

New challenges in reactor neutrinos: mapping between TAO and JUNO and dealing with nuclear uncertainties

FRANCESCO CAPOZZI

based on Phys. Rev. D 102 (2020) 056001, in collaboration with E. Lisi and A. Marrone

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Confirmation of solar LMA 10⁻³

Reactor Neutrinos: the past

2003

time

K. Eguchi et al. [KamLAND], Phys. Rev. Lett. 90 (2003), 021802

Reactor Neutrinos: the present

Reactor Neutrinos: the future

F. Capozzi, E. Lisi and A. Marrone, Phys. Rev. D 92 (2015) no.9, 093011

Reactor Neutrinos: precision

Reactor Neutrinos: precision

CAUTION: ".... With great power comes great responsibility...."

Two ways of calculating reactor fluxes

Fit electron spectrum with few virtual β branches, then convert them to \overline{v}_e

Two ways of calculating reactor fluxes

Sum over thousands of β transitions tabulated in nuclear databases

Observation of a bump at ~ 5 MeV in multiple reactor experiments

Issues in theoretical predictions (mostly for ²³⁵U) and their uncertainties

Comparison between "summation" and "conversion" approaches

Saw-tooth shape visible with higher resolution. Structure partially unknown.

Are microstructures of the neutrino flux dangerous for JUNO?

Oscillations and microstructures seem to have similar frequencies

Are microstructures of the neutrino flux dangerous for JUNO?

Reduction of sensitivity unless using near detector with exquisite resolution. **Caveat:** each bin has a different (unconstrained) nuisance parameter

Are microstructures of the neutrino flux dangerous for JUNO?

Caveat: each bin has a different (unconstrained) nuisance parameter

Are microstructures of the neutrino flux dangerous for JUNO?

Caveat: all shape variations with arbitrary amplitudes are allowed

Are microstructures of the neutrino flux dangerous for JUNO?

No significant impact of microstructures when using Fourier Transform **Caveat:** error propagation (stat+syst) to frequency space

Are microstructures of the neutrino flux dangerous for JUNO?

Z. Cheng, N. Raper, W. Wang, C. F. Wong and J. Zhang, arXiv:2004.11659

No significant impact of microstructures

Are microstructures of the neutrino flux dangerous for JUNO?

Z. Cheng, N. Raper, W. Wang, C. F. Wong and J. Zhang, arXiv:2004.11659

Caveats: one nuisance parameter for each bin, whose amplitude is constrained to $\sigma^2_{TOT} = \sigma^2_{CS/DYB} + \sigma^2_{SUB}$

Caveat: if we double the amplitude of shape variations we double the χ^{2}_{sys} .

Caveat: we are (implicitly) assuming that if we double the variations of nuclear parameters, we are also doubling the amplitude of shape variations

Are microstructures of the neutrino flux dangerous for JUNO?

Z. Cheng, N. Raper, W. Wang, C. F. Wong and J. Zhang, arXiv:2004.11659

Caveats: only O(100) realisations of spectra with microstructures

Are microstructures of the neutrino flux dangerous for JUNO?

Z. Cheng, N. Raper, W. Wang, C. F. Wong and J. Zhang, arXiv:2004.11659

Marginal improvement of sensitivity with a near detector

The Role of TAO in JUNO

Near detector TAO will be placed in 2022, ~30 m from one Taishan reactor

Provides a model independent reference spectrum for JUNO, isotopic yields and spectra, reactor monitoring and safeguard, ...

The Role of TAO in JUNO

Near detector TAO will be placed in 2022, ~30 m from one Taishan reactor

It is important even beyond neutrino oscillation searches

Open questions:

- How do we map the TAO spectrum into the JUNO one?

- How do we deal with statistical issues arising from sampling the (many) nuclear input uncertainties?

starting point: reactor fluxes from "summation" calculations (OKLO Toolkit)

D. Dwyer, "OKLO: A toolkit for modeling nuclides and nuclear reactions," https://github.com/dadwyer/oklo (2015)

The detection process is the inverse β decay

Is nucleon recoil really negligible?

The **unoscillated** spectrum in TAO/JUNO is usually given by:

$$S_X(E_{\text{vis}}) = \int_{E_T}^{\infty} dE \ \phi_\nu(E) \ \sigma_\nu(E) \ r_X(E_{\text{vis}}, \ E - 0.783 \,|\, \sigma_X^2), \ X = T, \ J$$

$$r_X(E_{\text{vis}}, E - 0.783 | \sigma_X^2) = \frac{1}{\sqrt{2\pi\sigma_X^2}} \exp\left(-\frac{1}{2} \frac{(E_{\text{vis}} - E + 0.783)^2}{\sigma_X^2}\right)$$

Is nucleon recoil really negligible?

Electron energy distribution is relatively flat

What is the size of the corrections due to nucleon recoil?

Nuclear recoil must be taken into account!

TAO/JUNO will reach unprecedented precision

$$S_X(E_{\text{vis}}) = \mathcal{N}_X \int_{E_T}^{\infty} dE \ \phi(E) \ \sigma_\nu(E) \ R_X(E_{\text{vis}}, \ E \mid \sigma_X^2), \ X = T, \ J$$

Resolution Function (already integrated over E_e) $R_X(E_{\text{vis}}, E \mid \sigma_X^2) = \frac{1}{2(E_2 - E_1)} \left[\operatorname{erf} \left(\frac{E_{\text{vis}} - (E_1 + m_e)}{\sqrt{2\sigma_X^2}} \right) - \operatorname{erf} \left(\frac{E_{\text{vis}} - (E_2 + m_e)}{\sqrt{2\sigma_X^2}} \right) \right]$

Nuclear recoil must be taken into account!

TAO/JUNO will reach unprecedented precision

(Some) Microstructures survives in TAO after smearing

TAO/JUNO will reach unprecedented precision

Nuclear recoil must be taken into account!

TAO/JUNO will reach unprecedented precision

Nuclear recoil must be taken into account!
TAO/JUNO will reach unprecedented precision

Nuclear recoil must be taken into account!

TAO/JUNO will reach unprecedented precision

Some microstructures are as large as 1σ statistical error in TAO

With no oscillations, a map between TAO and JUNO is exactly given by:

$$S_J(E_{\rm vis}) = \int_0^\infty dE'_{\rm vis} \ S_T(E'_{\rm vis}) \ r_D(E_{\rm vis}, \ E'_{\rm vis} | \sigma_D^2)$$

r_D is a normalised Gaussian, and $\sigma^2_D(E_{vis}) = \sigma^2_J(E_{vis}) - \sigma^2_T(E_{vis})$

The oscillation probability is given by

$$P_{ee}(E) = c_{13}^4 \tilde{P} + s_{13}^4 + 2s_{13}^2 c_{13}^2 \sqrt{\tilde{P}} \ w \ \cos(2\Delta_{ee} + \alpha\varphi)$$

The oscillation probability is given by

$$\begin{split} P_{ee}(E) &= c_{13}^4 \tilde{P} + s_{13}^4 + 2s_{13}^2 c_{13}^2 \sqrt{\tilde{P}} \ w \ \cos(2\Delta_{ee} + \alpha\varphi) \\ &\alpha = +1 \ (\text{NO}), \ -1 \ (\text{IO}) \\ &\tilde{P} = 1 - 4\tilde{s}_{12}^2 \tilde{c}_{12}^2 \sin^2 \tilde{\delta} \\ &\delta = \frac{\delta m^2 L}{4E}, \ \Delta_{ee} = \frac{\Delta m_{ee}^2 L}{4E} \ , \\ &\sim \rightarrow \text{ values in matter} \\ w \text{ is a damping factor due to the spread of baselines} \\ &\varphi \simeq 2s_{12}^2 \delta \left(1 - \frac{\sin 2\delta}{2\delta\sqrt{P}}\right) \end{split}$$

The oscillation probability is given by

With oscillations, the map is **approximately** given by:

$$S_J^{\text{eff}}(E_{\text{vis}}) = \int_0^\infty dE'_{\text{vis}} S_T(E'_{\text{vis}}) P_{ee}^{\text{eff}}(E'_{\text{vis}}) r_D(E_{\text{vis}}, E'_{\text{vis}} | \sigma_D^2)$$

$$P_{ee}^{\text{eff}}(E_{\text{vis}}) \simeq \frac{\int_{E_T}^{\infty} dE \ S_T(E_e^{\text{mid}} + m_e) \ J^{-1}(E) \ P_{ee}(E) \ R_T(E_{\text{vis}}, \ E \mid \sigma_T^2)}{\int_{E_T}^{\infty} dE \ S_T(E_e^{\text{mid}} + m_e) \ J^{-1}(E) \ R_T(E_{\text{vis}}, \ E \mid \sigma_T^2)}$$

The effect of the Jacobian $J^{-1}(E)$ is marginal. E_e^{mid} is the average (middle) electron energy

With oscillations, the map is **approximately** given by:

The map works at the 0.1% level!

We generate simulated data using the "best fit" ν flux from OKLO

Francesco Capozzi - Max Planck Institute For Physics

We define the χ^2 as:

$$\chi^2_{\rm JUNO} = \chi^2_{\rm stat} + \chi^2_{\rm par} + \chi^2_{\rm sys}$$

We define the χ^2 as:

We define the χ^2 as:

$$\chi^2_{\rm JUNO} = \chi^2_{\rm stat} + \chi^2_{\rm par} + \chi^2_{\rm sys}$$

We define the χ^2 as:

$$\chi^2_{\rm JUNO} = \chi^2_{\rm stat} + \chi^2_{\rm par} + \chi^2_{\rm sys}$$

٠

normalization of geo-v fluxes

normalization of reactor fluxes

shape uncertainties: reactor fluxes and energy-scale

Shape uncertainties for reactor fluxes and energy scale:

Shape uncertainties for reactor fluxes and energy scale:

We parametrize shape uncertainties with polynomials

Mass ordering sensitivity with JUNO

2-30 reachable in 5-10 years, depending on systematic errors

Comparison with our previous work Phys. Rev. D 92 (2015) 9, 093011

Almost unaltered sensitivity (red line) even with smaller shape uncertainties

Comparison with our previous work Phys. Rev. D 92 (2015) 9, 093011

Explanation: "unlucky" shift of best fit values of oscillation parameters

We repeat the analysis assuming the mass ordering is known

Factor ~ 5 precision improvement on δm^2 , Δm^2 , $\sin^2\theta_{12}$ in 5 years

Generate 10⁵ spectra with OKLO, randomly changing all nuclear parameters

Francesco Capozzi - Max Planck Institute For Physics

How do we define a distance between each flux and the "reference" one?

$$\chi_n^2 = \sum_{i=1}^{N_d} \left(\frac{s_i^n}{\sigma_i}\right)^2$$

 N_d = number of nuclear parameters (given by OKLO) σ_i = size of the i-th uncertainty (given by OKLO) s_i^n = random parameter

 χ^{2_n} is not a good metric: it is a gaussian centered in N_d

 χ^{2_n} is not a good metric. We instead define:

Francesco Capozzi - Max Planck Institute For Physics

 χ^{2_n} is not a good metric. We instead define:

$$\chi_{S,n}^{2} = 2\left(\operatorname{erf}^{-1}\left(\frac{1}{2} + \frac{1}{2}\operatorname{erf}\left(\frac{\chi_{n}^{2} - N_{d}}{2\sqrt{N_{d}}}\right)\right)\right)^{2}$$

 $\chi^2_{S} = 0$ is recovered for the "reference spectrum" in the limit N_d —> ∞

68%, 95.45%, 99.73% of spectra have $\chi^2_{s} < 1$, 4, 9, respectively!

Francesco Capozzi - Max Planck Institute For Physics

 $\chi^2_{S.n}$

Let us compare the bands corresponding to $\chi^2_{S} \le 1$, 4, and 9

The bands are basically the same!

Let us compare the bands corresponding to $\chi^2_{S} \le 1$, 4, and 9

More spectral shapes become possible within the band, while the subtructure amplitudes and their envelope remain constant

Introduce shapes beyond those allowed by nuclear databases!!!

The amplitude of microstructures does not scale with No!!!

How many of the 10⁵ spectra "survive" after TAO measurements?

$$\chi^2_{\mathrm{TAO},n} = \chi^2_{\mathrm{stat},n} + \chi^2_{\mathrm{norm},n} + \chi^2_{S,n}$$

After 5 years no spectrum survives, even at 3σ . 10⁵ spectra not enough to densely sample the ∞^{Nd} set of possible variants

What happens to the sensitivity when "minimizing" the χ^2 over the ensemble?

No mass ordering sensitivity reduction (same for precision measurements)!

What happens to the sensitivity when "minimizing" the χ^2 over the ensemble?

10⁵ spectra not enough to densely sample the ∞Nd set of possible variants

We generate $10^5 v$ fluxes with OKLO, considering only 10^2 nuclear errors

Compared to "all nuclear errors" case, we have sampled closer to the reference

How many of these 10⁵ spectra "survive" after TAO measurements?

Compared to "all nuclear errors" case, we have sampled closer to the reference

How many of these 10⁵ spectra "survive" after TAO measurements?

The allowed band now scales with No: TAO data tends to linearize the scaling

What happens to the sensitivity when "minimizing" the χ^2 over the ensemble?

$\Delta \chi^2$ (IO - NO) reduced of -0.4 without TAO constraints

What happens to the sensitivity when "minimizing" the χ^2 over the ensemble?

$\Delta \chi^2$ (IO - NO) reduced of -0.4 without TAO constraints

$\Delta \chi^2$ (IO - NO) reduced of -0.2 with TAO constraints

Marginal effect of microstructures: confirmed previous results in literature

Conclusions

We have reviewed the calculation of spectra in TAO/JUNO. Nucleon recoil must be included.

We have provided a useful mapping between TAO and JUNO

A refinement of the mapping taking into account different fuel components in TAO and JUNO is left to future work
Conclusions

We have generated 10⁵ spectra using current nuclear databases

We have defined a metric describing the "distance" of each spectrum from the reference one

The amplitude of microstructures does not scale with $N\sigma$

Caution when parametrizing "unknown" substructure uncertainties in terms of variances of binned spectra

Spectra must be densely generated close to the reference to affect χ^2 . However, the reduction of sensitivity is very small, especially with TAO

THANK YOU

Francesco Capozzi - Max Planck Institute For Physics