Gravitational Production of Hidden Photon Dark Matter and XENON1T Excess

Yong Tang (汤勇)

University of Chinese Academy of Sciences (UCAS)

Low Energy Recoils from Deep Underground Peking University, Sep 26, 2020

Based on Nakayama, Tang, arXiv:2006.13159

Contents

- Introduction
- Hidden Photon
- Production
 - Thermal Production
 - Gravitational Production
- A model
- Summary

Introduction

- XENON1T dark matter experiment
- Dual-phase with a liquid xenon (LXe) target
- S1, prompt scintillation light

Yong TANG(UCAS)

Introduction

- XENON1T, arXiv:2006.09721, "Observation of Excess Electronic Recoil Events in XENON1T"
- Interpretations
 - Tritium
 - Solar axion
 - Bosonic DM
 - DM

Yong TANG(UCAS)

Hidden Photon

• Also called dark photon A_{μ}

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} m^2 A_\mu A^\mu + \frac{\epsilon}{2} F_{\mu\nu} \gamma^{\mu\nu} - \frac{1}{4} \gamma_{\mu\nu} \gamma^{\mu\nu}$$
$$\overline{\gamma}_\mu = \gamma_\mu - \epsilon A_\mu, \overline{A}_\mu = \sqrt{1 - \epsilon^2} A_\mu, \overline{m} = \frac{m}{\sqrt{1 - \epsilon^2}}$$

- We have $\mathcal{L} = -\frac{1}{4} \overline{F}_{\mu\nu} \overline{F}^{\mu\nu} - \frac{1}{2} \overline{m}^2 \overline{A}_{\mu} \overline{A}^{\mu} - \frac{1}{4} \overline{\gamma}_{\mu\nu} \overline{\gamma}^{\mu\nu}$
- Because of the kinetic mixing,

 hidden photon can couple to charged fermions in the standard model.

 $\epsilon e A_{\mu} \psi \gamma^{\mu} \psi$

Yong TANG(UCAS)

5

Absorption of Hidden photon

120

- ~ 2.7 keV hidden photon
- DM candidate
- monoenergetic peak
- photoelectric effect

An, Pospelov, Pradler&Ritz, PLB(2015)

 $\epsilon \simeq 7 \times 10^{-16}$

Yong TANG(UCAS)

Gravitational Production and XENON17

Peking 6

Constraints

Yong TANG(UCAS)

Gravitational Production and XENON1T

Peking 7

Production

- A viable production of keV DM is not trivial,
- Astrophysical constraints are very strong for keV DM produced from thermal plasma, Lyman- α gives the lower bound, m > 5.3 keV (1911.09073)
- Non-thermal production is needed.
- Since gravitational interaction is universal and unavoidable, it would be reasonable to consider how it can affect the production.
- We shall mainly discuss the production during inflation era where the contribution is usually the dominant part.

Yong TANG(UCAS)

Formalism

• We start with the following Lagrangian

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{4} g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} - \frac{1}{2} m^2 g^{\mu\nu} A_{\mu} A_{\nu} \right],$$

- In Friedmann-Robertson-Walker background $ds^{2} = -dt^{2} + a^{2}(t)\delta_{ij}dx^{i}dx^{j} = a^{2}(\tau)\left(-d\tau^{2} + \delta_{ij}dx^{i}dx^{j}\right)$
- Rewrite Lagrangian as

$$S = \int d\tau d^3x \left[-\frac{1}{4} \eta^{\mu\rho} \eta^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} - \frac{1}{2} a^2 m^2 \eta^{\mu\nu} A_{\mu} A_{\nu} \right].$$

• The kinetic mixing has negligible effects on the production in the relevant parameter range.

Yong TANG(UCAS)

Formalism

• Working in Fourier space

$$A_{\mu}(\vec{x},t) = \int \frac{d^3k}{(2\pi)^3} A_{\mu}(\vec{k},t) e^{i\vec{k}\cdot\vec{x}}.$$

The action is

$$S = S_T + S_L,$$

$$S_T = \int \frac{d^3 k d\tau}{(2\pi)^3} \frac{1}{2} \left(|\partial_\tau \vec{A}_T|^2 - (k^2 + a^2 m^2) |\vec{A}_T|^2 \right),$$

$$S_L = \int \frac{d^3 k d\tau}{(2\pi)^3} \frac{1}{2} \left(\frac{a^2 m^2}{k^2 + a^2 m^2} |\partial_\tau A_L|^2 - a^2 m^2 |A_L|^2 \right).$$

- 2 transverse + 1 longitudinal modes
- Refs. Ema, Nakayama, Tang, 1903.10973(JHEP) Graham, Mardon, Rajendra, 1504.02102(PRD)
 Yong TANG(UCAS)

Transverse modes

• Expand

$$\vec{A}_T(\vec{k},\tau) = \sum_{h=\pm} \left[\mathcal{A}_T(\vec{k},\tau)\vec{\epsilon}_h a_{\vec{k},h} + \mathcal{A}_T^*(\vec{k},\tau)\vec{\epsilon}_h^* a_{-\vec{k},h}^\dagger \right],$$

 $\left[a_{\vec{k},h}, a_{\vec{k}',h'}^{\dagger}\right] = (2\pi)^{3} \delta_{hh'} \delta(\vec{k} - \vec{k}'), \quad \left[a_{\vec{k},h}, a_{\vec{k}',h'}\right] = \left[a_{\vec{k},h}^{\dagger}, a_{\vec{k}',h'}^{\dagger}\right] = 0.$

• The mode function $\mathcal{A}_T(\vec{k},\tau)$ has EoM

$$\mathcal{A}_T'' + (k^2 + a^2 m^2) \mathcal{A}_T = 0.$$

- During inflation $\mathcal{A}_{T}(k,\tau) = e^{\frac{i(2\nu+1)\pi}{4}} \frac{1}{\sqrt{2k}} \sqrt{\frac{-\pi k\tau}{2}} H_{\nu}^{(1)}(-k\tau), \ \nu^{2} \equiv \frac{1}{4} - \frac{m^{2}}{H^{2}},$
- With boundary condition $\mathcal{A}_T(k,\tau) \rightarrow \frac{1}{\sqrt{2k}} e^{-ik\tau}$

Yong TANG(UCAS)

Longitudinal mode

• Longitudinal mode is different

$$S_L = \int \frac{d^3 k d\tau}{(2\pi)^3} \frac{1}{2} \left(\frac{a^2 m^2}{k^2 + a^2 m^2} |\partial_\tau A_L|^2 - a^2 m^2 |A_L|^2 \right)$$

Define

$$\widetilde{A_L} \equiv f(\tau)A_L, \ f(\tau) \equiv \frac{am}{\sqrt{k^2 + a^2m^2}}$$

$$S_L = \int \frac{d^3 k d\tau}{(2\pi)^3} \frac{1}{2} \left(|\partial_\tau \widetilde{A_L}|^2 - \omega_L^2 |\widetilde{A_L}|^2 \right), \ \omega_L^2 = \frac{a^2 m^2}{f^2} - \frac{f''}{f} \equiv k^2 + m_L^2$$

• Then, we can work with

 $m_L^2 = a^2 m^2 - rac{k^2}{k^2 + a^2 m^2} \left(rac{a''}{a} - rac{a'^2}{a^2} rac{3a^2 m^2}{k^2 + a^2 m^2}
ight)$

$$\widetilde{A}_{L}(\vec{k},\tau) = \widetilde{\mathcal{A}}_{L}(\vec{k},\tau)a_{\vec{k}} + \widetilde{\mathcal{A}}_{L}^{*}(\vec{k},\tau)a_{-\vec{k}}^{\dagger}$$

$$\widetilde{\mathcal{A}_L''} + \omega_L^2(k,\tau)\widetilde{\mathcal{A}_L} = 0, \ \omega_L^2 = k^2 + m_L^2.$$

Yong TANG(UCAS)

 \bullet

Energy density

• The energy-momentum tensor is defined as

$$T_{\mu\nu} = \frac{-2}{\sqrt{-g}} \frac{\delta(\sqrt{-g\mathcal{L}})}{\delta g^{\mu\nu}}.$$

 $T_{\mu\nu} = g^{\rho\sigma}F_{\mu\rho}F_{\nu\sigma} - \frac{1}{4}g_{\mu\nu}g^{\rho\alpha}g^{\sigma\beta}F_{\rho\sigma}F_{\alpha\beta} + m^2\left(A_{\mu}A_{\nu} - \frac{1}{2}g_{\mu\nu}g^{\rho\sigma}A_{\rho}A_{\sigma}\right)$

• Energy density $ho = \langle 0 | T_{00} | 0
angle$

$$\rho = \rho_T + \rho_L,$$

$$\rho_T = 2 \int \frac{d^3k}{(2\pi)^3} \frac{1}{2a^4} \left[|\mathcal{A}'_T(k)|^2 + (k^2 + a^2m^2)|\mathcal{A}_T(k)|^2 \right],$$

$$\rho_L = \int \frac{d^3k}{(2\pi)^3} \frac{1}{2a^4} \left[\frac{a^2m^2}{k^2 + a^2m^2} |\mathcal{A}'_L(k)|^2 + a^2m^2 |\mathcal{A}_L(k)|^2 \right],$$

Yong TANG(UCAS)

Solution

• Useful parametrization $\mathcal{A}_{T}(k,\tau) = \frac{\alpha_{k}(\tau)}{\sqrt{2\omega_{k}}} e^{-i\int^{\tau} \omega_{k}(\tau')d\tau'} + \frac{\beta_{k}(\tau)}{\sqrt{2\omega_{k}}} e^{i\int^{\tau} \omega_{k}(\tau')d\tau'},$ • where $\omega_{k} \equiv \sqrt{k^{2} + a^{2}m^{2}}$ and $\alpha'_{k}(\tau) = \frac{\omega'_{k}}{2\omega_{k}} e^{2i\int^{\tau} \omega_{k}(\tau')d\tau'}\beta_{k}, \ \beta'_{k}(\tau) = \frac{\omega'_{k}}{2\omega_{k}} e^{-2i\int^{\tau} \omega_{k}(\tau')d\tau'}\alpha_{k}$ $|\alpha_{k}(\tau)|^{2} - |\beta_{k}(\tau)|^{2} = 1$

Then the energy density is expressed as

$$a^{4}(\tau)\rho_{T}(\tau) = 2 \int \frac{d^{3}k}{(2\pi)^{3}} \omega_{k} f_{T}(k,\tau), \ f_{T}(k,\tau) = |\beta_{k}(\tau)|^{2}.$$

Abundance

• In term of the energy-to-entropy ratio

• $T_{\rm R}$ is the reheating temperature, $H_{\rm R}$ is the Hubble parameter $H_{\rm R} \sim T_{\rm R}^2/M_{\rm P}$ g_* is the relativistic degree of freedoms

Abundance

Peking 16

A Model

Yong TANG(UCAS)

Gravitational Production and XENON1T

Peking 17

Weyl Symmetry

• Weyl symmetry was referred to

 $g_{\mu\nu}(x) \to g'_{\mu\nu}(x) = e^{2\theta(x)}g_{\mu\nu}(x)$ $W_{\mu}(x) \to W'_{\mu}(x) = W_{\mu}(x) - \partial_{\mu}\theta(x)$

- First proposed by Weyl around 1919 in order to unify general relativity and electromagnetic interaction.
- Later Weyl modified it to

$$\begin{split} \psi(x) &\to \psi'(x) = e^{i\theta(x)}\psi(x) & \partial_{\mu} \to \partial_{\mu} - igW_{\mu} \\ W_{\mu}(x) &\to W'_{\mu}(x) = W_{\mu}(x) - \partial_{\mu}\theta(x) & \text{Gauge symmetry} \end{split}$$

• To describe electron after quantum mechanics.

Yong TANG(UCAS)

Weyl-Einstein Gravity

Covariant derivative

$$\partial_{\mu}g_{\rho\sigma} \to \left(\partial_{\mu} + 2W_{\mu}\right)g_{\rho\sigma}$$
$$D_{\mu} = \partial_{\mu} + qW_{\mu}$$

• The modified connection

$$\hat{\Gamma}^{\rho}_{\mu\nu} = \Gamma^{\rho}_{\mu\nu} + \left[W_{\mu}\delta^{\rho}_{\nu} + W_{\nu}\delta^{\rho}_{\mu} - W^{\rho}g_{\mu\nu} \right], \Gamma^{\rho}_{\mu\nu} = \frac{1}{2}g^{\rho\sigma} \left(\partial_{\mu}g_{\sigma\nu} + \partial_{\nu}g_{\mu\sigma} - \partial_{\sigma}g_{\mu\nu} \right)$$

• And the modified Ricci tensor and scalar \hat{R}

$$\hat{R}^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\hat{\Gamma}^{\rho}_{\sigma\nu} - \partial_{\nu}\hat{\Gamma}^{\rho}_{\sigma\mu} + \hat{\Gamma}^{\rho}_{\mu\tau}\hat{\Gamma}^{\tau}_{\sigma\nu} - \hat{\Gamma}^{\rho}_{\nu\tau}\hat{\Gamma}^{\tau}_{\sigma\mu}, \hat{R}_{\sigma\nu} = \hat{R}^{\rho}_{\sigma\rho\nu}, \hat{R} = g^{\sigma\nu}\hat{R}_{\sigma\nu}$$

Weyl-Einstein Gravity

- First consider the Weyl \hat{R} gravity $\mathcal{L} = \sqrt{-g} \left[\frac{1}{2} \phi^2 \hat{R} + \frac{1}{2} \zeta D^{\mu} \phi D_{\mu} \phi - \frac{1}{4g_W^2} F_{\mu\nu} F^{\mu\nu} - \lambda \phi^4 \right]$
- It is invariant under scaling transformation $g_{\mu\nu} \rightarrow g'_{\mu\nu} = f^2 g_{\mu\nu}$ $W_{\mu} \rightarrow W'_{\mu} = W_{\mu} - \partial_{\mu} \ln f$ $\phi \rightarrow \phi' = f^{-1} \phi$
- We have $\hat{\Gamma}^{\prime\rho}_{\mu\nu} = \hat{\Gamma}^{\rho}_{\mu\nu}, \hat{R}^{\prime\rho}_{\sigma\mu\nu} = \hat{R}^{\rho}_{\sigma\mu\nu}, D^{\prime}_{\mu}\phi^{\prime} = fD_{\mu}\phi$
- One can write in a familiar form by using

$$\hat{R} = R + 6W_{\mu}W^{\mu} + 6\nabla_{\mu}W^{\mu}, \nabla_{\mu}W^{\mu} = \frac{6}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}W^{\mu}\right)$$
$$\phi^{2}\hat{R} = \phi^{2}R - 6\partial_{\mu}\phi\partial^{\mu}\phi + 6D_{\mu}\phi D^{\mu}\phi$$

Yong TANG(UCAS)

Weyl-Einstein Gravity

- First consider the Weyl \hat{R} gravity $\mathcal{L} = \sqrt{-g} \left[\frac{1}{2} \phi^2 \hat{R} + \frac{1}{2} \zeta D^{\mu} \phi D_{\mu} \phi - \frac{1}{4g_W^2} F_{\mu\nu} F^{\mu\nu} - \lambda \phi^4 \right]$
- Einstein frame is set by $\phi^2 = 1$

$$\mathcal{L} = \sqrt{-g} \left[\frac{1}{2} R - \lambda - \frac{1}{4g_W^2} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \left(\zeta + 6 \right) W_\mu W^\mu \right]$$

- Massive W_{μ} with discrete symmetry, might be a dark matter candidate,
- However, inflation is not provided and extension is needed.

Inflation

- Inflation is a very attractive solution to many cosmic problems
 - flatness & horizon
 - conformal/Weyl symmetry
 - breaking uncertain yet

Yong TANG(UCAS)

Weyl \hat{R}^2 Gravity

- Now let us consider $\mathcal{L} = \sqrt{-g} \left| \frac{1}{2} \phi^2 \hat{R} + \frac{\alpha}{12} \hat{R}^2 + \frac{1}{2} \zeta D^{\mu} \phi D_{\mu} \phi - \frac{1}{4q_{W}^2} F_{\mu\nu} F^{\mu\nu} - \lambda \phi^4 \right|$
- We can introduce an auxiliary field χ

$$\sqrt{-g} \left[\frac{1}{2} \left(\phi^2 + \frac{\alpha}{3} \chi^2 \right) \hat{R} - \frac{\alpha}{12} \chi^4 + \frac{1}{2} \zeta D^{\mu} \phi D_{\mu} \phi - \frac{1}{4g_W^2} F_{\mu\nu} F^{\mu\nu} - \lambda \phi^4 \right]$$

- The equivalence can be shown with
- $\frac{\delta \mathcal{L}}{\delta \chi} = 0 \Rightarrow \chi^2 = \hat{R}$ • Fix to Einstein frame $\phi^2 + \frac{\alpha}{3}\chi^2 = 1$ $\phi = \sqrt{\frac{6}{\pm \zeta}} \sinh \frac{\pm \sigma}{\sqrt{6}}$

$$\frac{\mathcal{L}}{\sqrt{-g}} = \frac{1}{2}R + \frac{1}{2}\zeta D^{\mu}\phi D_{\mu}\phi - \frac{1}{4g_W^2}F_{\mu\nu}F^{\mu\nu} + 3W^{\mu}W_{\mu} - \frac{3}{4\alpha}\left(1 - \phi^2\right)^2 - \lambda\phi^4$$

YT, Y.L.Wu, arXiv:2006.02811

Ghilencea, arXiv:1906.11572

Ferreira et al,arXiv:1906.03415

Inflation

Summary

- XENON1T has observed an excess (3.5σ) in the electronic recoil events between 2 3 keV.
- New physics may provide possible explanations.
- Absorption of ~2-3 keV hidden photon DM.
- Such light DM can not be thermally produced, due to astrophysical bounds.
- Gravitational production is a viable mechanism.
- A model of hidden photon and inflation.