

Status of simulation and software development of the crystal ECAL

Yong Liu (for the CEPC Calo-Software team) CEPC Physics and Detector Plenary Meeting, Sep. 16, 2020

Introduction: crystal ECAL

- Motivation:
 - Optimal EM energy resolution: $\frac{\sim 3\%}{\sqrt{E}} \oplus \sim 1\%$
- Currently focus on layout with long crystal bars
 - Long bars: 1×40 cm, double-sided readout
 - Super cell: 40×40 cm
- Crossed arrangement in adjacent layers
 - Aim for reduction of #channels
 - Timing at two sides: positioning along bar
- Key issues
 - Multiplicity of incident particles (e.g. jets)
 - Separation capability
 - Confusion impact

Crystal ECAL: software and tools at hand

- Geant4 stand-alone simulation
 - Crystal ECAL + Scintillator-Steel HCAL
 - Simple geometry: like prototypes for beamtests
 - Tools: digitizer, grouping into long bars
- CEPCsoft: working horse for the milestone CDR
 - Implementation of crystal ECAL geometry
 - Event display with Druid

Crystal ECAL: software and tools at hand

EM shower with a 30 GeV electron

- Geant4 stand-alone simulation
 - Crystal ECAL + Scintillator-Steel HCAL
 - Simple geometry: like prototypes in beamtests
 - Basic ECAL unit: 1cm^3 crystal cubes
 - Tools developed
 - Digitizers for crystal/scintillator and SiPM readout: photostatistics + ADC precision
 - Group every 40 crystal cubes (1cm^3) along each row as to read a long bar
 - Optimization: first studies done
 - Longitudinal depth: energy leakage correction
 - Transverse size: separation performance of gamma/pion0

Crystal ECAL: software and tools at hand

- CEPCsoft: working horse for the milestone CDR
 - Implementation of crystal ECAL geometry
 - Event display: "Druid"
 - Based on the tool that "groups" 40 cubes into a long bar
 - Visualize events in LCIO format (.slcio files)
 - First impression on shower profiles in long bars

Z→qq at 91.2GeV

- Key questions hints from patterns
 - Can you separate 2 or more particles in a jet?
 - If not, what would be the quantitative impact ?
 - Separation and energy sharing between two neighbouring super cells?

Crystal ECAL in the new CEPC software framework

Physics and Detector Meetings » Physics and Simulations » Calorimeter software

Meeting minutes in Jupter

CEPC calorimeter software meeting (9 Sep, 2020)

To be done

Barrel ECAL done

ECAL geometry construction with DD4Hep (Fangyi Guo)
Implementation of crystal ECAL with DD4Hep:

- Task-force established: dedicated to crystal ECAL in CEPCSW
 - Currently ~11 persons (staff and PhD students)
- Wider participation/collaboration would be highly welcome
- Weekly group meetings: exchange of latest progress and new ideas
 - Started in early September, 3 meetings till now

Focus of the calo-software team

- Implementation of crystal ECAL in CEPCSW
 - Barrel ECAL implemented with DD4HEP
- Validation of digitization within a single long crystal bar
 - Established a Geant4 full simulation model with optical processes
 - Plan to perform measurements: crystal + SiPM with radioactive/light sources

Implementation of crystal ECAL in CEPCSW

- Barrel ECAL implemented with DD4HEP
 - Ideal detector layout: no readout, no supporting structure, etc.
 - $R_0 = 1.8m, Z = 4.6m$, Depth=28cm, 28 longitudinal layers
 - 8 parts are exactly the same.
 - Crystal bar: $1 \text{cm} \times 1 \text{cm} \times \text{~~40cm}$.

Status: finished ideal geometry construction; Plan: need validation

- Crystal ECAL layout: details
 - Odd layers
 - Crystal bar along with phi direction
 - 3~5 bars in each layer, bar length 35~46cm
 - 460 bars in Z direction.

Even layers

- Crystal bar along with z axis.
- Bar length ~ 38 cm, 12 bars in each layer.
- 132~184 bars in phi direction.
- * A 0.7cm gap exists

#layer	block length/mm	bar length/mm
1	1867	373.4
3	1827	365.4
5	1787	357.4
7	1747	436.8
9	1707	426.8
11	1667	416.8
13	1627	406.8
15	1587	396.8
17	1547	386.8
19	1507	376.8
21	1467	366.8
23	1427	356.8
25	1387	462.3
27	1347	449.0

Focus of the calo-software team

- Implementation of crystal ECAL in CEPCSW
 - Barrel ECAL implemented with DD4HEP
- Validation of digitization: within a single long crystal bar
 - Established a Geant4 full simulation model with optical processes
 - Focused on timing properties of scintillation photons
 - Plan to perform measurements: crystal + SiPM with radioactive/light sources
 - Timing resolution positioning resolution

Digitization within a single long crystal bar

- Geant4 full simulation
 - Geometry
 - A 40cm long crystal bar, 1x1 cm² transverse size
 - Read out by two SiPMs at both ends
 - Properties
 - BGO: light yield, decay times (fast and slow), refractive index, transmission (absorption length)
 - Wrapping: ESR foil (~99% reflectivity) with air gaps (total reflections)
 - SiPM: 6x6 or 10x10 mm² sensitive area, Photon Detection Efficiency (PDE), realistic SMD package
 - Primary particle: 1GeV muon (for MIP calibration)
 - Optical photon processes:
 - Scintillation, Cherenkov, absorption, refraction/reflection at boundaries

Digitization within a single long crystal bar

- Information extracted from G4
 - Energy deposition: mean ~10 MeV/MIP, determined by crystal thickness
 - #scintillation photons
 - #detected photons at either SiPM
 - Time stamp of each detected photon
 - T0: shooting of the primary particle (muon)
 - Included: scintillation time (~hundreds ns), propagation time (a few ns) within the crystal bar
 - Excluded: timing uncertainties from SiPMs and electronics
- Digitization
 - Timing: Choose the time stamp of the 1st photon detected at each SiPM
 - #detected photons : proportional to energy deposition

G4 simulation with optical processes

- Muon: perpendicular incidence
 - 5 hit positions, 500 events at each position (simulation speed ~30s/event)
- Scintillation process: rising edge of signals
 - Rise time constants of BGO scintillation: 60 ps (ideal) vs 2.8 ns (based on measurements)
- Photo-sensor
 - Active area of SiPM: $6 \text{ mm} \times 6 \text{ mm}$ vs $10 \text{ mm} \times 10 \text{ mm}$

Pulses at SiPMs: scenario 1

• Pulses at SiPMs: hit position close to one end (1 cm away)

Muon

SiPM1

SiPM2

BGO crystal

Pulses at SiPMs: scenario 2

Pulses at SiPMs: scenario 3

• Pulses at SiPMs: hit position in the middle

Time resolution

• Time resolution: Standard Deviation of (Time_SiPM2 – Time_SiPM1)/2

Hit Position in Z	0mm	-50mm	-100mm	-150mm	-190mm
$ au_{rise} = 60$ ps (ideal)	191 ps	207 ps	197 ps	179 ps	156 ps
$ au_{rise} = 2.8$ ns (measurement)	390 ps	413 ps	380 ps	389 ps	353 ps

Impact of SiPM sensitive areas

- Larger SiPM
 - More photons, steeper rising edge
 - #photons increase limited to acceptance angle (total reflections)

Polar angles along z (crystal length) of photons when generated

- Reflection index of BGO = 2.15, critical angle \approx 27.7 $^{\circ}$
- Only photons in a special solid angle can be detected
- Can be improved with better crystal-SiPM coupling

Near future activities

• CEPCSW Tutorial and detector study: Sep. 17-18, 2020

- https://indico.ihep.ac.cn/event/12341/
- Target audience: graduate students and senior undergraduates
- Format: in-person + online
- Introduction on CEPC sub-detectors + hands-on exercise

Thursday, 3	17 September 2020	Friday, 18 S	eptember 2020
08:00 - 10:00 (General introduction 09:00 Welcome speech 10' Speaker: Prof. Xinchou LOU (高能所)	08:00 - 10:20	CEPC Detector 09:00 CEPC tracker system 40' Speaker: Dr. Hongbo ZHU (IHEP)
	Speaker: LI Gang (EPC.IHEP)		09:40 Tracking reconstruction 40'
10:00 - 10:30	Break		Speaker: Ms. Yao Zhang (Institute of high energy physics, Beijing China)
10:30 - 12:00	Software basics	10:20 - 10:40	Break
10:3	10:30 Software ABC: linux, git, root, and GEANT4 1h30' Speaker: Xin Shi (IHEP)	10:40 - 12:10	CEPC detector
12:00 - 14:00 14:00 - 16:00	Lunch break Detector Simulation		10:45 CEPC Calorimeters <i>40'</i> Speaker: Dr. Yong Liu (Institute of High Energy Physics)
	14:00 Introduction to CEPCSW 1h0' Speaker: Dr. Jiaheng Zou (高能所)		11:25 Calorimeter reconstruction <i>40</i> ' Speaker: 文兴 方 (高能所)
	15:00 DD4HEP: detector description <i>1h0'</i> Speaker: Chengdong FU (IHEP)	12:10 - 14:00	Break
16:00 - 16:30	Break	14:00 - 16:00	CEPC detector: Questions & Answers
16:30 - 18:10	Detector simulation 17:05 Simulation of a simple detector in CEPCSW 1h0' Speaker: Dr. Tao LIN (高能所)		

Summary and plans

- Task force established for crystal ECAL
 - Implementation of detector layout in the new software framework (CEPCSW)
 - Development of a digitization tool for long crystal bars
 - Steady progress made with G4 full simulation
 - Plan to validate the simulation results with measurements
 - Need to fully exploit existing tools
 - Druid for event display with jets: patterns for separation and reconstruction
 - Geant4 stand-alone simulation for ECAL + HCAL