Sci-W ECAL Status for CEPC

Yunlong Zhang

State Key Laboratory of Particle Detection and Electronics, China

University of Science and Technology of China

On behalf of CEPC Calorimeter working group

Brief review of Sci-W ECAL of CEPC

CEPC ECAL Status

- Super-layer assembly and test
- ➤Calorimeter trial assembly
- ➤Calorimeter cosmic ray test
- Summary and outlook

PFA Calorimeter

- ➤ Challenges
 - ➢ High granularity

➤ ECAL ~10 million channels

- Compact design
- ≻ High power
 - ► ECAL about 100 kW
 - EBU: 80 kW (without power pulsing)
 - ≻ DIF: 20 kW

Big European Bubble Chamber filled with Ne:H $_2$ = 70%:30%, 3T Field, L=3.5 m, X $_0$ \approx 34 cm, 50 GeV incident electron

Sci-W PFA ECAL of CEPC

- Sampling Calorimeter
 - Sandwich structure
 - Absorber+SD+Electronics
- Absorber
 - Tungsten
- Sensitive Detector
 - Scintillator+SiPM
- Electronics
 - ASIC Chip

Brief review of Sci-W ECAL of CEPC

CEPC ECAL Status

Super-layer assembly and test

Calorimeter trial assembly

Calorimeter cosmic ray test

Summary and outlook

- All of the super-layers of the ECAL have been assembled
 - \succ 16 super-layers were finished. 1 of them is for Japan group.
- The super-layers were tested by cosmic rays before installed into the ECAL structure
 - The 16 super-layers were divided into 5 groups and tested with cosmic rays.
- The prototype of calorimeter has been installed and tested
 The first trial assembly of the prototype of the calorimeter was
 - completed on August 3 in USTC

Brief review of Sci-W ECAL of CEPC

CEPC ECAL Status

Super-layer assembly and test

≻Calorimeter trial assembly

Calorimeter cosmic ray test

Summary and outlook

super-layer assembly

 An installation manual was prepared for the super-layer assembly

Installation process

THE REAL PROPERTY. NAME AND

Installation manual

签

super-layer assembly

- There are 16 super-layers in ECAL prototype
- Each super-layer has 2 Ecal Board Units (EBU) and 2 Data InterFace boards (DIF)
- Also has 2 W-Cu alloy plates, W:Cu
 85%:15%, thickness is 3.2 mm ~ 0.73 X₀
- The aluminum frame is used to support the super-layer

The structure of super-layer

Super-layer assembly

A-side

2020/9/23 10

Super-layer assembly

				1000		
東型		編94 編9 ロマ		ek ere		
和层		12	2 V			
Y HE TE EBU		24 \		1		
Y 推控 DIF		24	24			
x 难度 £80		23	1	V		
X 细度 DIF		23	1	1		
板号	管脚编号1	管脚编号2	(0)	(8)	×	RIL
板号	管脚编号 1	管脚编号2	(9)	(0)	o∢ o ×	養往
Y 相应 EBU+DIF	EBU J18 GND	DIF GND FL	<0.1	0. 0	V	2
	FBU U17 C1223 正 (収绌)	DIF SVO A.	<0.15	0.0	V	sv 电器 联络
	EBU C788	DIF 3V3_A TL	<0.15	y. 0	V	3V3A IKIM
				1000		20.000

The super-layer was tested with cosmic rays before installed into the calorimeter

Multi Super-layers cosmic ray test

DAQ

Side

- The noise of each cell in each channel tested by random trigger from DIF boards
 - The pedestal position of different chips is a little different
 - The pedestal position of the same chip is more uniform
 - The pedestal position is very stable with the change of time

Pedestal position stability (3 days)

Pedestal position of each cell in each channel

Pedestal position distribution of each channel

- The readout linearity
 - The high and low gain channel could achieve the upper limit of 10 pC and 100 pC respectively
 - The gain coefficients of high and low gain are about 240 and 8 code/pC respectively, and the ratio of high and low gain is about 30.

Linearity of the high/low gain channel

The high gain channel factor

The low gain channel factor

- LED calibration
 - The LED was put near the SiPM
 - A circuit was designed to drive LED to calibrate SiPM

LED light spectrum

SiPM photon electron peak

2020/9/23

- Cosmic ray test
 - Validation mode
 - Evaluate the whole calorimeter system performance, and Prepare for the beam test.

MIPs amplitude

- Abnormal pedestal distribution
 - Some chips have the pedestal shift behavior, and there is no correlation between the pedestal position and time
 - It depends on the "refresh" rate of the chip.
 - We increase the external trigger rate, the pedestal distribution become normal.

Brief review of Sci-W ECAL of CEPC

CEPC ECAL Status

Super-layer assembly and test

➤Calorimeter trial assembly

Calorimeter cosmic ray test

Summary and outlook

Calorimeter Trail assembly

- The calorimeter prototype has \succ 16 super-layers
- The total radiation length is about 23.4 X_0
- The adjacent layers are arranged in orthogonal order to ensure the 5 mm granularity
- The gap between two superlayers is smaller than 1 mm
- >There are 12 fans on two sides to dissipate heat

Calorimeter Trail assembly

2020/9/23

Calorimeter test

First trial assembly and test

A muon track in the calorimeter

2020/9/23

Calorimeter test

- All the super-layers (16) were assembled and tested using cosmic rays to check the performance
- Then, the prototype was trial assembled, and all the superlayers were installed.
- The preliminary test shows that the performance of the prototype is OK
 - The noise, MIPs amplitude, temperature...
- Next step, we will continue to carry out the commissioning of the calorimeter, and strive to carry out a long-term cosmic ray test at the end of this month.

backup

ECAL trigger

Validation Mode

Absorber parameter

ECAL prototype

PCB

ECAL prototype

ECAL test trigger

