

Status of crystal ECAL simulation and Plans

Yong Liu (IHEP)
CEPC Calorimeter Software Meeting
Sep. 2nd, 2020

Crystal ECAL: detector layout

- Long bars: 1×40cm, double-sided readout
 - Super cell: 40×40cm
- Crossed arrangement in adjacent layers
 - Reduction of #channels
- Timing at two sides: positioning along bar
- Key issue
 - Multiplicity of incident particles (e.g. jets)
 - Separation power; confusion impact
- Tools
 - Digitisation of each long bar
 - Time stamps, #photons detected
 - Event display and reconstruction

Status: simulation software for crystal ECAL

- Geant4 stand-alone simulation
 - Crystal ECAL + Scintillator-Steel HCAL
 - Simple geometry: like prototypes in beamtests
 - Basic ECAL unit: 1cm³ crystal cubes
 - Tools developed
 - Digitizers for crystal/scintillator and SiPM readout: photo-statistics + ADC precision
 - Group every 40 crystal cubes (1cm³) along each row as to read a long bar $(40 \times 1 \times 1 \text{ cm}^3)$
 - Optimisation studies (done)
 - Longitudinal depth: energy leakage correction
 - Transverse size: separation of gamma/pion0

General status: simulation software for crystal ECAL

- CEPCsoft: working horse for the milestone CEPC CDR
 - Implementation of 2 designs for crystal ECAL
 - 40cm long bars
 - Reconstruction algorithm needs further development
 - 1cm³ cubes: already implemented but with minor bugs (zero signal)?
 - Mostly compatible with PFA
 - Event display: "Druid"
 - Based on the tool which "groups" 40 cubes into a long bar
 - Visualise events with slcio files
 - First impression on shower profiles

Event display with long bars

After digitisation and require Edep > 1 MIP

Reconstruction of hit positions using time stamps at two ends

- Implementation of 1cm³ cubes as basic detector units
- Group 40 cubes into a 40cm long bar for readout/reconstruction

Implementation in CEPC detector geometry

- Super cells with 40cm long bars: implemented in the CEPCsoft
- Crossed layout in alternating layers

Digitisation of long crystal bars

- Focus on the time digitisation
 - 2 time stamps at each end of a crystal bar: dependent on the hit positions
 - Based on the stand-alone simulation of a single bar with complete optical processes (Yuexin)

Including scintillation, light propagation, attenuation → realistic modelling of time stamps and #photons detected at both ends

Time stamp (mean) vs hit positions

Event display of two 5GeV gammas (20cm away) hitting at the very same bar

Key issues for discussions

- Validation of the long crystal bar simulation: key for digitisation
 - Build Geant4 full simulation with optical photon process (Yong, Baohua)
 - A long bar with 2 SiPMs at both ends
 - Realistic properties of BGO (scintillation, transmission) and SiPMs
 - #Photons (detected) in time domain
 - Signal pulse from two ends of the long bar
 - Design and perform a dedicated experiment (Yong, Baohua)
 - To check the typical SiPM pulses at both two ends
 - Position dependence -> Overlap? Possibility to separate?
 - BGO bars: to be discussed with SIC, e.g. length, price (transverse 1x1cm^2)
 - Test stands with light sources and XYZ stage
 - Use cosmic muons, laser/LED, radiative sources

Key issues for discussions

- CEPCSW
 - Implementation of ECAL and HCAL
 - Geometry, digitisation tools, event display (?), ...
 - Road map: for discussions
 - Option 1
 - 1st stage: implement crystal cubes (1cm^3) for ECAL (highest priority)
 - Go through the whole reconstruction chain and compare PFA performance; potentials of compensation (e/h~1) for better resolution
 - 2nd stage: use the same designs as for CEPC CDR baseline?
 - To reproduce the merit figures in CDR as the validation process
 - Option 2: go first with CDR for validation and later crystal (steady progress)

Key issues for discussions

- CEPCSW: performance studies
 - Neutral pion reconstruction
 - In single hadron showers, and in jets
 - Software compensation in PFA: energy deposition density with high granularity
 - Implemented in PandoraPFA, by CALICE teams
 - Follow-up studies? (Arbor, Pandora, APRIL)
 - Dual readout scheme of crystals
 - Similar idea as for software compensation: e/h~1
 - Detect Cherenkov light for EM cores, scintillation of EM+hadronic, determine the e/h factor for each event -> improve hadronic energy resolution

•

Discussions on the plans

- Implementation of ECAL and HCAL
 - Geometry, digitisation tools, event display (?), ...
 - Task force: discussions for detailed arrangements
 - Time needed: estimate?
- Performance studies
 - Pion0 reconstruction, esp. within hadron shower and jets
 - PFA performance with crystals
 - With software compensation, or dual readout of crystals
 - Estimate of time and person power needed

•