

Electronic Recoil Events in XENON1T

Fei Gao Tsinghua University

On behalf of the XENON Collaboration + X. Mougeot

PKU, Beijing Sep 26, 2020

arXiv: 2006.09721

The XENON Collaboration: ~170 scientists

Gran Sasso — The XENON Shield

Two-phase Xe Time Projection Chamber

- **Scintillation light S1** •
- **Ionization electron -S2** •

- two signals for each event: •
 - 3D event imaging: x-y (S2) and z (drift time)
 - self-shielding, surface event rejection, single vs multiple scatter events

Two-phase Xe Time Projection Chamber

Scintillation light - S1

GXe

LXe

particle

 γ, β

Ionization electron -S2

- two signals for each event:
 - 3D event imaging: x-y (S2) and z (drift time)
- self-shielding, surface event **S1 S2** rejection, single vs multiple scatter events Eextraction Energy from S1 and S2 area Recoil type discrimination from ratio of charge (S2) to light (S1) Edrift hν 10^{4} Electronic Recoil (ER) cS2_b [PE] **Recoil discrimination** drift time (S2/S1)_{NR} < ER (depth) time Nuclear Recoil (NR)

 10^{2}

0

20

60

40

cS1 [PE]

80

100

Development of XENON Program

XENON10XENON100XENON1TXENONnT

2005-20072008-20162012-20182019-202x25 kg - 15cm drift161 kg - 30 cm drift3.2 ton - 1 m drift8 ton - 1.5 m drift~10^{-43} cm^2~10^{-45} cm^2~10^{-47} cm^2~10^{-48} cm^2

Evolution of LXeTPCs as WIMP Detectors

XENON1T

XENON1T WIMPs Search - 2018

One ton-year of search for WIMPs induced nuclear recoils

Most stringent result on WIMP Dark Matter down to 3 GeV/c² masses [*PRL 121, 111302 + PRL 123, 251801*]

XENON1T Solar Axion Search - 2020

Reduced fiducial volume to search for ER signals

Adding additional volume is not as helpful, since we are limited by ER background

Energy Response in XENON1T

$$E = W(n_{ph} + n_e)$$

$$E = W\left(\frac{S1}{g_1} + \frac{S2}{g_2}\right)$$

g1 and g2: detector-specific gain constants

Calibration of XENON1T down to 2.8 keV

Energy as Analysis Space

2-3D analysis w/ discrimination

1D energy spectrum

Data Selection and Signal Efficiency

Higher S2 threshold to remove surface background and accidentals

High acceptance for ER energy > 2 keV

Similar selection criteria as WIMPs search in 2018

Reduced fiducial volume for ER search

XENON1T's Response to Betas

The XENON1T ER Background

Lowest background rate ever achieved in this energy range!

The Low Energy Excess

Excess is most abundant between 2-3 keV

The Low Energy Excess

What caused the Excess?

Ar37

Short half life (35 days)

Best fit peak energy is 2.3 instead of 2.8 keV

Initial Ar37 contamination is gone:

- 1. Quick decay
- 2. Online distillation

What if they comes from air leaks?

1. Initial leak before SR? Not consistent with temporal evolution

2. Constant leak over SR?

Required leak >13 liter/y

Actual leak < 0.9 liter/y

Conclusion: Ar37 hypothesis is OUT

Tritium

Tritium favored over backgroundonly at 3.2σ

Low energy (Q-value 18.6keV)

Long half life (12.3 years)

Tritium Rate

 $159 \pm 51 \, \mathrm{events}/(\mathrm{t} \cdot \mathrm{y})$

³H:Xe concentration $6.2 \pm 2.0 \times 10^{-25} \text{ mol/mol}$

Reduction of Cosmogenic Tritium

Cosmogenic activation

Reduction due to xenon handling

Natural Abundance in Material

H2 ~100ppb? -> ~100x higher than O2?

How about other molecules?

Possible

Axion?

Axions would also be produced in the Sun, with kinetic energies ~ keV

Detectable in Xe1T!

Production and Detection of Solar Axion

Including Detector Effects

Fitting Axions to the Excess

Axion is favored over background-only at 3.4σ

Allowed Parameter Space

In tension with astrophysical constraints from stellar cooling (arXiv 2003.01100)

Summary of the Excess

XENON1T observes ER excess events in 1-7 keV region

Potential sources:

Tiny amount of Ar37? NO

Tiny amount of tritium: 3.2 sigma, **Possible**

Solar Axions: 3.4 sigma

And many more...

What's Next? - XENON1T

Axion + ³H favored over ³H hypothesis at 2.0σ

Can we distinguish the two hypothesis by additional checks?

What's Next? - XENONnT

It's exciting to see what XENONnT orders for us

Thank you!