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Challenges for sub-GeV DM
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Kinematics of nuclear recoils from light dark matter

Drops quickly below mχ ∼ 10 GeV

Motivation

Kozaczuk 3

Recoiling nucleus loses energy in material. Observables: heat, scintillation light, 
ionization

Sub-GeV DM is difficult to detect with conventional nuclear recoil searches 
Light DM deposits small recoil energy. 

Current state-of-the art:
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Figure courtesy of the 
XENON1T collaboration

Best nuclear recoil threshold is currently  
(CRESST-III) with DM reach of .

ER > 30 eV
mχ > 160 MeV

The kinematics of DM scattering against free nuclei is inefficient, 
and it does not accurately describe target response.



Material properties matter

Nuclear response is phonon-dominated at low energies. 
Electronic response depends on details of band structure/eigenstates.
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Material properties matter
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Inelastic or 2  3 processes on the target side can 
also extract more DM kinetic energy.

→

Plasmon  
processes
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Dark Matter “Gold Rush”
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Charge

� �

nuclear 
recoils

Light

Heat
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 Scintillation photons→

Graphic from talk by Kaixuan Ni

 Phonons→

ionized atoms or electron-hole pairs in 
semiconductors (e.g. previous talk)

The charge and light yield for 
nuclear recoils below few hundred 

eV is not well understood, but 
expected to be ~0 on average.

Challenges for sub-GeV DM



Strategies for detecting nuclear recoils 
from sub-GeV DM

• Detectors in development to reach heat/phonon 
thresholds of ~ eV and below (e.g. SuperCDMS SNOLAB)
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1. Decreasing the heat threshold



Strategies for detecting nuclear recoils 
from sub-GeV DM

• Detectors in development to reach heat/phonon 
thresholds of ~ eV and below (e.g. SuperCDMS SNOLAB) 

• Direct phonon excitations from DM scattering  
At low enough energies, cannot treat as free nucleus; harmonic 
potential matters.  for acoustic and optical phonons 
in crystals. (many works, e.g. Griffin, Knapen, TL, Zurek 2018; Cox, Melia, Rajendran 2019)

ω ≈ 1 − 100 meV
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1. Decreasing the heat threshold

DM-phonon 

scattering

� � Kinematics of phonons 

relevant (and advantageous) 

for sub-MeV dark matter



Strategies for detecting nuclear recoils 
from sub-GeV DM

• Atomic Migdal effect 
Ionization of electrons 
which have to ‘catch up’ 
to recoiling nucleus 
(e.g. Ibe, Nakano, Shoji, Suzuki 2017)
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2. Increasing the charge signal

Motivation

Kozaczuk 4

At low energies, many-body effects in the material can become important and 
provide additional sensitivity

Examples:
• Phonons

• Migdal effect
(ionization from nuclear recoil)

• Plasmons (this talk)

Knapen, Lin, Pyle, Zurek, 1712.06598; Griffin, Knapen, Lin, Zurek, 1807.10291; 
Cox, Melia, Rajendran, 1905.05575; Campbell-Deem, Cox, Knapen, Lin, Melia, 1911.03482; 
Schutz, Zurek, 1604.08206; Knapen, Lin, Zurek, 1611.06228; Acanfora, Esposito, Polosa, 1902.02361

Ibe, Nakano, Shoji, Suzuki, 1707.07258; Dolan, Kahlhoefer, McCabe, 1711.09906;
Bell, Dent, Newstead, Sabharwal, Weiler, 1905.00046; Baxter, Kahn, Krnjaic, 1908.00012; 
Essig, Pradler, Sholapurkar, Yu, 1908.10881

Kurinsky, Baxter, Kahn, Krnjaic, 2002.06937; Kozaczuk, Lin, 2003.12077  

From 1711.09906

From 1711.09906



Strategies for detecting nuclear recoils 
from sub-GeV DM

• Atomic Migdal effect 
Ionization of electrons 
which have to ‘catch up’ 
to recoiling nucleus 
(e.g. Ibe, Nakano, Shoji, Suzuki 2017) 

• Bremsstrahlung of (transverse) photons in LXe 

• Plasmons (+ionization signals) in semiconductors 
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Many-body effects are relevant in many of these cases!

2. Increasing the charge signal

Motivation

Kozaczuk 4

At low energies, many-body effects in the material can become important and 
provide additional sensitivity

Examples:
• Phonons

• Migdal effect
(ionization from nuclear recoil)

• Plasmons (this talk)

Knapen, Lin, Pyle, Zurek, 1712.06598; Griffin, Knapen, Lin, Zurek, 1807.10291; 
Cox, Melia, Rajendran, 1905.05575; Campbell-Deem, Cox, Knapen, Lin, Melia, 1911.03482; 
Schutz, Zurek, 1604.08206; Knapen, Lin, Zurek, 1611.06228; Acanfora, Esposito, Polosa, 1902.02361

Ibe, Nakano, Shoji, Suzuki, 1707.07258; Dolan, Kahlhoefer, McCabe, 1711.09906;
Bell, Dent, Newstead, Sabharwal, Weiler, 1905.00046; Baxter, Kahn, Krnjaic, 1908.00012; 
Essig, Pradler, Sholapurkar, Yu, 1908.10881

Kurinsky, Baxter, Kahn, Krnjaic, 2002.06937; Kozaczuk, Lin, 2003.12077  

From 1711.09906

From 1711.09906

Kouvaris & Pradler 2016



Direct detection with quasiparticles

Plasmon excitations in 
semiconductors 

Phonon excitations in  
polar crystals
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Based on: Kozaczuk, TL 2019;  Knapen, Kozaczuk, TL (to appear)
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Detecting nuclear recoils via 
plasmon excitations

�

�

Recoiling ion 
(nucleus + core 

electrons)



Plasmons
• Simple picture: uniform 

displacement of electrons by r 
 
 
 
 
 
 

• Plasmons are quantized longitudinal 
E-field excitations in the medium 
(contrast with “transverse photons”)
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red: ion blue: electron

Electron gas in fixed ion background
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Plasmons from dark matter?

Our goal: calculate the plasmon excitation rate from nuclear recoils 
in semiconductors. This is an additional charge signal that should be 

included and can improve reach for sub-GeV DM.

�

�

Recoiling ion 
(nucleus + core 

electrons)

Assumptions 

For nuclear recoil energy 
 

treat as a free nucleus with tightly 
bound core electrons. Valid for 

.

ωphonon ≪ ER ≲ Ecore

10 MeV ≲ mχ ≲ 1 GeV

Plasmon decays to 
electron-hole pair

Proposed by Kurinsky, Baxter, Kahn, Krnjaic as an explanation of 
low-energy rates in semiconductor DD experiments. 



Electron gas model
• Toy model: bremsstrahlung of a longitudinal mode in a metal 

(degenerate electron gas in fixed ion background) 

• Plasmon appears as a zero of the dielectric function 
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Gauss’s law without 
external source ✏̂L(!,k)k ·E = 0 ! k ·E 6= 0 when ✏̂L(!,k) = 0

<latexit sha1_base64="su6cCVDxAsNU7DhW+ikqFujuCu4="></latexit>



Electron gas model
• Toy model: bremsstrahlung of a longitudinal mode in a metal 

(degenerate electron gas in fixed ion background) 

• Plasmon appears as a zero of the dielectric function 
 

• Or as a pole in the longitudinal propagator

15

(Coulomb gauge)

Gauss’s law without 
external source

D00(!,k) =
1

k2✏̂L(!,k)
=

1

k2 �⇧L(!,k)

✏̂L(!,k) = 1� ⇧L(!,k)

k2
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✏̂L(!,k)k ·E = 0 ! k ·E 6= 0 when ✏̂L(!,k) = 0
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Electron gas model
• Plasmon is infinitely long lived 

for small k in this toy model 

• For  (~2.4 keV in Si,Ge)  
there is a large plasmon decay 
width into electron-hole pairs. 

• Plasmons cannot be directly 
produced by DM with typical 
halo velocities v ~ 1e-3:

k ≳ ωp/vF
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Kozaczuk 8

Plasmon mode near the classical plasma frequency and weak dispersion with k

Only well-defined for                        (~2.4 keV in Si, Ge). At higher k values, large 
width from kinematically accessible decays to electron-hole pairs. 

Plasmons cannot be produced directly by DM with typical halo velocities v ~10-3

Can instead be produced through nuclear recoils, as suggested in 2002.06937. 
Analogous to bremsstrahlung (Kouvaris, Pradler, 1607.01789) but with an 
external longitudinal mode
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II. PLASMON EMISSION IN AN ELECTRON

GAS

To illustrate the essential ideas surrounding plasmon
production in materials, we will start with a simplified
scenario: the textbook model of a metal. Here, we have
a background of heavy ions surrounded by a free degen-
erate gas of valence electrons. Because the electrons have
a fast response time, we can treat the background of ions
as fixed when studying the linear response of the sys-
tem to perturbations. In this setup, there is a collective
mode of longitudinal electron oscillations, the plasmon.
Poisson’s equation in the absence of external charges,
✏̂L(!,k)k · E = 0, implies that collective longitudinal
oscillations can occur when ✏̂L(!,k) = 0, where ✏̂L(!,k)
is the longitudinal dielectric function of the material. A
plasmon mode therefore corresponds to ✏̂L(!,k) = 0.

To see the presence of this mode, we start with the
Lindhard formula for the longitudinal dielectric function

in a crystal at zero temperature [? ]:

✏̂L(!,k) = 1 + lim
⌘!0
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where we are summing over all occupied electron Bloch
states |pi, !p is the energy of the state |pi, V is the
volume of the system, and ↵em is the fine structure con-
stant. (The sum over di↵erent bands has been omitted in
this formula to simplify the discussion.) This represents
virtual electron-hole excitations that modify the prop-
agation of longitudinal electromagnetic fields. In par-
ticular, this dielectric function is related to the longi-
tudinal electromagnetic polarization tensor ⇧L(!,k) by
✏̂L(!,k) = 1 � ⇧L(!,k)/|k|

2, and the plasmon corre-
sponds to a pole in the longitudinal propagator (for re-
views that elaborate on this, see e.g. Refs. [? ? ]).

For a degenerate electron gas, Eq. ?? can be evalu-
ated with plane-wave states. Taking the Fermi surface to
be spherical and summing over states |pi with p < pF ,
where p = |p| and pF is the Fermi momentum, one finds
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In this expression, the plasma frequency is given by

!
2
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(4)

where ne is the number density of valence electrons, me

is the (in-medium) electron mass, and vF ⇠ 10�2 is the
Fermi velocity.

The plasmon appears as a zero in Eq. ??, which in the
small k limit has the form

✏̂L(!, k) ⇡ 1 �
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Thus the plasmon mode has frequency !p at k = 0 and
has a weak dispersion with momentum. In Eq. ??, we
have taken the ⌘ ! 0 limit and there is no imaginary
part, but in general there is a finite width � or inverse
damping time in the material, which can be accounted for
by taking !

2
! !

2 + i!� in Eq. ??. In the free electron
gas model, the plasmon is long-lived at small k. Mean-
while, for k >

⇠ !p/vF , the plasmon dispersion matches
onto kinematically-accessible single electron-hole excita-
tions and thus has a large decay width. Given this large

width, the plasmon is only well-defined for k <
⇠ !p/vF

(roughly 2.4 keV in Si or Ge).
Because of the momentum cuto↵ and high energy

for plasmons, it is only kinematically possible for DM
to excite a single plasmon if the DM velocity is high,
v >

⇠ 0.01 [? ]. However, it is possible for plasmons to be
produced by DM with typical halo velocities of v ⇠ 10�3

if they are produced in association with another excita-
tion such as a nuclear recoil; this gets around the restric-
tions of the 2-body kinematics by allowing the recoil to
absorb most of the momentum. Another way to view this
process is from the point of view of the recoiling ion: a
low-energy ion cannot excite the plasmon while satisfy-
ing energy and momentum conservation, but in this case
an o↵-shell ion emits the plasmon.

The rate for DM-nucleus scattering with plasmon emis-
sion can be obtained in the electron gas model using the
machinery of quantum field theory. The process is sim-
ply DM-nucleus scattering accompanied by electromag-
netic bremsstrahlung radiation [? ], but with an exter-
nal longitudinal mode. We use the results of Ref. [? ],
which obtained simple analytic approximations for the
k-dependent plasmon pole location and residue. The po-
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Electron gas model
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Plasmon production from dark matter scattering

Jonathan Kozaczuk1 and Tongyan Lin1

1Department of Physics, University of California, San Diego, CA 92093, USA
(Dated: March 30, 2020)

We present a first calculation of the rate for plasmon production in semiconductors from nuclei
recoiling against dark matter. The process is analogous to bremsstrahlung of transverse photon
modes, but with a longitudinal plasmon mode emitted instead. For dark matter in the 10 MeV
– 1 GeV mass range, we find that the plasmon bremsstrahlung rate is 4 � 5 orders of magnitude
smaller than that for elastic scattering, but 4 � 5 orders of magnitude larger than the transverse
bremsstrahlung rate. Because the plasmon can decay into electronic excitations and has character-
istic energy given by the plasma frequency !p, with !p ⇡ 16 eV in Si crystals, plasmon production
provides a distinctive signature and new method to detect nuclear recoils from sub-GeV dark matter.

I. INTRODUCTION

There have been significant e↵orts recently to directly
detect dark matter (DM) in the low-mass (sub-GeV)
regime [1]. As experiments lower their energy thresholds,
collective many-body e↵ects can become increasingly im-
portant and enhance the discovery potential beyond that
of traditional searches for hard nuclear recoils. Exam-
ples can be found in numerous theoretical studies of di-
rect detection of sub-GeV dark matter, including with
semiconductors [2–5], superconductors [6–8], Dirac ma-
terials [9–13], phonon excitations in crystals [14–17] and
in superfluid He [18–20], and others.

Recently, Ref. [21] has highlighted a number of low-
energy residual rates in experiments achieving the low-
est thresholds thus far, and points out the relevance of
many-body e↵ects for understanding them. The rates
are comparable in SENSEI [22], CDMS HVeV [23], and
EDELWEISS [24, 25], though much lower in DAMIC [26].
These experiments all rely on solid-state targets, namely
Si and Ge semiconductors.

Ref. [21] has proposed that such excesses could be ex-
plained as DM exciting in semiconductors, since no ex-
cesses with corresponding rates have been observed in
noble liquid experiments such as XENON1T [27] and
DarkSide [28]. One of their proposed ideas is the sec-
ondary production of plasmons during DM-nucleus scat-
tering from DM with mass in the 30 MeV – GeV range.
This could in principle match the observed rates if the
probability to produce the plasmon is ⇠ 10�3

� 1.
In this work, we provide a first estimate of the plas-

mon production rate from nuclei recoiling against GeV-
scale dark matter, focusing on Si and Ge semiconductors.
Plasmons in a semiconductor are the collective oscilla-
tions of the valence electrons. The key idea we will use
is to approximate the plasmon as a longitudinal mode
of a degenerate electron gas (i.e. a metal). This is jus-
tified since plasmons carry an energy of !p ⇡ 10 � 20
eV, which is much larger than the band gap ⇠ eV of a
semiconductor.

The process by which a recoiling nucleus can emit
a plasmon is similar to the bremsstrahlung emission
of transverse photons, which was previously treated in

Ref. [29]. Here we consider the bremsstrahlung of longi-
tudinal modes:

�(p) + N ! �(p0) + N(qN ) + !L(k) (1)

where � is the dark matter, N(qN ) is a nucleus with en-
ergy ER = q

2
N/(2mN ), and !L(k) is a plasmon mode

with 3-momentum k and energy !L(k). We will focus on
dark matter in the 10 MeV–1 GeV mass range. Then the
energy scales for the plasmon and nuclear recoils are both
>
⇠ eV, larger than the highest phonon energy ⇠ 40 � 60
meV in a Ge or Si crystal. As a result, we will treat the
DM interaction as scattering o↵ of a free ion (nucleus
surrounded by tightly-bound core electrons). The recoil-
ing ion is a current source and can lose energy into both
transverse photon and longitudinal plasmon modes.

With these approximations, we find that the rate for
plasmon production through the process in Eq. 1 is typ-
ically 4-5 orders of magnitude smaller than the elastic
nuclear recoil rate, and therefore cannot explain the ex-
cesses studied in Ref. [21]. (Note that the mechanism
of Ref. [21] involved a plasmon produced in association
with many phonons, and is therefore not captured by
our approach.) Nevertheless, bremsstrahlung emission of
plasmons by a recoiling nucleus is a novel signature of
dark matter scattering in semiconductor targets, and we
find that the corresponding rate is around 5 orders of
magnitude larger than that for bremsstrahlung emission
of transverse modes. Because plasmons can be detected
in the form of electronic energy, this process can be used
to extend the reach of current experiments to much lower
DM masses.

The rest of this study is structured as follows. We will
begin in Sec. II with an introduction to the physics of
plasmons and provide an estimate for the plasmon rate in
a metal. We then discuss plasmon production in semicon-
ductors in Sec. III, computing the rate using a classical
approach (an alternative quantum mechanical derivation
is provided in an appendix). In Sec. IV, we use these re-
sults to estimate the potential reach of a plasmon search
in Si and Ge, comparing against the sensitivity provided
by elastic nuclear recoils and the Migdal e↵ect, wherein
an electron is excited in the nuclear recoil [30]. We con-
clude in Sec. V.
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In the limit of soft brem,  (valid for us):k ≪ 2mNER

Elastic DM-nucleus 
scattering cross section

Bremsstrahlung of plasmons is low-probability, but may be the leading 
ionization signal for low-energy nuclear recoils in semiconductors.

Roughly 4-6 orders of magnitude larger than brem of transverse photons



Plasmon production in semiconductors
Differences from electron gas model: 

    

• Band gap:  
(but ) 

• Electron wavefunctions:  
plane waves  Bloch waves 

• Plasmon decays by interband 
transitions. 

These effects are all accounted for in the 
dielectric function of the material!  
Rewrite plasmon production in terms of 

ωg ∼ O(1) eV
ωg ≪ ωp

→

̂ϵL

18

Longitudinal response in a  
semiconductor
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Plasmon production in semiconductorsPlasmon emission in semiconductors

Kozaczuk 13

Consider current sourced by ion recoiling against DM

Energy transfer to material given by 

Considering the longitudinal part (ignoring local field effects):

4

FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be

W = �
Z

d
3
k

Z 1

0

d!

(2⇡)4
2Re [J⇤

ion(!,k) ·E(!,k)] . (12)

Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields

dWL

dk
=
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2Z2

ion↵em
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k
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Im
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
i
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Zion evion ·

k
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(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
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where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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Zion evion ·
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without

4

FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
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where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
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Zion evion ·
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without

(neglecting damping effects, harmonic potential) 

Characterizes energy loss to 
longitudinal electronic 
excitations, not just on the 
plasmon pole!

Plasmon emission in semiconductors

Kozaczuk 13

Consider current sourced by ion recoiling against DM

Energy transfer to material given by 

Considering the longitudinal part (ignoring local field effects):
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density
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3(x � viont) (11)

where Zion is equal to the number of valence electrons,
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units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <
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function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields

dWL

dk
=

Z 1

0

d!
2Z2

ion↵em

3⇡2
|vion|2

k
2

!3
Im

✓
�1

✏̂L(!,k)

◆
. (15)

As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.
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of the resulting expression to experimental data is shown
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low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
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To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
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units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <
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We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
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]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density
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3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.
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transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
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Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
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the crystal). The plasmon appears as a zero in the real part
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where we have identified the quantity E
0
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the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
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Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
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where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧
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Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.
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to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.
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transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
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!, and the longitudinal current density corresponding to
Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without

4

FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
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where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
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Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without

4

FIG. 1. The energy loss rate for a charged particle into
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plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
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surements [? ] (shown here for k along the [111] direction in
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where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields

dWL

dk
=

Z 1

0

d!
2Z2

ion↵em

3⇡2
|vion|2

k
2

!3
Im

✓
�1

✏̂L(!,k)

◆
. (15)

As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
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the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =
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4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.
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transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes
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up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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ion(!,k) ·E(!,k)] . (12)

Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [37]
while data for the other k values is from scattering measure-
ments [38] (shown here for k along the [111] direction in the
crystal). The plasmon appears as a zero in the real part of the
dielectric function, or as a pole in Im(�1/✏̂L(!, k)). The data
is well approximated near the pole by the simplified model of
Sec. II: the dotted curves are Eq. 10, adapted with the residue
factor ZL(k) and !p ! !L(k) from Sec. II. The plasmon width
� is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [36] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in
Si [36]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. 10 reduces to the prediction of the
Drude-Sommerfeld model of a metal [31]; this is just the
free electron gas model of Sec. II, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. 5.

In Fig. 1, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. 10 with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. 1. For finite k, the simplified model of Sec. II
suggests that Eq. 10 should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. 1. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. II to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec II.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be
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Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. 11 becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. 13 and 14 into Eq. 12 and performing
the angular k integration yields
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As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. 15 also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without
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FIG. 1. The energy loss rate for a charged particle into
longitudinal modes of a material goes as Im(�1/✏̂L(!,k)),
plotted here using collected experimental data on Si (solid
lines). Data for k ! 0 comes from optical measurements [?
] while data for the other k values is from scattering mea-
surements [? ] (shown here for k along the [111] direction in
the crystal). The plasmon appears as a zero in the real part
of the dielectric function, or as a pole in Im(�1/✏̂L(!, k)).
The data is well approximated near the pole by the simplified
model of Sec. ??: the dotted curves are Eq. ??, adapted with
the residue factor ZL(k) and !p ! !L(k) from Sec. ??. The
plasmon width � is adjusted for each panel.

where we have identified the quantity E
0
p in Ref. [? ] as

the e↵ective plasma frequency !p, ✏c is the contribution
to the dielectric constant from core electrons (⇡ 1 in Si [?
]) and !g ⇠ O(1) eV is an average band gap energy.
For !g ⌧ !p, Eq. ?? reduces to the prediction of the
Drude-Sommerfeld model of a metal [? ]; this is just the
free electron gas model of Sec. ??, modified to include a
phenomenological relaxation time ⌧ = 1/� for electronic
excitations, as discussed below Eq. ??.

In Fig. ??, we show Im(�1/✏̂L(!,k)) for Si determined
from experimental data. For k = 0, the plasmon is in-
deed well-described by Eq. ?? with !g ! 0, !p = 16.6
eV and width of � = 4 eV, as shown in the top left panel
of Fig. ??. For finite k, the simplified model of Sec. ??
suggests that Eq. ?? should be modified to include the
residue factor ZL(k) and !p ! !L(k). The comparison
of the resulting expression to experimental data is shown
in the top right and bottom panels of Fig. ??. Again we
find good agreement, especially for smaller k values be-
low !p/vF ⇡ 2.4 keV (although the width requires some
adjusting for each k). We therefore expect the results of
Sec. ?? to provide a reasonable estimate of the plasmon
rate once the pole is integrated over. Nevertheless, in
what follows we will provide expressions for the energy
loss rate for general ✏̂(!,k) that can be used away from
the plasmon pole and explicitly show how they reduce to
the results of Sec ??.

To proceed, we calculate the rate to produce plasmons
using classical electrodynamics in a medium. An alter-
native quantum mechanical derivation is provided in the
Appendix. As before, we will make use of the soft pho-
ton/plasmon limit. We assume that DM scatters o↵ one
of the nuclei in the material, imparting kinetic energy ER

to the nucleus and the bound electrons. This generates
an e↵ective current density

Jion = Zion evion ⇥(t) �
3(x � viont) (11)

where Zion is equal to the number of valence electrons,
e =

p
4⇡↵em is the unit charge in Heaviside-Lorentz

units, and vion is the resulting velocity of the scattered
ion in the material. Here we neglect the e↵ects of en-
ergy loss and damping on the kinetic energy of the ion
(justified at early times in the soft plasmon limit). The
plasmon will arise as longitudinal E field oscillations in-
duced by this current and the corresponding response in
the material.

Going to Fourier space, one finds the total energy
transfer to the material to be

W = �
Z

d
3
k

Z 1

0

d!

(2⇡)4
2Re [J⇤

ion(!,k) ·E(!,k)] . (12)

Focusing on the energy transferred to longitudinal modes,
we define the projection Jion,L(!,k) = Jion · k/k and
similarly for EL. In the soft plasmon limit, k · vion ⌧

!, and the longitudinal current density corresponding to
Eq. ?? becomes

Jion,L(!,k) =
i

!
Zion evion ·

k

k
(13)

up to a term / �(!), which is an artifact of the infinite
duration of the approximate source current and which
would be eliminated once damping e↵ects are accounted
for. We assume such damping e↵ects are irrelevant for
time scale associated with plasmon production, t <

⇠ 1/!p.
We can also neglect the e↵ects of the ion harmonic po-
tential, since the potential energy of the ion displacement
on that time scale is small compared to ER.

The field EL is related to Jion,L through the dielectric
function of the material. Treating Jion as an external
current, the Fourier space Maxwell-Ampère equation be-
comes

i !DL(!,k) = i !✏̂L(!,k)EL(!,k) = Jion,L(!,k). (14)

Substituting Eqs. ?? and ?? into Eq. ?? and performing
the angular k integration yields

dWL

dk
=

Z 1

0

d!
2Z2

ion↵em

3⇡2
|vion|2

k
2

!3
Im

✓
�1

✏̂L(!,k)

◆
. (15)

As expected, the plasmon appears as a pole in
Im (�1/✏̂L(!,k)). However, Eq. ?? also applies away
from the plasmon pole, and can be used to compute
the total energy deposited through longitudinal excita-
tions in the material (in the soft limit); this accounts for
the full dielectric structure of the semiconductor without

Im

✓
�1

✏̂L(!,k)

◆
' ZL(!, k)

!L(k)2!�

(!2 � !L(k)2)
2 + !2�2

Approximating the Lorentzian as a 
delta function:

Precisely matches free electron 
gas result from before:

5

making the electron gas approximation of the previous
section1. The same quantity Im (�1/✏̂L(!,k)) charac-
terizes energy loss by fast electrons in metals or semicon-
ductors [? ? ].

To make contact with the result of Sec. ??, we ap-
proximate Im (�1/✏̂L(!,k)) using Eq. ?? modified with
a factor of ZL(k) and taking !p ! !L(k); as noted ear-
lier, this agrees well with the experimentally determined
energy loss function in Si (c.f. Fig. ??). To isolate the
contribution from the plasmon pole, we take the � ! 0
limit of this expression, which yields

Im

✓
�1

✏̂L(!,k)

◆
!

ZL(k)⇡!L(k)

2
� (! � !L(k)) (16)

for ! > 0, where we have used the fact that !
2
g ⌧ !L(k)2

and ✏c ⇡ 1. Noting that the number of plasmons pro-
duced at a given energy is dWL/! and performing the !

integration, we arrive at

dNplasmon

dk
'

2Z
2
ion↵em

3⇡

ZL(k)k2

!L(k)3
ER

mN
. (17)

This can be interpreted as the probability for producing
a plasmon with momentum k for a given nuclear recoil
energy, ER. In terms of the cross-section, Eq. ?? corre-
sponds precisely to the prediction of Eq. ??, as antici-
pated.

A similar calculation can be done for transverse exci-
tations. The current in Eq. ?? sources a transverse field

ET (!,k) =
i!

k2 � !2✏̂T (!,k)
JT (!,k). (18)

The corresponding energy loss, WT , is given by the trans-
verse contributions to Eq. ??. Noting that the number
of photons produced at a given energy is dWT /!, the
photon production rate is

dN�

dk
=

Z
d!

8Z2
ion↵em

3⇡2

ERk
2

mN!2
Im

✓
�1

!2✏̂T (!,k)� k2

◆
. (19)

In this expression, ✏̂T (!,k) fully characterizes the trans-
verse response of the semiconductor and does not rely on
the simplifying assumptions of the model in Sec. ??.

We can again apply the oscillator model to infer an
analog of Eq. ?? for Im(�1/(!2

✏̂T (!,k) � k
2)). Starting

from the same Fröhlich model for ✏̂(!, 0) in e.g. Ref. [? ],
we compute Im(�1/(!2

✏̂T (!, 0)�k
2)), identify k

2+!
2
p as

!
2
T (k), and restore an overall residue factor ZT (k). Then,

taking !
2
g ⌧ !

2
p and ✏c ⇡ 1, one finds that for � ! 0

Im

✓
�1

!2✏̂T (!,k) � k2

◆
!

ZT (k) ⇡

2 !T (k)
� (! � !T (k)) . (20)

1
For comparison with previous studies of DM-induced electron

and phonon excitations [? ? ], note that the quantity

Im (�1/✏̂L(!,k)) is related to the dynamic structure factor by

S(!,k) = k2/(4⇡2↵emne) Im (�1/✏̂L(!,k)), where S(!,k) de-

scribes material response to density perturbations [? ? ]

Inserting this expression into Eq. ?? and performing the
! integration yields the di↵erential probability for excit-
ing a photon with a given k. In terms of the production
cross-section, the final result matches Eq. ??.

Eqs. ?? and ?? in principle fully characterize the en-
ergy loss to plasmons and transverse modes in semicon-
ductors. In order to obtain accurate predictions for DM
experiments, a number of e↵ects must be accounted for
in these energy loss functions. In the calculations above,
we have used the macroscopic Maxwell’s equations and
neglected the e↵ects of crystal periodicity. The relation-
ship between microscopic calculations of ✏̂(!,k) and the
energy loss functions is modified when taking into ac-
count the variation of the microscopic fields over a unit
cell; these corrections are often referred to as local field
e↵ects [? ? ]. They have been shown to modify the
plasmon lineshape and give a better match to electron
energy loss spectroscopy data in Si [? ].

In addition, aside from exciting a photon or plasmon,
an electron could also be excited above the band gap.
In the energy loss rates, this corresponds to a possi-
ble continuum of electron recoils away from the plasmon
and photon poles. This is related to the Migdal e↵ect
in atoms [? ? ? ? ], where electron excitations are
created from nuclear recoils; a first approximation for
semiconductors was studied in Ref. [? ]. Accounting for
this e↵ect would again require experimental data or first-
principles calculations of the structure factor or dielectric
functions.

Besides the plasmon production rate, one must also
determine the plasmon decay products, which would ul-
timately be detected experimentally. The imaginary part
of the dielectric function determines the plasmon de-
cay width, where � = !p Im(✏̂L(!p, 0)) in the k ! 0
limit. To infer its decay products, note that the quan-
tity Im(✏̂L(!, 0)) is closely related to the photoabsorption
rate �1(!) = ! Im(✏̂L(!, 0)); for ! larger than the band
gap, it is dominated by electronic transitions2. Analo-
gous to the electron gas case, where there is a large plas-
mon width to single electron excitations for k >

⇠ !p/vF ,
in semiconductors the plasmon width at zero momentum
can be attributed to the availability of electronic transi-
tions with ! = !p [? ]. We thus expect that plasmon
production leads to energy deposition into electron-hole
excitations peaked near !p. We will use this fact in the
next section when estimating the experimental sensitiv-
ity to plasmon production from DM scattering.

2
In the proposal of Ref. [? ], the plasmon decays dominantly to

phonons. Here we attribute the plasmon width and imaginary

part of the dielectric function to single electron transitions [? ],

which is also assumed in studies of bosonic DM absorption at

these energies and in the zero momentum limit [? ? ? ? ? ].

3

larization vector for the longitudinal mode in Coulomb
gauge is given by

"
µ
L =

p
ZL(k)

!L(k)

k
(1, 0, 0, 0) (6)

with wavefunction renormalization given by

ZL(k) ⇡ 1 �
3

5

k
2
v
2
F

!2
p

+ ... (7)

in the k ⌧ !p/vF limit. These results are obtained di-
rectly from the in-medium longitudinal polarization ten-
sor as described in Ref. [? ].

In what follows we will restrict ourselves to the soft
photon/plasmon limit, defined here to be when the three-
momentum of the photon/plasmon k satisfies |k| ⌧ |qN |

and |k · qN |/mN ⌧ !p, where qN is the momentum of
the recoiling ion. This is a good approximation for DM
masses in the range 10 MeV – 1 GeV, since the typi-
cal momentum transfer is |qN | ⇠ 2µ�Nv ⇠ 20 keV ⇥

(m�/10 MeV), which is much larger than the plasmon
cuto↵ momentum. We have restricted to DM masses
m�

<
⇠ 1 GeV so that ER = |qN |

2
/(2mN ) is not too large

compared to the typical binding energies of the core elec-
trons. In this limit, we can treat the ions as point parti-
cles of charge Zion and mass mN .

With these assumptions, the di↵erential cross section
for a recoiling ion to emit a plasmon in the soft limit is

d
2
�plasmon

dERdk
=

2Z
2
ion↵em

3⇡

ZL(k)k2

!L(k)3
ER

mN
⇥

d�

dER

�����
el

(8)

where ER = q
2
N/(2mN ) is the nuclear recoil energy and

d�/dER|el is the di↵erential cross section for elastic DM-
nucleus scattering, modified to account for the fact that
the DM deposits total energy ER + !L(k). As we ar-
gue in the following section, we expect this expression to
provide a reasonable approximation for the rate in simple
semiconductors as well, and we will use it to compute the
production rates from DM scattering in Sec. ??.

In comparison, the bremsstrahlung rate for transverse
photons in the soft limit is

d
2
��

dERdk
=

4Z
2
ion↵em

3⇡

ZT (k)k2

!T (k)3
ER

mN
⇥

d�

dER

�����
el

(9)

where the transverse modes are well-approximated by a

dispersion !T (k) =
q

!2
p + k2 and ZT (k) ⇡ 1. In the

limit of k � !p, the plasmon bremsstrahlung rate is en-
hanced by a large factor of ZL(k)k3

/!L(k)3; however,
this is partially counteracted by the cuto↵ in plasmon
momentum. Assuming Zion = 4, ER ⇠ 100 eV, and al-
lowing for k up to a keV, Eq. ?? indicates that plasmon
production will be roughly 4 orders of magnitude smaller
than the rate for elastic nuclear scattering. Meanwhile,
the production of transverse modes is smaller than elastic
recoils by roughly 10 orders of magnitude. While the rate

to emit plasmons is small, the plasmon is an electronic
excitation peaked around !p, which provides a unique
complementary signature for nuclear recoils from light
dark matter. In the following section, we discuss how
this simplified scenario is modified in semiconductors.

III. PLASMON EMISSION IN

SEMICONDUCTORS

In semiconductors such as Si and Ge, the plasmon
energy at zero momentum is well-approximated by the
plasma frequency !p, taking ne to be the number density
of valence electrons and me to be the e↵ective electron
mass in the material [? ]. As discussed above, the plas-
mon is a zero in the dielectric function or a pole in the lon-
gitudinal propagator for electromagnetic fields. In what
follows, we will use classical arguments to derive general
results for the energy transfer to soft plasmon and photon
modes in terms of the dielectric function. Given experi-
mental data or first-principles calculations for ✏̂(!,k), we
can in principle account for the many-body physics of a
semiconductor.

We begin this section with a discussion of how the di-
electric function in semiconductors di↵ers from that of
the simple model in the previous section. The first dif-
ference appears in the presence of a band gap, !g ⇡ 1
eV. However, for the materials under consideration such
as Si and Ge, the plasmon frequency !p ⇡ 10 � 20 eV
is much larger than the band gap !g ⇡ eV and the cor-
responding e↵ect is small. This can be seen for example
in the Fröhlich oscillator model for ✏̂L(!) in semiconduc-
tors considered by Refs. [? ? ], which predicts a dielectric
function nearly identical to Eq. ?? for ! near !p (we dis-
cuss this further below).

In contrast to the electron gas, the band structure of a
semiconductor also allows for interband electronic tran-
sitions. These contribute to both the real and imaginary
parts of ✏̂L(!,k) (see e.g. Ref. [? ]). In addition, one
needs to account for the electron wavefunctions, which
are not described by plane waves. Taking all this into
account, we expect the residue of the plasmon pole, the
plasmon dispersion relation and width to be sensitive to
the band structure and wavefunctions of the electron-hole
pairs that contribute to the correlation function. All of
this information is encapsulated inside ✏̂L(!,k).

Despite the di↵erences between semiconductors and
metals, experimental data suggests that in relatively sim-
ple semiconductors, a slight modification of the free elec-
tron gas model of Sec. ?? can provide a good description
of the plasmon pole. The energy loss by charged parti-
cles in a material is characterized by Im(�1/✏̂L(!,k)),
and the plasmon appears as a pole in this quantity. As
discussed in Refs. [? ? ], the Fröhlich oscillator model
describes the plasmon line shape in the k ! 0 limit:

Im

✓
�1

✏̂L(!, 0)

◆
'

1

✏c

�
!
2
p � !

2
g

�
!�

�
!2 � !2

p

�2
+ !2�2

(10)
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Ionization signals from nuclear recoils

Expect a plasmon resonance at ~16 eV (5-6 electrons). Possible 
even when expected nuclear recoil is well below 16 eV.

dNL

d!dk
=

4Z2
ion↵em

3⇡2

ER

mN

k2

!3
Im

✓
�1

✏̂L(!,k)

◆

<latexit sha1_base64="ACGA23fzeaxHOIB3URS8MXPADf0="></latexit>

But energy loss function contains all electronic excitations 
(charge signals), even away from plasmon pole. 

We can use methods from condensed matter theory to 
numerically compute the full energy loss function (in progress).

Rate for inelastic process with plasmon production:
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Massive mediator Massless mediator

1 kg-year exposure, assuming ER > 200 meV to avoid phonon regime

Inelastic charge signal from plasmons + off-resonance 
can enhance sensitivity to nuclear recoils from sub-GeV dark matter!

Preliminary Preliminary



Based on: Pyle, Knapen, TL, Zurek 2018; Griffin, Knapen, TL, Zurek 2018;  
Griffin, Hochberg, Inzani, Kurinsky, TL, Yu 2020
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Direct detection with 
phonons in polar materials
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1. Two most common elementary excitations in solid 
state materials: electrons and phonons. Phonons 

must be considered for low mass dark matter

Momentum transfer

Why phonons?

Energy deposited

1/(interparticle spacing) 

q >> O(1-10) keV   →  recoil against individual nuclei

excite phonons (lattice/fluid vibrations), 

most relevant for sub-MeV dark matter

q << O(1-10) keV   → 

*Numbers are material dependent

q < 2m�vmax ⇠ 4 keV ⇥ (m�/MeV)
<latexit sha1_base64="ggtzuoeRVrqNvjc5ghu2RUVy4R4="></latexit>

! < 1
2m�v

2
max ⇠ 2 eV ⇥ (m�/MeV)

<latexit sha1_base64="Nq35FAGjcLukSoWfosYUVMkqfew="></latexit>
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1. Two most common elementary excitations in solid 
state materials: electrons and phonons. Phonons 

must be considered for low mass dark matter

Why phonons?

ω >> O(0.1) eV   →  multiphonon excitations, nuclear recoil

excite single phonons (lattice/fluid vibrations), 

most relevant for sub-MeV dark matter 

ω << O(0.1) eV   → 

*Numbers are material dependent

Momentum transfer

Energy deposited

q < 2m�vmax ⇠ 4 keV ⇥ (m�/MeV)
<latexit sha1_base64="ggtzuoeRVrqNvjc5ghu2RUVy4R4="></latexit>

! < 1
2m�v

2
max ⇠ 2 eV ⇥ (m�/MeV)

<latexit sha1_base64="Nq35FAGjcLukSoWfosYUVMkqfew=">AAAIwniclVVbb9s2FFa7rfa8W7o97uVggTF7dVzZbbcWaLDukm0I0KDDlqRoZAu0TMt0REmWqCyBzD+5p+3f7JAifYuHogYMkDz373znaJRGLBeu+++du++9/8G9Wv3Dxkcff/LpZ3v3Pz/LkyIL6GmQREn2ekRyGrGYngomIvo6zSjho4iejy5/UvLzK5rlLIn/FDcpHXASxmzCAiLwyb9/75/mWav0RhPIZBsOAby84P4xeJOMBGXoH8tyAUYOB/bkHy9kwxrOtWFl0JOleRv2pfWFXoAOywMGRgZeME7EyhlIaGymUXnrg5cyGPmlF0wZpFJiQilwX103vHtjGgnS2pFneytNeFfXb0m80fRyFnJiHWEph/B4y/mw32jO4Tn0TQC4QlHGgZNrFYtxZQH66ZKe4ZNgnObQqrQfasFLFGAxi1/QNC5ka95eDFURWZKKBLyITsSiyrvU+kQkPEdXMJNYxwy8zq4iqNTuOkprBZMnNEa69nN/hrEQHy+fZ6LkPmqii4yFU7FQhWnnJMVErkFh+AbvDwCPceuHgzdtfQt9CifDknZ0aiyOaSalP2s0j3yG3TryJ6rnCachwcOOPK+kVqx6t2JYaRrWMLbPberIQ+TfbbQVZArvvsX7NtzwENYBr0LOVbA+90+w4X9YoDomZQSMzgt2tZqBE0Oh0otwFMfEn0hVBwvDxSZvIxKHEYWlGizeOikLF9GvzKxLVVU1AUcbIQ9sgljGr4RzMyEKzPaKOiwWMB4+WoXsqC2wTmq5ooYt3tauIFpm1xJt275MDl1M90F1KyqhUTW3qhMGJxPaAliRrQ8n8FLBpENZLSkrurfAmxIBy/ehNyZhSDPL7OE3S7+IKdvyAkLq7LDT027QtZRu64Hmy87s6INKH+nzP6Ly+GtpG4S+BL0WGS+R81DETEBAo0gq3uvIMS1ElsRmCbjd3hotEeF5QcZwuUvV+p3Qv/TKUMjqj8FFFo4GpdvtP3GfPXU7btfVPzw8cXvPvu0t2Y5drjhjwDQTZCnj41ZYWwgVNnrdvbMR2pj14Bpw7VzuniWjXDEDPa6xwnZQLUAbZ/dEHoK/t2+rh9uHnjnsO+b3yt/72xsnQcFpLIKI5PlFz03FoCSZYEFEcccUOU1JcElCeoHHmCCMg1KjLqGJL2OYJBn+cZ7067pFSXie3/ARanIipvm2TD3ukl0UYvJ0ULI4LQSNgyrQpIgAJ1d9z2HMMhqI6AYPJMgY5grBlCBgAr/6DQSht13y7cNZv9t71O3//nj/xY8GjrrzpfOV03J6znfOC+c355Vz6gS172u0FteS+s/1WX1ezyvVu3eMzRfOxq+++A9zI+Ft</latexit>
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� �

�

n n

DM-nucleon scattering DM-phonon scattering
� �

⇢

Phonon 
quasiparticle

Why phonons?
1. Two most common elementary excitations in solid 

state materials: electrons and phonons. Phonons 
must be considered for low mass dark matter
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2. Kinematics of phonon excitation is suited to  
~10 keV-MeV dark matter. Phonon energies ~1-100 meV

Energy deposited
Initial DM velocity

q: momentum transfer

0.0 0.2 0.4 0.6 0.8 1.0

q [keV]

0

50

100

150

200

!
[m

eV
]

mX = 100 keV
Massless mediatorAllowed 

phase space

! =
q2

2mN
<latexit sha1_base64="q/4mB+VGc4e2MNXFCbMCCgiaztU="></latexit>

Nuclear recoil

! = q · vi �
q2

2m�
<latexit sha1_base64="KobExOwOfskKvbokFBmxhsfaajA="></latexit>
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2. Kinematics of phonon excitation is suited to  
~10 keV-MeV dark matter. Phonon energies ~1-100 meV

Initial DM velocity

0.0 0.2 0.4 0.6 0.8 1.0

q [keV]

0

50

100

150

200

!
[m

eV
]

mX = 100 keV
Massless mediator

csq
<latexit sha1_base64="oGx3X5He/mvPC2mPupVnwGEQVns="></latexit>

q: momentum transfer

Acoustic phonons

Energy deposited

Allowed 
phase space

! = q · vi �
q2

2m�
<latexit sha1_base64="KobExOwOfskKvbokFBmxhsfaajA="></latexit>
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mX = 100 keV
Massless mediator

Why phonons?
2. Kinematics of phonon excitation is suited to  

~10 keV-MeV dark matter. Phonon energies ~1-100 meV
Initial DM velocity

q: momentum transfer

Acoustic phonons

Optical phonons

Multiphonons 
also possible in 

this phase space

Energy deposited

Allowed 
phase space

! = q · vi �
q2

2m�
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3. DM-phonon couplings are material dependent,  
allowing for target & model complementarity

Spin-independent DM-phonon form factor in crystal

|F⌫(q)|2 /

������

X

atoms j

gj q · e⌫,j(q) e
�Wj(q)

p
mj

������

2

<latexit sha1_base64="KuDphN2iDKr2TKv17xoS+sF3FyQ="></latexit>

Phonon 

branch ν 

phonon eigenmodes, 
band structure enters here

Interplay of DM-ion interaction and phonon modes allows for unique 
excitation spectrum in each crystal, possible background discrimination 

DM effective interaction with ion = 
nucleus + inner shell electrons

gj ⇡ gpZj + gn(A� Z)j + geN
e,inner
j

<latexit sha1_base64="hEiI+Zdrat1df5xWjdLOHF12w4Y="></latexit>
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4. Possible directional signal in anisotropic material

Phonon couplings and 
energies depend on 

crystal direction. 

Daily rate modulation 
as crystal rotates 

relative to DM wind.
(0, 0, qz) (0, 0, 0) (0, qy, 0)

q

0

20

40
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80
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!
[m

eV
]

Al2O3 phonons

Example band structure

Acoustic

Gapped optical modes

Griffin, Knapen, TL, Zurek 1807.10291
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Longitudinal acoustic (LA)

Problem: for dark photon mediator, destructive interference
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Longitudinal acoustic (LA)

Problem: for dark photon mediator, destructive interference

Longitudinal optical (LO)

E-field

LO phonons ~ coherently oscillating dipoles

M / Qe2

✏1|q|2 q · (Zu)
<latexit sha1_base64="GrR3CG3MQggKVW+7tQUaulVtW/k="></latexit>

Dark photon mediator can couple  
to dipole moment (optical phonon) 

in a polar material
u

Ion displacement 
(dipole)

Why polar materials?



SiC for direct detection
Advantages of SiC: 

1. Intermediate between Si and 
diamond, while retaining key 
advantages of diamond such 
as high sound speed 

2. Cost effective! 

3. Polar semiconductor where 
Si and diamond are not 

4. Many stable polytypes with 
tunable DM sensitivity

Griffin, Hochberg, Inzani, Kurinsky, TL, Yu 202034

SiC



SiC for direct detection
2

goals. In particular, we show that the hexagonal (H)
polytypes are expected to exhibit stronger daily modula-
tion, due to a higher degree of anisotropy in their crystal
structure.

In this work we explore the potential of SiC-based sin-
gle charge detectors and meV-scale microcalorimeters for
DM detection. The paper is organized as follows. In Sec-
tion II, we discuss the electronic and vibrational proper-
ties of the SiC polytypes explored in this work. In Sec-
tion III, we explore the measured and modeled response
of SiC crystals to nuclear and electronic energy deposits
over a wide energy range, and the expected performance
of SiC detectors given realistic readout schemes for charge
and phonon operating modes. Sections IV and V sum-
marize the DM models considered in this paper, and
compare the reach of di↵erent SiC polymorphs into DM
parameter space for nuclear recoils, direct phonon pro-
duction, electron recoils and absorption processes, and
also compare directional detection prospects. The high-
energy theorist interested primarily in the DM reach of
SiC polytypes can thus proceed directly to Section IV.
We find excellent DM sensitivity, comparable and com-
plementary to other proposals, which place SiC detectors
in the limelight for rapid experimental development.

II. ELECTRONIC AND PHONONIC
PROPERTIES OF SIC POLYTYPES

Silicon carbide is an indirect-gap semiconductor with
a band gap (2.3 - 3.3 eV) intermediate between those of
crystalline silicon (1.1 eV) and diamond (5.5 eV). While
there exists a zincblende form of SiC, which has the same
structural form of diamond and Si, there are over 200 ad-
ditional stable crystal polymorphs with a range of band
gap energies and physical properties. These polymorphs
broadly fall into three groups based on lattice symme-
try: cubic (C), hexagonal (H), and rhombohedral (R).
To compare the expected performance of these polytypes
as particle detectors, we first explore how the di↵erences
in band structure between polytypes manifests in charge
and phonon dynamics.

In all SiC polytypes, the common unit is a sheet of
corner-sharing tetrahedra and the polytypes are distin-
guished by variations in stacking sequences. The poly-
type 3C adopts the cubic zincblende structure with no
hexagonal close-packing of the layers, whereas 2H has a
wurtzite structure with hexagonal close-packing between
all the layers. The di↵erent polytypes can thus be char-
acterized by their hexagonality fraction fH , with 2H (3C)
having fH = 1 (fH = 0). This single number correlates
strongly with the material’s band gap, with 3C having
the smallest gap, and 2H the largest gap [24]. The other
polytypes, including those considered in this paper, con-
sist of lattices with di↵erent sequences of hexagonal and
cubic stacking layers, and can be listed in order of in-
creasing hexagonal close-packing: 3C, 8H, 6H, 4H, 2H.
The number refers the number of layers in the stack-

FIG. 1. Crystal structures of the polytypes of SiC considered
in this work. Si atoms are blue and C atoms are brown.

ing sequence. Rhombohedral structures also occur, and
these are characterized by long-range stacking order, as
shown in Fig. 1(f). Crystal structures for the polytypes
considered here are shown in Fig. 1.

The di↵erence in stability between cubic and hexago-
nal stacking is very small, which can be understood as a
balance between the attractive and repulsive interactions
between third nearest neighbors stemming from the spe-
cific degree of charge asymmetry in the SiC bond [25].
This results in a di↵erence in total energy between the
polytypes of only a few meV per atom, therefore many
crystal structures of SiC are experimentally accessible.
To limit this paper to a reasonable scope, we restrict
our analysis to 6 of the most common forms, as shown in
Fig. 1 and with properties summarized in Table I. Despite
the relative stability of polytypes with respect to one an-
other, only three of these polytypes (3C, 4H and 6H) are
available commercially [24] as of this writing; of these, 6H
is the most widely available in the large wafer and crystal
sizes typically employed in semiconductor processing. To
capture a representative range of SiC polytype behavior
in our analysis, and to observe trends in properties rele-
vant for sub-GeV DM detection, we also include 2H, 8H,
and 15R in our analysis.

Calculations of the interaction of various DM models
with SiC requires materials-specific information for each
polymorph, namely the electron and phonon spectra, to
estimate sensitivity to electron and phonon interactions
respectively. We calculate these quantities using state-of-
the-art Density Functional Theory (DFT) calculations as

Many stable polytypes of 
SiC with little difference in 
energy — feature of the 

large charge asymmetry in 
the SiC bond. 

Different polytypes and 
different crystal structures 

obtained by stacking 
layers in various ways.

Blue: Si   Brown: C
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FIG. 7. The reach into DM-electron scattering parameter space for 1 kg-year of exposure of select polytypes of SiC for
heavy (left) and light (right) mediators. For comparison, we also show the reach of Si and diamond, assuming a threshold of
one electron or energy sensitivity down to the direct band gap in the given material. The reach of Si given a 2-electron threshold
is shown for comparison, for the case that charge leakage substantially limits the reach at 1-electron. Relic density targets from
Ref. [1] are shown as thick blue lines for the freeze-in and freeze-out scenarios respectively. The grey shaded region includes
current limits from SENSEI [87], SuperCDMS HVeV [88], DAMIC [49], Xenon10 [89], Darkside [90], and Xenon1T [91].
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FIG. 8. Reach and daily modulation for DM-phonon interactions mediated by a massless dark photon. Left: The reach is
shown assuming kg-year exposure and zero background. The reach from single optical phonon excitations in SiC (solid lines)
is similar for all the polytypes, while the dotted lines in same colors are the electron recoil reach from Fig. 7. The thick solid
blue line is the predicted cross sections if all of the DM produced by freeze-in interactions [3, 93], and the shaded regions are
constraints from stellar emission [94, 95] and Xenon10 [89]. We also show the reach from phonon excitations in other polar
materials, GaAs and Al2O3 [16, 17], and from electron excitations in an aluminum superconductor [12] and in Dirac materials,
shown here for the examples of ZrTe5 and a material with gap of � = 2.5 meV [15]. (For clarity, across all materials, all
electron recoil curves are dotted and all phonon excitation curves are solid.) Right: The daily modulation of the DM-phonon
scattering rate as a function of DM mass, where the quantity shown corresponds exactly to the modulation amplitude for a
purely harmonic oscillation. The modulation is negligible in the 3C polytype due to its high symmetry, and is largest in 2H.
The inset compares the phase of the modulation among the polytypes for m� = 80 keV.

and the DM-mediator form factor is F 2

med
(q) = 1. For the parameter space below m� ⇡ MeV, there are strong

36

Sensitivity to freeze-in with optical phonons

Maximum directionality for hexagonal 2H phase, minimum for cubic 3C phase 
Modulation becomes smaller with more layers inside a unit cell 
Can we design more optimal dark matter detection materials?
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Quasiparticle excitations beyond 
single phonon or plasmon

• Multiphonon excitations - less restrictive final phase 
space and larger energy deposition can compensate 
for penalty in emitting extra phonons.  
- Superfluid He: Schutz and Zurek 2016; Knapen, TL, Zurek 2016; Acanfora, Esposito, 
Polosa 2019; Baym, Beck, Filippini, Pethick, Shelton 2020 
- Semiconductors: Campbell-Deem, Cox, Knapen, TL, Melia 2019 

• Magnons - spin-wave analog of phonon for spin-
dependent interactions.  
Barbieri, Cerdonio, Fiorentini, Vitale 1989; Flower, Bourhill, Goryachev Tobar 2018; 
Trickle, Zhang, Zurek 2019; Chigusa, Moroi, Nakayama 2020
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Summary
To understand sub-GeV DM scattering in materials, we 
need to understand the material response, including 

collective excitations or quasiparticles.  

DM excitations of plasmons and phonons are promising 
ways to search for DM-nuclear recoils.
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Short range potential
��p = 4⇡b2�p

<latexit sha1_base64="8P7WfJVLoiOTUg6V8VRvfY1PHOg="></latexit>

V (q) =
2⇡b�p
gpm�

X

J

gJe
�iq·rJ

<latexit sha1_base64="w0Yg2jfXLQKpB/EYJPK+peEqJ8k="></latexit>

�
<latexit sha1_base64="KAJTV5uvcvbDtk2sjCP3AM+Ir3A="></latexit>

gJ
<latexit sha1_base64="1Juaq7OJhDcYfFb3G2QZ15EMp5U="></latexit>

- effective coupling 
strength between DM 
and ion (nucleus + 
inner shell electrons)  J

S(q,!) ⌘ 1

N

X

�f

����
X

J

gJh�f |e�iq·rJ |0i
����
2

�(E�f � !)

<latexit sha1_base64="3ItAuZwa49shRxZVbF/qfMg6sHc=">AAAGMniclVRbT9RAFC64q1hvoI++nEg22Y0L2V2I+gAJalDCA8EoYKBsM9udloFO251OEdKd3+SLv8TEB33QGF/9EZ7phWWBaJykyTlzbt/5zun0Ip/FstX6OjF5rVK9fmPqpnnr9p2796Zn7m/HYSIcuuWEfije90hMfRbQLcmkT99HghLe8+lO7+iltu8cUxGzMHgnTyO6z4kXMJc5ROKVPVNZq23XU6vnwkA1YBksVxAnbau0uOt2FFhxwu1D8PCj3XSOQWEDy+mHMteEQqsCs8wmzmXrgBUx6Nmp5RwwiJRKPTsCbmt1LLvVp74kZQKYG6VumOMw4X9T/wO4WbNi5nFSJsJWlmHxQvJux6wNYAk6RQE4RpPgwMmJrsW4jpCM0xjaLay3oEo19zdrw1cYESSqPmgMuxq7CCMZguVTVw5zuGmWksiQxxgOhypnpnkVdqqydE3tNWLHkhk1Wcs79iHWQlqseCBkimwobM0SzDuQQ91PlpxECOQENHW7qD8GFIP687ndRqZ5NoWNbkqbGTQWBFQoZM2srdoMh7Rqu3rUIaceQeEKnMcqc8xHNlqstJgTkp8HL5XYcf9w7y6zrDnTPGcXLv2gxvh+convvOJA1+pwe0OZb0uamgVgpIsOEnY8WvyNYm9Sy8ffqE9sV+kumOcNC8s6MrKOQyOB51M4c4PhX7dsHYkftpD7PKxMqVvK1351rORcCRC7eE04L34LTWVjtDgskNDvLoxKNgHGN1mNFqNsvuxdYe4zdHXZKIcnVLeFcB/nWpIbC1fUzNoVLC6DPT3bmm9lBy4L7UKYNYqzaU9/tvqhk3AaSMcncbzXbkVyPyVCMsenyrSSmEbEOSIe3UMxIDjZ/TR78hTU8KYPbijwQw6y2/MRKeFxfMp76MmJPIgv2vTlVba9RLrP9lMWRImkgZMXchMfkG39fkKfCepI/xQF4giGWME5ILg7El9ZE0loX2z5srDdmW8vzHfeLM6uvCjomDIeGo+MutE2nhorxpqxaWwZTuVj5Uvle+VH9VP1W/Vn9VfuOjlRxDwwxk719x/XwgXr</latexit>

40

Scattering rate goes as

Dynamic structure factor

Need to characterize expectation 
value of this in material
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S(q,!) =
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(0-phonon) + (1-phonon) + (2-phonon) + … 
Expansion in factors of the displacement

Phonon comes into play through positions of ions:

Quantized displacement field 

rJ(t) = r0J + uJ(t)
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