

Status and prospects of CDEX experiment

Нао Ма

Tsinghua University

On behalf of CDEX Collaboration

CJPL 中国锦屏地下实验室 China Jinping Underground Laboratory 清华大学·雅砻江流域水电开发有限公司

Low energy recoils from deep underground, Sep 26th, 2020

OUTLINE

- Introduction to CDEX
- Recent status of CDEX-1 and CDEX-10
- R&D of key technologies
- Future plan of CDEX @CJPL-II
- Summary

China Dark matter Experiment

http://cdex.ep.tsinghua.edu.cn/

- Formed in 2009;
- 11 institutions;
- ~70 people;
- Direct detection of light DM and ⁷⁶Ge double-β decay;
- P-type Point-Contact (PPC) Germanium detectors;
- Located in CJPL.

CDEX Experiment phases

- Pre-CDEX: 5g Ge Det. prepared since 2003 and started in 2005 in Y2L;
- CDEX-1: Development of PPC Ge detector, bkg understanding, since 2011;
- CDEX-10: Performances of Ge array detector immersed in LN₂, since 2016;
- CDEX-10X: Home-made Ge detector and Ge crystal growth;

China Jinping Underground Laboratory

http://cjpl.ep.tsinghua.edu.cn/

- •World's deepest underground lab, CJPL
 - •Near Xichang city, Sichuan Province, Southwest China
 - Constructed by Tsinghua U. and Yalong Hydropower Company in 2009-2010
 - •Two DM exp. (CDEX, PandaX)+LBF(radio-assay)operated now
 - •Extension project, DURF/CJPL-II, expected to be completed in 2022

Cheng et al., Annu. Rev. Nucl. Part. Sci. 2017. 67:231

1,000

1,500

2.000

2.500

CDEX-1 Status

- 2 sub-stages: CDEX-1A(prototype, 2011) \rightarrow 1B(upgraded, 2013);
- Traditional single-element ~1kg PPC Ge detector;
- Low-bkg Pb&Cu passive shield + NaI veto detector;
- Located in PE room at CJPL-I;
- Science run finished in 2018;

Layout of PE room, CJPL-I

CDEX-1 inside PE room

CDEX-1A&B: 1kg PPC Ge×2

CDEX-1A Results

 10^{-39}

 10^{-1}

 $^{10}_{V} \sigma_{\chi N}^{SI} (cm^2)$

10-42

CDMSlite (2

DEX-1 (201

6 7 8 910

 M_{γ} (GeV/c²)

5

CDEX-1 **This Work**

20

- >500 days run, \sim 336 kg·day dataset;
- Energy threshold: 475 eVee;
- Bulk/Surface disc. to cut events with slow risetime and partial charge collection;
- K/L X-rays from Cosmogenic nuclides to trace crystal history; (a)

PRD93, 092003, 2016

- SI sensitivity improved;
- SD best below 6 GeV then;

This Work

5 6 XENON10

7 8 910

 $M_{\sim}(GeV/c^2)$

20

30

 10^{-37}

10

3

30

CDEX-1A Results

- Axion (335.6 kg·day data) [PRD95, 052006, 2017]
 - Solar axions: CBRD processes and ⁵⁷Fe M1 transition;
 - ALPs: more stringent constraint below 1 keV;

8

CDEX-1A Results

- Axion (335.6 kg·day data) [PRD95, 052006, 2017]
 - Solar axions: CBRD processes and ⁵⁷Fe M1 transition;
 - ALPs: more stringent constraint below 1 keV;
- $0v\beta\beta$ (304 kg·day data)
 - Natural Ge crystal; $T_{1/2}^{0\nu} \ge 6.43 \times 10^{22} \text{ yr}, 90\% \text{ C.L.}$

[Science China PMA (2017) 60: 071011]

CDEX-1B Results

- Detector upgraded w/ lower JEFT noise and material bkg;
- >4 years run (Run-1&Run-2), >1200 kg·day exposure;
- Achieving 160 eVee energy threshold;
- Sensitivity improved and extending to 2 GeV/c^2 .

Detector	FWHM (pulser)		
CDEX-1A	130 eVee		
CDEX-1B	80 eVee		

[CPC 42, 023002, 2018]

Run-1 Time-integrated (TI) analysis

CDEX-10 Status

- Array detectors: 3 strings with 3 detectors each, ~10kg total;
- Direct immersion in LN₂;
- Prototype system for future hundred-kg to ton scale experiment
 - Light/radio-purer LN₂ replacing heavy shield i.e. Pb/Cu;
 - Arraying technology to scalable capability;

CDEX-10: ~10kg PPC Ge array

First Results from CDEX-10

- First results from 102.8 kg·day exposure w/ Eth 160eV;
- Bkg level: ~2 cpkkd @ 2-4 keV;
- New SI limit on 4-5 GeV/c²;

Data on hand from CDEX-1 and CDEX-10

× 30 _						
$\begin{array}{c} \overset{\text{rs}}{\text{T}} 25 \\ \overset{\text{rs}}{\text{T}} 20 \\ \overset{\text{L-Shell X-rays}}{\downarrow} 20 \\ \overset{\text{L-Shell X-rays}}{\downarrow} 15 \\ \overset{\text{fs}}{\text{T}} 10 \\ \overset{\text{fs}}{10 \\ \overset{\text{fs}}{10 \\ \overset{\text{fs}}{10 \\ \overset{\text{fs}}{10 \\ \overset{\text{fs}}{10 \atop \text$	Detector	CDEX-1A	CDEX-1B	CDEX-10		
				C10B	C10C	
	Analysis Threshold	475 eVee	160 eVee	160 eVee	300 eVee	
	Time span	~520	1527 day (~4.2year)	473 day	473 day	
0 2 4 6 8 1 Energy CDEX-1B	0 (keVee)	Live time	~365	1179.4 day	224.0 day	282.2 day
$ \begin{array}{c} 20 \\ 18 \\ 18 \\ 14 \\ 12 \\ 10 \\ 8 \\ 4^{45}\sqrt{5^{4}Mn} \\ 5^{55}Fe \ 5^{7}Co \ Cu \ Zn \\ 6^{66}Ga \\ 4 \\ 4 \\ 4^{1}\sqrt{5^{4}}Mn \\ 5^{5}Fe \ 5^{7}Co \ Cu \ Zn \\ 6^{66}Ga \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	Exposure (kg days)	335.6	1107.5	210.3	265.0	
	Background Level @0.2-0.5keVee	~4 cpkkd	~8 cpkkd	~2.5 cpkkd	~12 cpkkd	
	Background Level @2-4keVee	~3.5 cpkkd	~2 cpkkd	~2 cpkkd	~10 cpkkd	
$ \begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$						

CDEX-10

30

Physics beyond the WIMP-nucleon SI

- ✓ Annual Modulation
- ✓ sub-GeV WIMPs: Migdal effect/Bremsstrahlung
- ✓ WIMP-Electron scattering

Axion Like Particles / Solar Axion
Dark photon / Solar Dark photon

WIMPs: Annual Modulation analysis from CDEX-1B

CoGeNT 90%

Energy (keVee)

CDMS-II

CDEX-1B

- AM provide smoking-gun signatures for WIMPs independent of background modeling, while only requires background at relevant energy range is stable with time;
- The expected χN rates have distinctive AM features with maximum intensity in June and a period of one year due to Earth's motion relative to the galactic WIMP-halo.

[PRL 123:221301,2019]

sub-GeV WIMPs: Migdal effect analysis

- Time-Integrated Analysis with Migdal: 737.1 kg-d, w/ Eth 160 eVee;
- AM Analysis: 1107.5 kg-d, w/ Eth 250 eVee;
- Leading sensitivity in $m_{DM} \sim 50-180$ MeV;

[PRL 123:161301, 2019]

Solar Axions and Vector Bosonic DM: Ae coupling

[PRD 101:052003, 2020]

•737.1 kg-d, w/ Eth 160 eVee; Leading sensitivity in $m_{DM} < 800$ eV for Ge-based experiment;

Solar dark photon and dark photon DM from CDEX-10

[PRL 124:111301, 2020]

Ref: An, H. et. al., PRL, 111:041302 (2013).

CDEX Physics results summary

Physics Channels	Detectors	Analysis Threshold (eV)	Exposure (kg-day)	Publications
WIMP-nucleon SI	CDEX-1A	400	14.6	PRD 88, 052004, 2013
WIMP-nucleon SI	CDEX-20g	177	0.784	PRD 90, 032003, 2014
WIMP-nucleon SI	CDEX-1A	475	53.9	PRD 90, 091701, 2014
WIMP-nucleon SI/SD	CDEX-1A	475	335.6	PRD 93, 092003, 2016
Solar Axion and ALPs	CDEX-1A	475	335.6	PRD 95, 052006, 2017
Ονββ	CDEX-1A		304.0	Sci. China 60, 071011, 2017
WIMP-nucleon SI/SD	CDEX-1B	160	737.1	CPC42, 023002, 2018
WIMP-nucleon SI/SD	CDEX-10	160	102.8	PRL 120, 241301, 2018
Sub-GeV WIMP-nucleon SI, Migdal Effect	CDEX-1B	160/250	737.1/1107.5	PRL 123, 161301, 2019
Annual Modulation	CDEX-1B	250	1107.5	PRL 123, 221301, 2019
Solar Axion, ALPs, Vector bosonic DM	CDEX-1B	160	737.1	PRD 101, 052003, 2020
Solar dark photon, dark photon DM	CDEX-10	160	205.4/449.6	PRL 124, 111301, 2020

CDEX Roadmap

Direct detection of Dark Matter Particles and ⁷⁶Ge double-β decay process using P-type Point-Contact Germanium detectors at China Jinping Underground Laboratory.

Technical R&D towards next-stage

Large scale detector array

 $10 \text{ kg} \rightarrow 100 \text{ kg} \rightarrow 1000 \text{ kg}$

• Low background

 $2 \text{ cpkkd} \rightarrow 0.01 \text{ cpkkd} @ 2-4 \text{ keV}$

Low noise electronics

E threshold 160 eV

- Large shielding and cooling system
- Ge detector fabrication
 - Low mass detector unit and VFE design
 - Low bkg cables or flexible PCB
 - CMOS ASIC Front-end Electronics
- Underground E-forming copper
- Cosmogenic bkg control
- Radon bkg in Liquid Nitrogen

21

Technical R&D: Ge detector fabrication

- CDEX10+X home-made Ge detectors;
- Understand & reduce detector intrinsic bkg;
- Various types, ~20 detectors
 - P-type planar/coaxial;
 - P-type point contact/ BEGe;
- Long time stability
 - ✓ Commercial Ge crystal;
 - ✓ Structure machining;
 - ✓ Li-drift and B-implanted;
 - ✓ Home-made ULB PreAmp;
 - ✓ UG EF-Cu;
 - ✓ UG assembly;
 - ✓ UG testing...

Vacuum systems 22

Good performance keeping, >1800 days

Technical R&D: Ge detector fabrication

- Commercial Ge crystal + stainless steel canister;
- T1 detector: $500g \text{ Ge}(\varphi 50 \times 50 \text{ mm}) + \text{CMOS ASIC preAmp};$
- Works w/ expected performance!
- Going on to improve bkg, low-noise electronics...

Technical R&D: Ge detector fabrication

- Vacuum chamber, structure materials, not conducive to further reduce the radioactive background;
- ASIC-based preamplifiers can work well in liquid nitrogen;
- ✓ Develop bare HPGe detectors immersed into $LN_2!$
- ✓ Immerse the detector into LN₂ for ~8 hours, we got a stable leakage current ~10 pA for 1000V bias voltage.

Bare HPGe detectorsBare HPGe in LN_2 PPC: ϕ 50mm x 50mm, Depleted voltage: ~800V

79 g Cu + 10 g PTFE

Technical R&D: CMOS ASIC Front-end Electronics

- Light DM search \rightarrow low noise/threshold (low capacity, etc)
- Very close to Ge detectors \rightarrow low bkg (radiopure, low-mass, etc)
- ASIC preamplifier @ 77K
 - PCB material: PTFE(Rogers 4850);
 - ENC ~26e(<200eV) w/ 4µs shaping time, mainly from 1/f noise (~21e);

Noise components analysis

Technical R&D: Underground E-forming copper and Assay

- Prototype setup for underground EF-Cu production
 - Cathode mandrel: 316L stainless steel, φ95x380mm;
 - Plating bath: PE, φ400x500mm;
 - Goal: Majorana copper, U/Th content ~ $O(0.1\mu Bq/kg)$;
- Test run in Tsinghua U. and moved to CJPL-I;
- U/Th Analysis by ICP-MS
 - Procedure established , blank sensitivity $\sim 10^{-13}$ g/g

UG Cu e-forming facility @CJPL-I

E-forming setup

optimized electrical parameters

ICP-MS

26

Technical R&D: Radon in Liquid Nitrogen

- $O(1 \mu Bq/m^3)$ gives background free in DM searches;
- Goal: sensitivity of $O(10 \text{ nBq/m}^3)$ for $0\nu\beta\beta$ experiment;
- R&D of the enriched Rn methods is on-going;
- Understanding of the transport of radon in liquid nitrogen and the solubility and distribution of radon in liquid nitrogen big tank at CJPL;
- A cascade-LS detector built
 - ✓ Strong Particle ID(PSD)
 - ✓ b-a cascade events
 - ✓ Strong ²²²Rn Dissolution in LS
 - ✓ Low U/Th
 - ²¹⁴Bi \rightarrow ²¹⁴Po+ $\overline{\nu}_{e}$ +e⁻+ γ 's (Q=3.28 MeV, $\tau_{1/2}$ =19.9 min), ²¹⁴Po \rightarrow ²¹⁰Pb+ α (Q=7.83 MeV, $\tau_{1/2}$ =164 µs).

[by SCU group]

Future Plan - Detectors

- New detectors cooperated with commercial companies
 - 2kg from ORTEC, planning 5kg from CANBERRA/ORTEC;
 - Particular control of detector fabrication process above ground;
- Home-made detectors
 - Improve T1 w/ low bkg material and low noise electronics;
 - Set up underground fabrication and testing facility;

Cosmogenic bkg control

Detector production: 45days + Ground transportation: 60 days + Underground cooling: 180days →

Cosmogenic bkg: 0.02cpkkd(sim.)

Future Plan - Detectors

- New detectors cooperated with commercial companies
 - 2kg from ORTEC, planning 5kg from CANBERRA/ORTEC;
 - Particular control of detector fabrication process above ground;
- Home-made detectors
 - Improve T1 w/ low bkg material and low noise electronics;
 - Set up underground fabrication and testing facility;

Cosmogenic bkg control

- ✓ France → Netherlands, by truck, 2d;
- ✓ Netherlands → Chengdu, by China-Euro train, 20d;
- ✓ Chengdu → Jinping, by truck, 3d.

Future Plan – New location

- CJPL-I to CJPL-II
 - Volume: 4000 m³ to 300,000 m³;
 - 1 main hall (6.5x6.5x42m) to 8 main halls (14x14x60m each);
 - Additional pit for next-generation CDEX;

Future Plan - CDEX

Future Plan - CDEX @CJPL-II

- Prepare for HPGe experiment in Hall C1 @ CJPL-II
- 1725m³ liquid nitrogen, shielding and cooling system (inner: ϕ 13m*H13m)
- Inner bkg level: <10⁻⁴ cpkkd@1keV, <10⁻⁶ cpkkd@2MeV
- A shield-design candidate for the next generation $0\nu\beta\beta$ experiment (e.g. L1T)

Future Plan - CDEX @CJPL-II

- Prepare for HPGe experiment in Hall C1 @ CJPL-II
- Construction of LN_2 tank kicked off in Nov. 2018 and done end of 2019.

Future Plan - CDEX @CJPL-II

- Prepare for HPGe experiment in Hall C1 @ CJPL-II
- Construction of LN_2 tank kicked off in Nov. 2018 and done end of 2019;
- CDEX-10X to move to a $1725m^3 LN_2$ tank ($\varphi 13x13m$) located in the pit;
- CDEX-100 TDR on the way.

Future Plan – Main Goals

- DM
 - WIMPs, including AM;
 - Axion, Dark Photon...

- 0νββ
 - Taking advantages of Ge detectors;
 - Combined with Legend-1T
 - Location Undetermined (SNOLAB, CJPL)

CDEX: Projected sensitivities

- Based on Ge technologies, to directly detect DM;
- For $0\nu\beta\beta$, Combined with L1T.

36

Summary

- CDEX: unique advantages of PPC Ge detectors for light DM search at CJPL;
- New AM limits from >4-year data ruled out DAMA/LIBRA-phase1 and CoGeNT results, best sensitivity below 6 GeV;
- New Migdal effect analysis: leading sensitivity for $m_{\chi} \sim 50-180$ MeV;
- Other DM candidate analysis: Axion, dark photon...
- New site for next-generation CDEX in Hall C1 of CJPL-II project;
- Easy scalability and lower bkg expected w/ new large cryo-tank;
- Ongoing efforts on homemade Ge detector, FE electronics, crystal growth, UG copper e-forming...

Hao Ma, Tsinghua U., mahao@tsinghua.edu.cn

Standard Assumptions for WIMPs Direct Detection

- •DM mass range: GeV~TeV
- •local WIMP density: 0.3 GeV/cm³
- •Isothermal velocity distribution: $v_0 \sim 220$ km/s
- •WIMP escape velocity ~544 km/s

