the $\chi_{c 1}(2 p)$ interpretation of the $X(3872)$.

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathrm{X}(3872), \mathrm{X}(3872) \rightarrow \pi^{+} \pi \mathrm{J} / \psi$

\square BESIII observed $e^{+} e^{-} \rightarrow \gamma X(3872), X(3872) \rightarrow \pi^{+} \pi J / \psi$.
$\square e^{+} e^{-} \rightarrow \gamma X(3872) \rightarrow$ Charge parity of $X(3872)=+1$.
\square It seems that $X(3872)$ is from the radiative transition of $Y(4260)$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma(3872) \rightarrow \gamma \omega \mathrm{J} / \psi$

(1). Cross section measurement of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathrm{X}$ (3872) for (mid) $\omega \mathrm{J} / \psi$ and (right) $\pi^{+} \pi^{-} \mathrm{J} / \psi$ channel
(2). Simultaneous fit to the cross section with a single Breit-Wigner resonance

$$
\begin{aligned}
& M[Y(4200)]=4200.6_{-13.3}^{+7.9} \pm 3.0 \mathrm{MeV} / c^{2} \\
& \Gamma[Y(4200)]=115_{-26}^{+38} \pm 12 \mathrm{MeV} \\
& \mathcal{R}=\frac{\mathcal{B}[X(3872) \rightarrow \omega J / 4]}{\mathcal{B}\left[X(3872) \rightarrow \pi^{+} \pi^{-J / \psi]}\right.}=1.6_{-0.3}^{+0.4} \pm 0.2
\end{aligned}
$$

prospect

- At the summer of 2019, BEPCII has made a small upgrade to increase the beam energy up to $2.45 \mathrm{GeV}(\mathrm{Ecm}=4.9 \mathrm{GeV})$. And the upgrade of luminosity by a factor of 2 is under discussion

- BESIII has taken more data points around $\mathrm{E}_{\mathrm{cm}}=4.23 \mathrm{GeV}$ and above 4.6 GeV .

More precise cross section shape can be obtained.

- And more states can be searched in higher energy region.

Search for $\mathrm{Zcs}, \mathrm{Zc}(4430), \mathrm{Y}(4660)$ at BESIII

Summary

- A lot of observation of structures from experiment
- More precise measurement of states parameters
- More decay channels observed
- Now we have more constrains for the theoretical models.
- 1777(Oxygen named) $\rightarrow 1869$ (the periodic table of
 elements) $\rightarrow 1897$ (electron discovered) $\rightarrow 1918$ (proton discovered) $\rightarrow 1932$ (neutron discovered)
- Which stage are we at?

[^0]: BESIII result
 Theoretical prediction

