$e^+e^- \rightarrow Zh \rightarrow \nu\bar{\nu} + SS1 + SS2 \rightarrow \nu\bar{\nu}q\bar{q}q\bar{q}$

with Lepton Colliders

Yulei Zhang^[1], Xiang Chen^[1], Jifeng Hu^[2], Liang Li^[1]
1 Shanghai Jiao Tong University
2 South China Normal University

Long-Lived Particle

Outline Beyond the Standard Model

- Why LLPs interested
- Search for LLPs at future collider
 - Using time of flight
 - Using energy deposition
- Preliminary results
- Summary

The lifetime frontier ...

- Large majority of current collider experiment searches and analysis strategies assume the new particle decays promptly.
- Particle lifetimes span a very wide range and long lifetimes can generically appear in the BSM theories.
- Dedicated searches for long-lived BSM particles are necessary.

Sixth workshop of the LHC LLP Community

What is a long-lived particle?

Sixth workshop of the LHC LLP Community

Object (neutral or charged) decaying a macroscopic and reconstructible distance from IP Signal signature of a long-lived particle:

Neutral LLP decays are a spectacular signature, and the **burst of energy** appearing out of nowhere sets it apart from the collision point.

Enhancing Long-Lived Particles Searches @ LHC with Precision Timing Information

•
$$\Delta t_{\text{delay}}^i = \frac{\ell_X}{\beta_X} + \frac{\ell_i}{\beta_i} - \frac{\ell_{\text{SM}}}{\beta_{\text{SM}}}$$
, $(i = a, b)$

• For SM particles, $\beta_{SM} \sim 1$

Jia Liu, Zhen Liu, and Lian-Tao Wang Phys. Rev. Lett. **122**, 131801 – 2019.04.03

LLP Searches at Lepton Colliders (CEPC)

- Energy: 250 GeV
- Mass of SS1: 1-50 GeV
- Mass of SS2: 1-50 GeV
- SS1, SS2's lifetime $\tau = R_{out}/c = 6m/c = 20 ns$ (R_{out} see next page)
- Focus on $Z \to q\bar{q}$ in this study, Xiang will introduce $Z \to \ell\bar{\ell}$

Selection Criteria

- Muon Detector
 - $R_{\rm in} \approx 4m$
 - $R_{\text{out}} \approx 6m$
- Select events within Muon detector
 - $\Delta t = t_{\rm Hit} r_{\rm Hit}/c$
- Dominant Background
 - $ZH \rightarrow \nu\nu bb, \nu\nu jj$
 - $e^+e^- \rightarrow qq$
 - $(ZZ \rightarrow \nu \nu qq, qqqq)$
- Full simulation with CEPC official software

Event Selection

	Signal	$e^+e^- ightarrow q\overline{q}$	$e^+e^- \rightarrow Zh$	Total
# of Events in $5ab^{-1}$		2.0×10^{8}	1.0×10^{6}	2.01×10 ⁸
# of Events simulated	$\sim 1.3 \times 10^{6}$	$\sim 1.5 \times 10^{6}$	$\sim 1.37 \times 10^{6}$	$\sim 2.87 \times 10^{6}$
Decay in Muon Detector	137,536	1,151,350	754,134	1,905,484
$\left m_{qq}-m_{Z} ight \leq 20~{ m GeV}$	122,055	496,499	75,157	571,656
$\left m_{qq}^{rec} - m_h\right \le 20 \text{ GeV}$	112,623	47,773	53,632	101,405
$E_{2j} \ge 30 \text{ GeV}$	84,240	229	57	286
$\min(\Delta T_{j_1}, \Delta T_{j_2}) > 3 \text{ ns}$	81,940	146	37	183
Efficiency	59.58%	0.013%	0.005%	0.009%

- qq is reconstructed by $e^+e^- k_T$ algorithm, which represents for the jets from primary vertex
- Using $anti k_T$ algorithm to cluster hits $(j_1 \& j_2)$ in Muon detector.

— Signal $e^+e^- \rightarrow q\bar{q}$ $e^+e^- \rightarrow ZH$ 100 150 200 250 300 m_{qq} [GeV]

Background is normalized to the scale of signal. •

Time Difference vs. Energy

Time Difference vs. Energy

- Background is normalized to the scale of signal.
- Only count the energy in Muon detector

Time Difference vs. Energy

- Background is normalized to the scale of signal.
- Only count the energy in Muon detector

Sensitivity (2 jets)

Sensitivity (4 jets)

Summary

- A preliminary study has been performed on Long-Lived Particle ($h \rightarrow q\bar{q}\nu\bar{\nu}$ and $h \rightarrow q\bar{q}q\bar{q}$) based on CEPC_V4.
- Time of flight and Energy deposition in Muon detector are the two main variables with good separation power.
- CEPC can provide precise time information.
 - detector time resolution ~ O(1) ns
- Further optimization on selection and reconstruction and more statistics are necessary for estimate the expected background.
 - Other backgrounds like pileup, cosmic rays are negligible in our case.
- To do...
 - Reconstruction from $Z \rightarrow \ell^{\pm} \ell^{\mp}$ process
 - Reconstruction of the displacement vertex (SS1 and SS2 decay vertex)

Thanks

Backup

CERN

Challenges of searching for BSM LLPs

- Final states:
 - Limited by how well the experiments can reconstruct final state objects
- Displacement:
 - High displacement helps to discriminate against SM backgrouds
 - High displacement searches are also limited by the physical size of the detector
 - Need very good vertexing and tracking techniques to reconstruct displaced vertex

Sixth workshop of the LHC LLP Community

Time Difference (Normalized)

$$\Delta t = t_{\rm Hit} - r_{\rm Hit}/c$$

- Using FastJet Algorithm to cluster hits in Muon detector.
- Determine hit point by select min(j1, j2)

Time Stamp Tagging

- Initial State Radiation Photon (ISR)
 - Isolated photon from primary vertex
 - Precise time information from ECAL hits.
 - Production cut: $|\eta| \le 3.0 \&\& E \ge 0.1 GeV$
 - $h \to q\bar{q}q\bar{q}$ (4 jets), apply to $Z \to \ell^{\pm}\ell^{\mp} \& Z \to \bar{\nu}_{\ell}\nu_{\ell}$
 - $h \rightarrow q\bar{q}\nu\nu$ (2 jets), apply to $Z \rightarrow inclusive$

	h ightarrow 4j	h ightarrow 4j with ISR (no cut)	h ightarrow 4j with ISR (with cut)
$\sigma/\sigma_{h ightarrow 4j}$	1.0000	0.8329	0.1569

The cross section ratio is calculated by MadGraph5

Reconstructed ISR γ Efficiency

Higgs decay mode	Z decay mode	$\sigma/\sigma_{h ightarrow 4j,Z ightarrow ext{inclusive}}$	$\epsilon_{\gamma_{ m ISR}}$		
4 jets: $SS1 \rightarrow q\bar{q}$ $SS2 \rightarrow q\bar{q}$	inclusive	1.000	$\epsilon_{\rm inclusive}^{\gamma} = 28.40\%$		
	$q \overline{q}$	0.658	11.10%		
	$\ell^{\pm}\ell^{\mp}(\ell=e,\mu)$	0.066	82.20%		
	$ u \overline{ u}$	0.196	79.95%		
2 jets: $SS1 \rightarrow q\bar{q}$ $SS2 \rightarrow \nu\bar{\nu}$	inclusive	0.386	$\epsilon_{\text{inclusive}}^{\gamma} = 29.61\%$		
	$q \overline{q}$	0.266	10.79%		
	$\ell^{\pm}\ell^{\mp}(\ell=e,\mu)$	0.026	81.99%		
	$ u ar{ u}$	0.080	80.33%		
$\epsilon_{ m total}^{\gamma} = 39.83\%$					
$\epsilon_{\text{final}}^{\gamma} = 32.53\%$ (excluding 6 jets final state)					

The cross section ratio is calculated by MadGraph5

Long-Lived Particle

Discussion on ISR γ

- Current ISR γ selection:
 - Isolated($\Delta R > 0.3$) γ with maximum $\cos(\theta)$ or *E*
 - No big difference using $\cos(\theta)$ or *E*
- $\epsilon_{Z \to \ell^{\pm} \ell^{\mp}} \ge \epsilon_{Z \to \nu \overline{\nu}} \gg \epsilon_{Z \to q \overline{q}}$
 - The reason why leptonic decay has the best efficiency is because of FSR γ .
 - Relatively low ISR γ efficiency for $Z \rightarrow q\bar{q}$ (due to jet background)
- Other options for tagging:
 - γ from other prompt process ($q \bar{q}$)

γ from prompt process ($q\bar{q}$)

- $\pi^0 \rightarrow \gamma \gamma$
- In MC, over 99.3% jets have a large amount of $\pi^0 \rightarrow$ Plenty of γ as time stamp.
- In $Z \to q\bar{q}$, $h \to q\bar{q}\nu\bar{\nu}$ samples, require γ selected from the constituents of jets.
- Efficiency of Reconstructing a γ from jet: $\epsilon_{rec} \ge 99\%$
- Efficiency of Reconstructing a γ from jet with MC truth link: $\epsilon_{rec}^{MC} = 86\%$
- Efficiency of acceptance cuts: $\epsilon_{accept} = 95.2\%$
- Final efficiency for $Z \rightarrow q\bar{q}$: $\epsilon_{\text{final}}^{\gamma} = 86\% \times 95.2\% = 81.94\%$ (much larger than ISR)

	ϵ^{Z}_{rec}	ϵ_{rec}^{MC}	ϵ_{accept}	$\epsilon^{\gamma}_{Z ightarrow qar{q}}$
4 jets:	64.93%	85.21%	96.18%	53.21 %
2 jets:	93.17%	86.07%	95.20%	76.34 %

 ϵ^{Z}_{rec} : 60 GeV $\leq M^{Z}_{q\bar{q}} \leq 120$ GeV

Sensitivity (4 jets)

