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Sum rules, elastic amplitudes

the usual matching and running procedure of EFT for the cases we study. Interestingly,
we also find it possible to impose symmetries at the amplitude level to suppress the
contribution of certain dimension-six operators, which can be connected to the familiar
custodial symmetries of the SM Higgs and fermion sectors.

The rest of this paper is organized as follows: In Section 2 we briefly review the sum
rules before providing a classification of the forward elastic amplitudes in the SMEFT.
We then perform a systematic enumeration of the sum rules for the dimension-6 operators
in Section 3 and discuss their implications in Section 4. Finally, we apply the sum rules
to a few benchmark models in Section 5. Our conclusion is drawn in Section 6. A short
review on the essential results of the spinor helicity formalism is provided in Appendix A,
and a derivation of the forward limit is given in Appendix B.

2 Sum rules and elastic amplitudes

2.1 Sum rules

The starting point for writing down a sum rule is to consider the elastic scattering of two
particles (denoted as a and b) and write down the amplitude in the forward limit, which
is a function of the Mandelstam variable s alone due to the relation s + t + u = 4m2,1

Ãab(s) © A(ab æ ab)|
t=0 . (2.1)

Throughout our paper we will use Ã to denote amplitudes in the forward limit to distin-
guish them from the general amplitudes A. Performing an analytical continuation of s to
the complex plane, and expanding Ãab around the point s = µ2, we obtain

Ãab(s) =
ÿ

n

cn(s ≠ µ2)n , cn = 1
2fii

j

s=µ2

ds
Ãab(s)

(s ≠ µ2)n+1 , (2.2)

where each coe�cient cn is written as a contour integral around the point s = µ2. Ex-
panding the contour to infinity, one picks up all the non-analytic structures in the complex
s-plane. For an interacting theory, discontinuities on the real axis generally exist, which
can be related to the total cross sections of the scattering of a and b (and b̄, the anti-
particle of b) via the optical theorem. This gives a dispersion relation in the following
form2

cn =
⁄ Œ

4m2

ds

fi
s

Û

1 ≠
4m2

s

A
‡ab

tot
(s ≠ µ2)n+1 + (≠1)n

‡ab̄

tot
(s ≠ 4m2 + µ2)n+1

B

+ cŒ
n

, (2.3)

1 We assume a and b have the same mass m for convenience.
2See e.g. Refs. [5, 22] for a more detailed derivation, in particular on how the crossing symmetry

leads to the term ‡
ab̄

tot. Note also that in Eq. (2.3) we have omitted possible additional IR poles from SM
contributions, which are discussed later in Section 4.1.
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where ‡ab

tot (‡ab̄

tot) is the total cross section of the scattering of particles a and b (b̄). The
‡ab̄

tot term corresponds to contributions in the u-channel, which is mapped to the s-plane
and rewritten using the s ¡ u crossing relation which exchanges b and b̄. The contour
at infinity gives the term cŒ

n
©

1
2fii

i
sæŒ

ds A(s)
(s≠µ2)n+1 , which vanishes for n > 1 as a result

of the Froissart bound [37]. The cns are closely related to the Wilson coe�cients in the
EFT. As we will show later, the expansion in Eq. (2.2) exactly maps to the EFT expansion
in the m2

π µ2
π �2 limit, with n = 1, 2, .... corresponding to operator dimensions 6,

8, ...., respectively. This limit is consistent with our massless SMEFT assumption. The
scale µ can be considered as the energy at which the relevant parameters in the scattering
are defined. For an even n, the two cross section terms in Eq. (2.3) are both positive,
implying that cn must be positive for a nontrivial theory. For n = 1 which corresponds
to the dimension-6 operators, the two cross section terms have opposite signs, and the
boundary term cŒ

1 can also be nonzero in general.

2.2 Elastic helicity amplitudes in the SMEFT

The Standard Model E�ective Field Theory (SMEFT) is obtained by augmenting the SM
Lagrangian with higher dimensional operators comprised of only the SM field content,
which form an expansion in terms of the inverse of some energy scale �. Assuming
baryon and lepton numbers are conserved, only operators of even dimensions are allowed,
and the SMEFT Lagrangian can be written as3

LSMEFT = LSM +
ÿ

i

c(6)
i

�2 O
(6)
i

+
ÿ

j

c(8)
j

�4 O
(8)
j

+ · · · . (2.4)

We consider how these higher dimensional operators could contribute to an elastic scat-
tering amplitude in the massless limit. The dimension of an amplitude is given by
[An] = 4 ≠ n, where n is the number of external legs. Any n-point amplitude can receive
contributions from di�erent couplings in the theory. Ordering the contributions by the
dimension of the couplings, An can be expanded as

An =
ÿ

i

g[i]A
[4≠n≠i]
n

, (2.5)

where i denotes the dimension of the coupling g[i]. A
[4≠n≠i]
n

is the contribution to the
amplitude proportional to g[i], and must have dimension 4 ≠ n ≠ i as denoted in the
superscript, so that the total dimension equals 4 ≠ n. An dimension-d operator in the
Lagrangian has a coupling with dimension i = 4 ≠ d. Hence, it can contribute to the
amplitude An a term in the form of g[4≠d]A

[d≠n]
n

.4 We also note that in the massless limit,

3 The only dimension-5 operator in the SM is the Weinberg operator of the form LLHH. In the
massless limit it contributes to neither 3-point amplitudes nor 4-point elastic amplitudes.

4This mapping can be spoiled if the fields develop vacuum expectation values (vevs), as in the SM.
Working in the massless limit, we do not consider the Higgs vev here.
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Ãab(s) =
ÿ

n

cn(s ≠ µ2)n , cn = 1
2fii

j

s=µ2

ds
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2See e.g. Refs. [5, 22] for a more detailed derivation, in particular on how the crossing symmetry
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tot. Note also that in Eq. (2.3) we have omitted possible additional IR poles from SM
contributions, which are discussed later in Section 4.1.
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m2/µ2, while the contributions from higher dimensional operators are further suppressed
by powers of µ2/�2.

3 Sum rules of dimension-6 operators
Having established the connection between the helicity amplitudes and sum rules, we
are now ready to write down the sum rules in the SMEFT. We will be focusing on the
ones relevant for the dimension-6 operators. As mentioned in the previous section, they
correspond to the n = 1 term in Eq. (2.3) in the limit m2

π µ2
π �2,

dÃab(s)
ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡ab

tot ≠ ‡ab̄

tot
2

+ cŒ . (3.1)

We can now replace particles a and b with the SM particles. As suggested by Table 1, one
only needs to consider the scattering between two Higgs, two fermions, or one Higgs and
one fermion. In each case, it is important to establish the connection between the number
of independent parameters in the theory and the number of independent sum rules they
are subject to. As such, we will perform the counting directly based on amplitudes, and
only make connections to the operator coe�cients afterwards. A general principle of this
approach is that the number of independent parameters for a particular amplitude is
given by the number of independent kinematic form it can have, which is dedicated by
the little group scaling as well as symmetries of the amplitude [27, 28]. As an illustration,
let us look at a few examples for the 4-point scalar amplitude. As shown in Table 1,
its A

[2]
4 term is a linear combination of the Mandelstam variables, and can be written

in the general form cs s + ct t + cu u. Consider first the case of a single real scalar, the
amplitude should be symmetric under any exchange between s, t or u, i.e. cs = ct = cu.
Combined with the massless relation s + t + u = 0, we could conclude that A

[2]
4 must

vanish. This is consistent with the fact that the dimension-six operator for the single
real scalar that contributes to the A

[2]
4 term is redundant and can be eliminated by a field

redefinition [27]. Similarly, for a single complex scalar, symmetry requires that A(„„„ú„ú)
is invariant under the exchange of the two „s (or „ús). Therefore, A(„„„ú„ú) is symmetric
under the exchange t ¡ u and can only be proportional to s. Not surprisingly, there is
also only one independent dimension-six operator for the single complex scalar.

Starting with the A
[2]
4 amplitudes in Table 1, we then go through the following proce-

dure to count the sum rules:

• Count the number of independent amplitudes. SM particles fill various gauge mul-
tiplets, and fermions can also come in with di�erent flavors. One needs to properly
count the degrees of freedoms in order to derive all the sum rules.

• For each independent amplitude, count the number of independent parameters in it.
If the amplitude contain one parameter, and does not vanish in the forward limit,
it then produce one sum rule for this parameter.
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where ‡ab

tot (‡ab̄

tot) is the total cross section of the scattering of particles a and b (b̄). The
‡ab̄

tot term corresponds to contributions in the u-channel, which is mapped to the s-plane
and rewritten using the s ¡ u crossing relation which exchanges b and b̄. The contour
at infinity gives the term cŒ

n
©

1
2fii

i
sæŒ

ds A(s)
(s≠µ2)n+1 , which vanishes for n > 1 as a result

of the Froissart bound [37]. The cns are closely related to the Wilson coe�cients in the
EFT. As we will show later, the expansion in Eq. (2.2) exactly maps to the EFT expansion
in the m2

π µ2
π �2 limit, with n = 1, 2, .... corresponding to operator dimensions 6,

8, ...., respectively. This limit is consistent with our massless SMEFT assumption. The
scale µ can be considered as the energy at which the relevant parameters in the scattering
are defined. For an even n, the two cross section terms in Eq. (2.3) are both positive,
implying that cn must be positive for a nontrivial theory. For n = 1 which corresponds
to the dimension-6 operators, the two cross section terms have opposite signs, and the
boundary term cŒ

1 can also be nonzero in general.

2.2 Elastic helicity amplitudes in the SMEFT

The Standard Model E�ective Field Theory (SMEFT) is obtained by augmenting the SM
Lagrangian with higher dimensional operators comprised of only the SM field content,
which form an expansion in terms of the inverse of some energy scale �. Assuming
baryon and lepton numbers are conserved, only operators of even dimensions are allowed,
and the SMEFT Lagrangian can be written as3
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ÿ

i

c(6)
i

�2 O
(6)
i

+
ÿ

j

c(8)
j

�4 O
(8)
j

+ · · · . (2.4)

We consider how these higher dimensional operators could contribute to an elastic scat-
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amplitude An a term in the form of g[4≠d]A

[d≠n]
n

.4 We also note that in the massless limit,
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massless limit it contributes to neither 3-point amplitudes nor 4-point elastic amplitudes.

4This mapping can be spoiled if the fields develop vacuum expectation values (vevs), as in the SM.
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4-point amplitude
all couplings in the SM are dimensionless. A 4-point amplitude can thus be written as

A4 = g[0]A
[0]
4 + g[≠2]A

[2]
4 + g[≠4]A

[4]
4 + .... (2.6)

where A
[0]
4 is the SM contribution, A

[2]
4 is obtained with one insertion of d6 operators (with

g[≠2] Ã 1/�2), and A
[4]
4 comes from either one insertion of d8 operators or two insertions

of d6 operators. Similarly, a 3-point amplitude can be written as

A3 = g[0]A
[1]
3 + g[≠2]A

[3]
3 + ... (2.7)

Let us look at the A
[2]
4 term of the 4-point amplitude. The claim is that the only kind

of contribution to the elastic scattering is in the form of a 4-point contact interaction.5
In this case, locality of the EFT dictates that there is no momentum dependence on the
denominator. This is obviously the case when the amplitude is built from one dim-6
operator with 4 external particles.

A 4-point amplitude can also be built by combining two 3-point amplitudes. It can
only factorize into the form ≥ A

[1]
3

1
p2 A

[3]
3 in the SMEFT, where A

[1]
3 is from SM and A

[3]
3

is generated by one insertion of d6 operators, as shown in Eq. (2.7). Factorizations of
the form ≥ A

[2]
3

1
p2 A

[2]
3 , corresponding to two insertions of d5 operators, are not possible

within the SMEFT. Assuming all particles have spin less than or equal to one (|h| Æ 1),
the only A

[3]
3 we can write down is from three vectors with the same helicity, A(V +V +V +)

or A(V ≠V ≠V ≠).6 They are generated by the operators

O3W = 1
3!g‘abcW

a ‹

µ
W b

‹fl
W c flµ , and O3 ÂW = 1

3!g‘abc
ÊW a ‹

µ
W b

‹fl
W c flµ , (2.8)

for the electroweak gauge bosons, or O3G and O3ÂG for the gluons. One could then attach
a pair of scalars („), fermions (Â) or vectors (V ) on one of the vector to make a 4-point
amplitude, as shown in Fig. 1. However, note that none of these amplitudes is elastic.
This is because we need the incoming and outgoing particle to have the same helicity, e.g.
V +

æ V +. In the all-in/all-out convention, the same particle thus must have opposite
helicities. This is not the case for any of the processes in Fig. 1. We thus conclude that
an elastic A

[2]
4 can only be of the contact form.

Our conclusion is seemingly in contradiction with the fact that other operators can
also generate 3-point interactions. In particular, operators

OHW = ig(DµH)†‡a(D‹H)W a

µ‹
, OHB = igÕ(DµH)†(D‹H)Bµ‹ ,

OW = ig

2 (H†‡a
Ωæ
DµH)D‹W a

µ‹
, OB = igÕ

2 (H†ΩæDµH)ˆ‹Bµ‹ , (2.9)

5Strictly speaking, this only applies in the case of tree level EFT contributions to the amplitude. Loop
contributions can give rise to amplitudes with di�erent momentum structures.

6See Appendix A for a short derivation of this statement. Here the superscript of a particle indicates
the signs of its helicity. We also use the convention that all particles are going in the vertex (or all are
going out).
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µ
W b

‹fl
W c flµ , (2.8)

for the electroweak gauge bosons, or O3G and O3ÂG for the gluons. One could then attach
a pair of scalars („), fermions (Â) or vectors (V ) on one of the vector to make a 4-point
amplitude, as shown in Fig. 1. However, note that none of these amplitudes is elastic.
This is because we need the incoming and outgoing particle to have the same helicity, e.g.
V +

æ V +. In the all-in/all-out convention, the same particle thus must have opposite
helicities. This is not the case for any of the processes in Fig. 1. We thus conclude that
an elastic A

[2]
4 can only be of the contact form.

Our conclusion is seemingly in contradiction with the fact that other operators can
also generate 3-point interactions. In particular, operators

OHW = ig(DµH)†‡a(D‹H)W a

µ‹
, OHB = igÕ(DµH)†(D‹H)Bµ‹ ,

OW = ig

2 (H†‡a
Ωæ
DµH)D‹W a

µ‹
, OB = igÕ

2 (H†ΩæDµH)ˆ‹Bµ‹ , (2.9)

5Strictly speaking, this only applies in the case of tree level EFT contributions to the amplitude. Loop
contributions can give rise to amplitudes with di�erent momentum structures.

6See Appendix A for a short derivation of this statement. Here the superscript of a particle indicates
the signs of its helicity. We also use the convention that all particles are going in the vertex (or all are
going out).
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Figure 1: Possible factorization channels of A
[2]
4 that contain a A(V +V +V +) part. The

superscript of a particle indicates the sign of its helicity, with the all-in/all-out convention.
The diagrams with A(V ≠V ≠V ≠) can be obtained by flipping all the helicities. The red
dot denotes an insertion of a d6 operator. None of the processes are elastic in the helicity
basis. Note in particular that A(V ≠V ≠V +V +) can not be generated by only one insertion
of d6 operators.

would generate „„V -type couplings. Equivalently, they contribute to the anomalous triple
gauge couplings once the Higgs boson develop a vev. However, note that in the massless
limit they do not generate on-shell 3-point amplitudes, since these „„V couplings have a
p2 dependence which vanishes on shell. While they still contribute to 4-point amplitudes
via an o�-shell 3-point amplitude, the p2 in the propagator of A

[1]
3

1
p2 A

[3]
3 is cancelled by

the p2 from A
[3]
3 , so the 4-point amplitude generated in this way is still a contact one

(i.e. it does not have physical factorization channels). It is not a coincidence that these
operators can be exchanged with operators with more vertices by applying integration by
parts and the equations of motion of the Gauge bosons, as done in the Warsaw basis [36].

Since the 4-point amplitudes must be contact, their kinematic forms are strongly
constrained by a number of requirements. Namely, all the angle and square brackets have
to be in the numerator, the total dimension of A

[2]
4 should be 2, and the little group scaling

needs to be consistent with the helicities of the particles. We list in Table 1 all the possible
4-point elastic amplitudes, with their spinor form for A

[2]
4 up to some couplings constants.

Amplitudes that can be obtained by the crossing s ¡ u (exchanging particles 1 ¡ 3 or
2 ¡ 4) are not explicitly shown. We note again that, in the all-in/all-out convention, the
elasticity of a massless amplitude enforces it to have zero net helicity. In other words, all
the amplitudes in Table 1 must have equal numbers of square and angle brackets.

The spinor forms of A
[2]
4 in Table 1 have some remarkable features. First, with the

exception of the 4-scalar amplitude, they are completely fixed by little group scaling.7 In
particular, for A(V ≠„V +„ú), A(V ≠Â≠V +Â+) and A(V ≠

1 V ≠
2 V +

1 V +
2 ) (and the ones related

by crossing), we simply could not write down an A
[2]
4 term that fulfills all the consistency

requirements. This means that dimension-6 operators could not contribute to these am-
plitudes at tree level.8 For the 4-scalar amplitude, we note that A

[2]
4 can only be linear

in terms of the Mandelstam variables s, t and u, since it has a mass-dimension two and

7Note that certain combinations of spinor products can be related to each other and are not indepen-
dent. For instance, momentum conservation imposes È12Í[23] = ≠È14Í[43], as shown in Eq. (A.8).

8 Even at the one-loop level, the dimension-6 operators could only have ration contributions to these
amplitudes as a result of the helicity selection rules [38].
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Two 3-point amplitudes?

all couplings in the SM are dimensionless. A 4-point amplitude can thus be written as

A4 = g[0]A
[0]
4 + g[≠2]A

[2]
4 + g[≠4]A

[4]
4 + .... (2.6)

where A
[0]
4 is the SM contribution, A

[2]
4 is obtained with one insertion of d6 operators (with

g[≠2] Ã 1/�2), and A
[4]
4 comes from either one insertion of d8 operators or two insertions

of d6 operators. Similarly, a 3-point amplitude can be written as

A3 = g[0]A
[1]
3 + g[≠2]A

[3]
3 + ... (2.7)

Let us look at the A
[2]
4 term of the 4-point amplitude. The claim is that the only kind

of contribution to the elastic scattering is in the form of a 4-point contact interaction.5
In this case, locality of the EFT dictates that there is no momentum dependence on the
denominator. This is obviously the case when the amplitude is built from one dim-6
operator with 4 external particles.

A 4-point amplitude can also be built by combining two 3-point amplitudes. It can
only factorize into the form ≥ A

[1]
3

1
p2 A

[3]
3 in the SMEFT, where A

[1]
3 is from SM and A

[3]
3

is generated by one insertion of d6 operators, as shown in Eq. (2.7). Factorizations of
the form ≥ A

[2]
3

1
p2 A

[2]
3 , corresponding to two insertions of d5 operators, are not possible

within the SMEFT. Assuming all particles have spin less than or equal to one (|h| Æ 1),
the only A

[3]
3 we can write down is from three vectors with the same helicity, A(V +V +V +)

or A(V ≠V ≠V ≠).6 They are generated by the operators

O3W = 1
3!g‘abcW

a ‹

µ
W b

‹fl
W c flµ , and O3 ÂW = 1

3!g‘abc
ÊW a ‹

µ
W b

‹fl
W c flµ , (2.8)

for the electroweak gauge bosons, or O3G and O3ÂG for the gluons. One could then attach
a pair of scalars („), fermions (Â) or vectors (V ) on one of the vector to make a 4-point
amplitude, as shown in Fig. 1. However, note that none of these amplitudes is elastic.
This is because we need the incoming and outgoing particle to have the same helicity, e.g.
V +

æ V +. In the all-in/all-out convention, the same particle thus must have opposite
helicities. This is not the case for any of the processes in Fig. 1. We thus conclude that
an elastic A

[2]
4 can only be of the contact form.

Our conclusion is seemingly in contradiction with the fact that other operators can
also generate 3-point interactions. In particular, operators

OHW = ig(DµH)†‡a(D‹H)W a

µ‹
, OHB = igÕ(DµH)†(D‹H)Bµ‹ ,

OW = ig

2 (H†‡a
Ωæ
DµH)D‹W a

µ‹
, OB = igÕ

2 (H†ΩæDµH)ˆ‹Bµ‹ , (2.9)

5Strictly speaking, this only applies in the case of tree level EFT contributions to the amplitude. Loop
contributions can give rise to amplitudes with di�erent momentum structures.

6See Appendix A for a short derivation of this statement. Here the superscript of a particle indicates
the signs of its helicity. We also use the convention that all particles are going in the vertex (or all are
going out).

6Still of the form of 4 point contact interaction. 

Can generate ɸɸV type 3 point couplings. 
However, 1/p2 cancelled by p2 from this vertex

all couplings in the SM are dimensionless. A 4-point amplitude can thus be written as

A4 = g[0]A
[0]
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4 + g[≠4]A
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4 + .... (2.6)

where A
[0]
4 is the SM contribution, A

[2]
4 is obtained with one insertion of d6 operators (with
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4 comes from either one insertion of d8 operators or two insertions

of d6 operators. Similarly, a 3-point amplitude can be written as

A3 = g[0]A
[1]
3 + g[≠2]A

[3]
3 + ... (2.7)

Let us look at the A
[2]
4 term of the 4-point amplitude. The claim is that the only kind

of contribution to the elastic scattering is in the form of a 4-point contact interaction.5
In this case, locality of the EFT dictates that there is no momentum dependence on the
denominator. This is obviously the case when the amplitude is built from one dim-6
operator with 4 external particles.

A 4-point amplitude can also be built by combining two 3-point amplitudes. It can
only factorize into the form ≥ A

[1]
3

1
p2 A

[3]
3 in the SMEFT, where A

[1]
3 is from SM and A

[3]
3

is generated by one insertion of d6 operators, as shown in Eq. (2.7). Factorizations of
the form ≥ A

[2]
3

1
p2 A

[2]
3 , corresponding to two insertions of d5 operators, are not possible

within the SMEFT. Assuming all particles have spin less than or equal to one (|h| Æ 1),
the only A

[3]
3 we can write down is from three vectors with the same helicity, A(V +V +V +)

or A(V ≠V ≠V ≠).6 They are generated by the operators

O3W = 1
3!g‘abcW

a ‹

µ
W b

‹fl
W c flµ , and O3 ÂW = 1

3!g‘abc
ÊW a ‹

µ
W b

‹fl
W c flµ , (2.8)

for the electroweak gauge bosons, or O3G and O3ÂG for the gluons. One could then attach
a pair of scalars („), fermions (Â) or vectors (V ) on one of the vector to make a 4-point
amplitude, as shown in Fig. 1. However, note that none of these amplitudes is elastic.
This is because we need the incoming and outgoing particle to have the same helicity, e.g.
V +

æ V +. In the all-in/all-out convention, the same particle thus must have opposite
helicities. This is not the case for any of the processes in Fig. 1. We thus conclude that
an elastic A

[2]
4 can only be of the contact form.

Our conclusion is seemingly in contradiction with the fact that other operators can
also generate 3-point interactions. In particular, operators

OHW = ig(DµH)†‡a(D‹H)W a

µ‹
, OHB = igÕ(DµH)†(D‹H)Bµ‹ ,

OW = ig

2 (H†‡a
Ωæ
DµH)D‹W a

µ‹
, OB = igÕ

2 (H†ΩæDµH)ˆ‹Bµ‹ , (2.9)

5Strictly speaking, this only applies in the case of tree level EFT contributions to the amplitude. Loop
contributions can give rise to amplitudes with di�erent momentum structures.

6See Appendix A for a short derivation of this statement. Here the superscript of a particle indicates
the signs of its helicity. We also use the convention that all particles are going in the vertex (or all are
going out).
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Possible elastic amplitudes

elastic 4-point amplitudes spinor form of A
[2]
4 spinor form of A

[4]
4

A(1 2 æ 3=1 4=2) (d6 operators) (d8 or d62)
„1„2„ú

1„
ú
2 sij sij ◊ skl

Â≠„Â+„ú
È12Í[23] È12Í[23] ◊ sij

Â≠
1 Â≠

2 Â+
1 Â+

2 È12Í[34] È12Í[34] ◊ sij

V ≠„V +„ú 7 È12Í
2[23]2

V ≠Â≠V +Â+ 7 È12Í
2[23][34]

V ≠
1 V ≠

2 V +
1 V +

2 7 È12Í
2[34]2 , È12Í

2[34]2 t≠u

s

Table 1: A full list of all possible 4-point elastic scattering amplitudes in the helicity
basis, with the corresponding tree-level form with mass dimensions 2 (one insertion of
dimension-6 operators) and 4 (dimension-8 or dimension-6-squared) in the massless case.
We use „, Â and V to denote scalars, fermions and vectors, respectively. The +/≠ signs
denote helicities in the usual all-in/all-out convention. The ordering of the particles is
such that the incoming particle 1 is outgoing particle 3, and 2 is 4. The labels 1 and
2 are explicitly shown in the subscripts for scattering of the same particle type. The
forward limit corresponds to t = s13 æ 0. Amplitudes that can be obtained by crossing
(such as A(Â≠

1 Â+
2 Â+

1 Â≠
2 )) are not explicitly shown. The 7 mark denotes that one can not

write down a term that fulfills all the consistency requirements. sij denotes a general
linear function of the Mandelstam variables in the form css + ctt + cuu, where cs,t,u are
constants.

is also invariant under little group scaling. The massless relation s + t + u = 0 is not
su�cient to fix A

[2]
4 .

It is straightforward to repeat the analysis for the A
[4]
4 terms, which we also list in

Table 1. They correspond to one insertion of dimension-8 operators or two insertions
of dimension-6 operators. An important observation is that a 3-point massless on-shell
amplitude could not be generated by operators of dimension higher than 6, assuming all
particles have spins less than or equal to one. We thus arrive at the similar conclusion
that A

[4]
4 terms have to come from contact 4-point interactions generated by dimension-

8 operators, with the exception that A(V ≠
1 V ≠

2 V +
1 V +

2 ) can now be generated with two
insertions of dimension-6 operators, by combining A3(V ≠V ≠V ≠) and A3(V +V +V +). This
generates a pole in the s-channel, while requiring the amplitude to be antisymmetric
under 1 ¡ 2 or 3 ¡ 4 (as the 3-point amplitudes are anti-symmetric) gives the spinor
form shown in Table 1. Similarly, we could also conclude that the higher order terms in
the amplitude expansion (A[6]

4 , A
[8]
4 , ...) must come from contact 4-point interactions.

A potential caveat of the helicity-amplitude approach is that it does not exhaust all
possible elastic amplitudes. While physics is obviously independent of the basis for particle
states, the notion of elasticity is not. For instance, a 4-vector amplitude with di�erent
initial and final state helicities (e.g. V +V +

æ V ≠V ≠) is inelastic in the helicity basis.
By changing to the linear basis, it would contribute to elastic amplitudes. It is shown
explicitly in Ref. [15] that for the 4-vector amplitudes, certain positivity bound involving

8

CP-odd dimension-8 operators can be written down in the linear basis but is absent in the
helicity basis. Equivalently, this requires one to also consider inelastic amplitudes with
vectors in the helicity basis, in which case the interpretation of the dispersion relations
is much less straightforward. However, we note that these inelastic amplitudes do not
contribute to nontrivial sum rules at the A

[2]
4 level. For both contact V „V „ and V ÂV Â

amplitudes, one could show that with two V +s (or two V ≠s), the amplitude must vanish in
the forward limit due to angular momentum conservation. Similarly, 4-vector amplitudes
with an odd number of V + or V ≠ (e.g. A(V ≠V +V +V +)) must also vanish in the forward
limit. It seems possible to write down a nonzero forward amplitude for A(V +V +V +V +)
and A(V ≠V ≠V ≠V ≠). As we will show later, a massless A

[2]
4 amplitude is an odd function

of s in the forward limit and vanishes if it is symmetric under the crossing s ¡ u. This
is the case with linear polarizations, if V is its own anti-particle (e.g. W 0 or gluon).
As such, one is left with the scattering of W +W ≠

æ W +W ≠ (or similar combinations
of gluons) with linear polarizations, which could generate a sum rule for the operators
O3W and O3 ÂW . However, a crucial observation is that the one-loop contributions to
c3W and c3G have opposite signs for boson loops and fermion loops with the same group
representation [39]. Without further investigations (which we leave to future studies), we
could already confirm the non-existence of a consistent sum rule for these operators from
elastic amplitudes, since the cross section terms on the righthand side of the sum rule
Eq. (2.3) cannot generate such an opposite sign between fermion and boson final states.
For the sum rules to provide useful information on the properties of the heavy particles
in the full theory, such as their charges, we restrict ourselves to the scattering of states
with definitive Poincaré representations and quantum numbers (i.e. the usual notion of
particles). Since the SM fermions are chiral, the left and right handed fermions do not
mix in the unbroken phase. As such, we conclude that the helicity basis is su�cient for
the enumeration of all sum rules of dimension-6 operators.

We will focus on the forward limit of the elastic scattering amplitudes in deriving the
sum rules. It can be shown that, for massless particles with any spins, the forward elastic
amplitudes in the helicity basis are always invariant under the little group scaling and
can be treated as if they are scalar amplitudes [5]. A short derivation for this result is
presented in Appendix B. For the terms in Table 1, we then have

Ã
[2]
4 © A

[2]
4 |tæ0 Ã s , Ã

[4]
4 © A

[4]
4 |tæ0 Ã s2 . (2.10)

Comparing Eq. (2.10) with Eq. (2.2) and Eq. (2.3), we note that Ã
[2]
4 and Ã

[4]
4 match the

n = 1 and n = 2 cases of the sum rule in Eq. (2.3) in the limit µ æ 0. Since we work in
the massless limit, the mass term m in Eq. (2.3) should also be set to zero. Note that the
dispersion relation requires a nonzero m to ensure the analyticity at s = 0, but it can be
set to zero afterwards as long as a smooth m æ 0 limit exists. This is indeed the case here
since we are focusing on the massless limit and do not consider the longitudinal component
of vectors. Physically, our assumptions correspond to the limit m2

π µ2
π �2 (with µ2

having a small non-zero imaginary part to avoid the branch cut on the real axis). The
leading order contribution of finite m comes from the SM, and is suppressed by powers of
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In the forward limit: 



Higgs-Higgs(Goldstone) 
amplitudes

• If an amplitude contain more than one independent parameter, it is possible to also
obtain multiple sum rules by considering di�erent physical states. In particular,
one could symmetrize the amplitude with respect to the Mandelstam variables,
and obtain di�erent forward limits. The Higgs-Higgs amplitude below provides an
explicit example of this.

For simplicity, we only include one generation of fermions, while the generalization to
3 generations is straightforward but somewhat tedious. A recent study on the flavor
constraints from dimension-8 four-fermion operators can be found in Ref. [16]. Given
that we are working in the massless limit with no EWSB, we will parameterize the Higgs

doublet as H =
A

„+

„0

B

and work directly with the complex components „+ and „0, together

with H† =
1
„≠ „0ú

2
where „≠ = („+)ú. Following the procedure above, we list the sum

rules below for each of the three types of amplitudes.

3.1 Higgs-Higgs amplitudes

The only scalar in the SM is the Higgs doublet. Writing down the 4-Higgs amplitude
(with the all-in/all-out convention) with explicit SU(2) indices, A(HiHjH

†
k
H†

l
), gauge

invariance then requires that we contract the SU(2) indices, with either i = k, j = l or
i = l, j = k. We immediately realize that the two amplitudes produced by these two
contractions are not independent, but are related by an exchange of the two Hs (or the
two H†s). We thus have only one independent amplitude. Letting i = k ”= j = l, we can
write its A

[2]
4 term with two independent paraemeters,

A(HiHjH
†
i
H†

j
) = cs s + cu u , (3.2)

where the t term is eliminated via the relation s + t + u = 0. Eq. (3.2) is an elastic
amplitude, and gives a sum rule on cs ≠ cu in the forward limit t = 0, u = ≠s. However,
a di�erent forward limit can be obtained by taking i = k = j = l which symmetrizes
Eq. (3.2) under t ¡ u, giving the elastic amplitude

A(HiHiH
†
i
H†

i
) = 2cs s + cu t + cu u = (2cs ≠ cu)s , (3.3)

which instead gives a sum rule on the combination 2cs ≠ cu. Another possibility is to let
i = k = j = l and only take the real component, making the amplitude totally symmetric
under s, t and u. However, the A

[2]
4 term vanishes in this case, as discussed in the single

real scalar case above. In fact, no additional independent sum rule can be written down
in this case. Eq. (3.2) and Eq. (3.3) thus contain two independent parameters and gives
two sum rules on the combinations,

cs ≠ cu , 2cs ≠ cu . (3.4)

To connect Eq. (3.4) with the dimension-6 operators, one simply needs to compute
the amplitudes Eq. (3.2) and Eq. (3.3) in a given operator basis. Only two independent
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Two independent amplitudes 

• If an amplitude contain more than one independent parameter, it is possible to also
obtain multiple sum rules by considering di�erent physical states. In particular,
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where the t term is eliminated via the relation s + t + u = 0. Eq. (3.2) is an elastic
amplitude, and gives a sum rule on cs ≠ cu in the forward limit t = 0, u = ≠s. However,
a di�erent forward limit can be obtained by taking i = k = j = l which symmetrizes
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which instead gives a sum rule on the combination 2cs ≠ cu. Another possibility is to let
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under s, t and u. However, the A

[2]
4 term vanishes in this case, as discussed in the single

real scalar case above. In fact, no additional independent sum rule can be written down
in this case. Eq. (3.2) and Eq. (3.3) thus contain two independent parameters and gives
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cs ≠ cu , 2cs ≠ cu . (3.4)
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In the forward limit, gives amplitude proportional to

• If an amplitude contain more than one independent parameter, it is possible to also
obtain multiple sum rules by considering di�erent physical states. In particular,
one could symmetrize the amplitude with respect to the Mandelstam variables,
and obtain di�erent forward limits. The Higgs-Higgs amplitude below provides an
explicit example of this.
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rules below for each of the three types of amplitudes.
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invariance then requires that we contract the SU(2) indices, with either i = k, j = l or
i = l, j = k. We immediately realize that the two amplitudes produced by these two
contractions are not independent, but are related by an exchange of the two Hs (or the
two H†s). We thus have only one independent amplitude. Letting i = k ”= j = l, we can
write its A
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4 term with two independent paraemeters,

A(HiHjH
†
i
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) = cs s + cu u , (3.2)

where the t term is eliminated via the relation s + t + u = 0. Eq. (3.2) is an elastic
amplitude, and gives a sum rule on cs ≠ cu in the forward limit t = 0, u = ≠s. However,
a di�erent forward limit can be obtained by taking i = k = j = l which symmetrizes
Eq. (3.2) under t ¡ u, giving the elastic amplitude

A(HiHiH
†
i
H†

i
) = 2cs s + cu t + cu u = (2cs ≠ cu)s , (3.3)

which instead gives a sum rule on the combination 2cs ≠ cu. Another possibility is to let
i = k = j = l and only take the real component, making the amplitude totally symmetric
under s, t and u. However, the A

[2]
4 term vanishes in this case, as discussed in the single

real scalar case above. In fact, no additional independent sum rule can be written down
in this case. Eq. (3.2) and Eq. (3.3) thus contain two independent parameters and gives
two sum rules on the combinations,

cs ≠ cu , 2cs ≠ cu . (3.4)

To connect Eq. (3.4) with the dimension-6 operators, one simply needs to compute
the amplitudes Eq. (3.2) and Eq. (3.3) in a given operator basis. Only two independent
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Sum rules

OH = 1
2(ˆµ|H|

2)2
OT = 1
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where in the second equation the cH terms are cancelled in the forward limit.

3.2 Higgs-fermion amplitudes

Again, we proceed by writing down the amplitudes with all possible ways to contract the
group indices. If the fermion f is an SU(2) singlet (f = uR, dR, eR), the SU(2) indices
can only be contracted between the two Higgs, with only one independent amplitude,
A(HifH†

i
f̄). If f is an SU(2) doublet (f = qL, lL), one could contract the SU(2) indices

in two ways, giving A(HifjH
†
i
f̄j) and A(HifjH

†
j
f̄i). The latter is not elastic if i ”= j,

while the elastic amplitude A(HifiH
†
i
f̄i) receives contribution from both contractions.

Therefore, we have two independent elastic amplitudes which are A(HifjH
†
i
f̄j) (i ”= j)

and A(HifiH
†
i
f̄i). Having SU(3) indices does not change the counting, since they can

only contract between the two quarks. We note from Table 1 that the kinematic structure
of A

[2]
4 is fixed for the scalar fermion amplitudes, so each independent amplitude has one
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ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡„

+
„

0
tot ≠ ‡„

+
„

0ú

tot
2

+ cŒ , (3.9)

where in the second equation the cH terms are cancelled in the forward limit.

3.2 Higgs-fermion amplitudes

Again, we proceed by writing down the amplitudes with all possible ways to contract the
group indices. If the fermion f is an SU(2) singlet (f = uR, dR, eR), the SU(2) indices
can only be contracted between the two Higgs, with only one independent amplitude,
A(HifH†

i
f̄). If f is an SU(2) doublet (f = qL, lL), one could contract the SU(2) indices

in two ways, giving A(HifjH
†
i
f̄j) and A(HifjH

†
j
f̄i). The latter is not elastic if i ”= j,

while the elastic amplitude A(HifiH
†
i
f̄i) receives contribution from both contractions.

Therefore, we have two independent elastic amplitudes which are A(HifjH
†
i
f̄j) (i ”= j)

and A(HifiH
†
i
f̄i). Having SU(3) indices does not change the counting, since they can

only contract between the two quarks. We note from Table 1 that the kinematic structure
of A

[2]
4 is fixed for the scalar fermion amplitudes, so each independent amplitude has one

12

OH = 1
2(ˆµ|H|

2)2
OT = 1

2(H†ΩæDµH)2

OH¸ = iH†ΩæDµH ¯̧
L“µ¸L

O
Õ
H¸

= iH†‡a
Ωæ
DµH ¯̧

L‡a“µ¸L OHe = iH†ΩæDµHēR“µeR
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ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡„

+
„

≠

tot ≠ ‡„
+

„
+

tot
2

+ cŒ , (3.8)

≠
2cT

�2 = dÃ„+„0
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Higgs-fermion
OH = 1

2(ˆµ|H|
2)2

OT = 1
2(H†ΩæDµH)2

OH¸ = iH†ΩæDµH ¯̧
L“µ¸L

O
Õ
H¸

= iH†‡a
Ωæ
DµH ¯̧

L‡a“µ¸L OHe = iH†ΩæDµHēR“µeR

OHq = iH†ΩæDµHq̄L“µqL OHu = iH†ΩæDµHūR“µuR

O
Õ
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= iH†‡a
Ωæ
DµHq̄L‡a“µqL OHd = iH†ΩæDµHd̄R“µdR

Table 2: The dimension-6 operators related to Higgs-Higgs and Higgs-fermion sum rules.

dimension-6 operators contribute to the A
[2]
4 term of the 4-Higgs amplitude, which can be

chosen as OH and OT in Table 2. With an explicit calculation, we obtain

A
[2](„+„≠

æ „+„≠) = cH + 3cT

�2 s , (3.5)

A
[2](„+„0

æ „+„0) = ≠
cH + cT

�2 s ≠
cH ≠ cT

�2 u , (3.6)

where, with an abuse of notation, we have absorbed the couplings (with mass dimension
≠2) in the amplitudes. It is then straightforward to make the connection

cs æ ≠
cH + cT

�2 , cu æ ≠
cH ≠ cT

�2 . (3.7)

The two sum rules are given by

cH + 3cT

�2 = dÃ„+„≠

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡„

+
„

≠

tot ≠ ‡„
+

„
+

tot
2

+ cŒ , (3.8)

≠
2cT

�2 = dÃ„+„0

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡„

+
„

0
tot ≠ ‡„

+
„

0ú

tot
2

+ cŒ , (3.9)

where in the second equation the cH terms are cancelled in the forward limit.

3.2 Higgs-fermion amplitudes

Again, we proceed by writing down the amplitudes with all possible ways to contract the
group indices. If the fermion f is an SU(2) singlet (f = uR, dR, eR), the SU(2) indices
can only be contracted between the two Higgs, with only one independent amplitude,
A(HifH†

i
f̄). If f is an SU(2) doublet (f = qL, lL), one could contract the SU(2) indices

in two ways, giving A(HifjH
†
i
f̄j) and A(HifjH

†
j
f̄i). The latter is not elastic if i ”= j,

while the elastic amplitude A(HifiH
†
i
f̄i) receives contribution from both contractions.

Therefore, we have two independent elastic amplitudes which are A(HifjH
†
i
f̄j) (i ”= j)

and A(HifiH
†
i
f̄i). Having SU(3) indices does not change the counting, since they can

only contract between the two quarks. We note from Table 1 that the kinematic structure
of A

[2]
4 is fixed for the scalar fermion amplitudes, so each independent amplitude has one
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parameter in the A
[2]
4 term, which is subject to one sum rule. This gives a total number

of 2 ◊ 2 + 3 = 7 sum rules for each family of SM fermions. Not surprisingly, they can be
connected to the 7 OHf type operators in Table 2. The 4 sum rules for the quarks can be
written as

2(cHq ≠ cÕ
Hq

)
�2 = dÃuL „0

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡uL „

0
tot ≠ ‡uL „

0ú

tot
2

+ cŒ ,

2cHu

�2 = dÃuR „0

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡uR „

0
tot ≠ ‡uR „

0ú

tot
2

+ cŒ ,

2(cHq + cÕ
Hq

)
�2 = dÃdL „0

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡dL „

0
tot ≠ ‡dL „

0ú

tot
2

+ cŒ ,

2cHd

�2 = dÃdR „0

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡dR „

0
tot ≠ ‡dR „

0ú

tot
2

+ cŒ , (3.10)

where we have picked up the neutral component of Higgs doublet. Equivalently, one could
written down 4 equations with the charged component of the Higgs, related to Eq. (3.10)
by an SU(2)L rotation (uL ¡ dL, „+

¡ „0, „≠
¡ „0ú). For the leptons, the 3 sum rules

can be written as
2(cHl ≠ cÕ

Hl
)

�2 = dÃ‹L „0

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡‹L „

0
tot ≠ ‡‹L „

0ú

tot
2

+ cŒ ,

2(cHl + cÕ
Hl

)
�2 = dÃeL „0

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡eL „

0
tot ≠ ‡eL „

0ú

tot
2

+ cŒ ,

2cHe

�2 = dÃeR „0

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡eR „

0
tot ≠ ‡eR „

0ú

tot
2

+ cŒ , (3.11)

with the absent one corresponding to the lack of ‹R in the SM. We note again that the op-
erators in Eq. (2.9) also contribute to the Higgs-fermion amplitudes but can be exchanged
to the OHf type operators and do not have additional independent contributions.

3.3 Fermion-fermion amplitudes

The elastic 4-fermion amplitudes in the SM can be obtained by scattering any two of
the five fermion fields f = qL, lL, uR, dR, eR. There are 15 combinations in total, 5 from
scattering two identical fermions and 10 from two di�erent fermions. Among them, we find
that the following five combinations each contains two independent ways of contracting
group indices (with i, j denoting SU(2) indices and a, b denoting SU(3) indices):

• A(qqq̄q̄): two independent amplitudes can be obtained from two ways of contracting
SU(2) and SU(3) indices, which are A(qa

i
qb

j
q̄a

i
q̄b

j
) and A(qa

i
qb

j
q̄b

i
q̄a

j
);

• A(lql̄q̄): one could contract the SU(2) indices between the two leptons (quarks) or
between one lepton and one quark, giving A(liqa

j
l̄iq̄a

j
) and A(liqa

i
l̄j q̄a

j
);
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4-fermion

• A(quq̄ū), A(qdq̄d̄) and A(udūd̄): in each case one could contract the SU(3) indices
between the same fermion or between di�erent ones;

while the other combinations each contains one independent amplitude. As such, a total
number of 20 independent amplitudes can be written down. Each amplitude contain one
parameter, as the kinematic structure is fixed as shown in Table 1. By considering the
scattering of di�erent states (e.g. setting i = j and/or a = b), a total number of 20 sum
rules can be written down for the 20 parameters.

Our counting matches the number of 4-fermion operators in the SMEFT, excluding
those composed of 4 di�erent fermions (which could not contribute to elastic amplitudes).
These 20 operators can be found in e.g. Ref. [36] under the (L̄L)(L̄L), (R̄R)(R̄R) and
(L̄L)(R̄R) categories. Not surprisingly, all of these 20 operators have only the Â+Â+Â≠Â≠

helicity configuration, and contribute to the elastic amplitudes in the case of one fermion
generation.

Due to the large number of sum rules, we will only show one example, eR eR æ eR eR,
generated by the 4-fermion interaction term cee

�2 (eR“µeR)(eR“µeR). Its sum rule can be
written as

≠
2cee

�2 = dÃeR eR

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
‡eR eR

tot ≠ ‡eR eR

tot
2

+ cŒ . (3.12)

4 Implications of the sum rules

4.1 Robustness of the sum rules

Each of the sum rules in Eqs. (3.8–3.12) can be interpreted as a relation between the EFT
on the lefthand side and the quantities in the full theory on the righthand side. The
SM contributions are assumed to be absent in these sum rules, as they only contribute
to the A

[0]
4 term in Eq. (2.6) in the massless limit. Here we discuss the possible caveats

of this assumption and show that even in these cases, the presence of SM contributions
do not obscure the interpretation of the sum rules. As mentioned earlier, considering
a energy scale su�ciently higher than the electroweak scale, µ2

∫ m2, it is reasonable
to treat the SM particles as being approximately massless. In this limit, the SM could
not generate poles in the forward amplitudes. A divergent forward amplitude can be
generated by t-channel diagrams (e.g. of a photon) which contribute to the boundary
term. This contribution can thus be subtracted from both side of the sum rule without
any impact on the physics implication. If the SM particle masses are restored, an s or
u-channel exchange of a SM particle would then have corresponding poles in the s-plane,
thereby giving a contribution to the righthand side of the sum rules, either to the cross
section terms in Eq. (2.3), or as additional IR poles if the mass is smaller than 2m. They
also modify the cn on the lefthand side. These contributions have to match, and can
be computed on both side and subtracted from the sum rule. Similarly, the SM loop
contribution to the forward amplitudes matches the 2 æ 2 SM cross sections. Di�erent
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forward divergences, etc. 


Contribute to both sides of the sum rule. 


Known physics, can be computed and subtracted. 



Boundary term

preserved. A more intuitive understanding can be obtained by using SO(4) ≥ SU(2)L ◊

SU(2)R and writing the Higgs doublet in terms of the field � with four real components,

H = 1
Ô

2

A
„2 + i„1
„4 + i„3

B

, � =

Q

ccca

„1
„2
„3
„4

R

dddb . (4.10)

We could then enlarge the symmetry group to O(4) by imposing a parity that flips the
sign of any of the „is. In fact, with only the SM Higgs field, it is not possible to write
down a term that preserves SO(4) while breaking the parity. This parity exchanges either
„0

¡ „0ú or „+
¡ „≠, and is exactly the symmetry needed for Eq. (4.9) to hold. On the

other hand, with PLR it is not possible to explicitly break SU(2)R without also breaking
SU(2)L and violate gauge invariance. We thus conclude that Eq. (4.9) holds if and only
if the SU(2)L ◊ SU(2)R symmetry of the SM Higgs sector is preserved.

For the Higgs-fermions amplitudes, the same symmetry can be imposed with certain
embedding of the fermion f under SU(2)L ◊ SU(2)R. The symmetry

PLR : f æ f, „0
æ „0ú , (4.11)

can be imposed by requiring the isospins of f to satisfy either

T 3
L

= T 3
R

= 0 , or TL = TR , T 3
L

= T 3
R

, (4.12)

which are exactly the same conditions in Ref. [54] for protecting the SM Zff̄ coupling.
In particular, the second condition in Eq. (4.12) is very common in the construction in
composite Higgs models for protecting the ZbLb̄L coupling, which we discuss further in
Section 5.4.

In principle one could also apply the symmetry to the fermion-fermion amplitudes.
However, note the symmetry S in Eq. (4.2) also flips the helicity of particle b. For the
the fermion-fermion amplitude, it can be shown that the two amplitudes A

[2]
ab

and A
[2]
ab̄

have di�erent total angular momenta [49]. At tree level, this means that the symmetry
necessarily relates heavy particles with di�erent spins. More specifically, consider the
2 æ 1 cross section of two fermions to a heavy scalar, and the two fermions must have the
same helicity. By changing one of the fermion to its antiparticle, they will have opposite
helicity and the final state must be a vector. The symmetry thus connects a scalar with
a vector. We do not consider such possibilities in this paper.

4.3 Boundary term

The boundary term, cŒ = 1
2fii

i
sæŒ

ds Ã(s)
s2 , is generally nonzero and needs to be included

in the sum rule. The typical contribution from a weakly coupled UV theory at the leading
order is from the t-channel exchange of a heavy vector. Assuming the low energy forward
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Froissart bound: 𝒜 < s log2 s as  |s | → ∞ ⇒ c∞
n = 0 for n > 1.

amplitude Ã(s) = g

M2 s + ... is generated by such a t-channel diagram, one must have in
the full theory

Ã(s) æ
≠g s

t ≠ M2

----
t=0

= g s

M2 ∆ cŒ = g

M2 , (4.13)

such that dÃ
ds

---
s=0

= cŒ. The presence of the boundary term could obscure the connection
between the EFT parameters and the cross section terms. In many scenarios of interest,
this t-channel contribution is absent and cŒ can be set to zero. In strongly coupled UV
scenarios, the boundary terms have also been shown to vanish under generic conditions [21,
22]. However, it should be emphasized that the properties of cŒ are model dependent
and needs to be treated with caution.

We note in Eq. (4.13) that the boundary term has the same s ¡ u cross relation as
Ã

[2]
4 , so the symmetry in Eq. (4.4) also makes the boundary term vanish. This has to be

the case since the symmetry would make everything else in the sum rule vanish, and the
boundary term must therefore vanish as well. As an example, we consider a single heavy
vector Z Õ that couples to the SM Higgs and ignore the SM gauge bosons for simplicity,

L = ≠
1
4Z Õ

µ‹
Z Õµ‹

≠ |DµH|
2 + ...

= ... + igZÕZ Õµ[(ˆµH†)H ≠ H†ˆµH] + ... (4.14)

where the vector-scalar-scalar vertex has a coupling in the form igZÕ(p2 ≠ p1)µ. Looking
at its contribution to A

[2](„+„0
æ „+„0) in Eq. (3.6), it will generate a term in the form

s≠u

t≠M2 , and is indeed odd under the s ¡ u crossing. More over, upon integrating out the
Z Õ, we will generate a operator in the form (H†Ωæˆµ H)2, which after adding the SM gauge
bosons is just OT which breaks the custodial symmetry, in agreement with Eq. (3.9).

4.4 Precision measurements and Direct searches

The sum rules in Eqs. (3.8–3.12) establish the general connections between the SMEFT
and properties of the full model. The SMEFT can be probed by precision measurements
at low energy where the leading order contributions from new physics are parameterized
by the dimension-6 Wilson coe�cients. While the sum rules are obtained in the massless
SMEFT without the Higgs vev, our results on the Wilson coe�cients can nevertheless be
connected to observables around the electroweak scale, to which the contributions from
dimension-6 operators are known. In particular, cT is related to the T -parameter [55] that
can be constrained by the Z-pole and W mass measurements, while cH can be probed
by the measurements of Higgs couplings. The cHf parameters modify the couplings of
the fermions to the weak gauge bosons. Each sum rule in Eq. (3.10) and Eq. (3.11) can
be connect to the modification of the couplings of fermions to the Z boson after the
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Figure 2: A schematic plot on the interplay between precision measurements and direct
searches. For simplicity, we assume only two new particles X1 and X2 with masses
M1 and M2 and some universal couplings to SM. They each contribute to one of the
cross sections in the sum rule, with ‡(ab æ X1) and ‡(ab̄ æ X2). The symmetry in
Eq. (4.2) corresponds to the diagonal line, where the contribution to A(ab æ ab) from
dimension-6 operators vanishes, while the plus (minus) sign denotes the region in which
this contribution is positive (negative). Contributions to A(ab æ ab) from dimension-8
operators are proportional to 1

M
4
1

+ 1
M

4
2
, as illustrated by the orange contours.

electroweak symmetry breaking. More specifically, with the parameterization

L = g2

c2
W

Zµ

Q

a
ÿ

f=u,d,‹,e

f̄L“µ(T3 ≠ s2
W

Q + ”gLf )fL +
ÿ

f=u,d,e

f̄R“µ(≠s2
W

Q + ”gRf )fR

R

b + ... ,

(4.15)
where s2

W
and c2

W
are shorthands for sin2 ◊W and cos2 ◊W and ◊W is the weak mixing angle,

the 7 equations in Eq. (3.10) and Eq. (3.11) equal to 4
v2 ◊{gLu, gRu, gLd, gRd, gL‹ , gLe, gRe},

respectively. The scattering processes at high energies (with v π E π �), such as the
Higgsstrahlung process at hadron or lepton colliders (pp æ V h and e+e≠

æ Zh), o�er
a more direct probe of the corresponding amplitudes. The properties of the full model,
on the other hand, can be probed by direct searches at high energies. Di�erent from
the EFT parameters that are subject to the sum rules, the direct search bound can be
applied to individual particles, and are thus complementary to the bounds from precision
measurements. This complementarity is illustrated schematically in Fig. 2. For simplic-
ity, we assume in Fig. 2 that the full theory contain only two heavy particles, X1 and
X2, with masses M1 and M2 and some universal couplings to SM. They contribute to the
cross sections ‡(ab æ X1) and ‡(ab̄ æ X2) in the sum rule for the forward amplitude
Ã(ab æ ab). As such, the contributions to Ã(ab æ ab) from dimension-6 operators are
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Custodial symmetries

from tree level contributions which are low energy poles, the loop contributions are branch
cuts in the s-plane and extends to high energies. Nevertheless, their contribution usually
dominates at low energies, for which the SMEFT is valid and the SM contributions are
calculable and can be subtracted [13].

Next, we comment on the robustness of the sum rules under one-loop e�ects of new
physics. From a pure EFT point of view, to include such contributions in the low energy
measurement, we should first perform a one-loop matching. The resulting operators will
then be evolved to the scale appropriate for the measurement using renormalization group
equations (RGE) [40–45]. Recently, a deeper connection has been established between the
helicity amplitude structures of SMEFT and the RGEs of the operator coe�cients [38, 46–
53]. In short, an operator is only renormalized by another if the latter contributes at one
loop a divergent contribution to the helicity amplitude which corresponds to a contact
interaction of the former. From this point of view, the sum rules of the helicity amplitudes
should be able to capture the operator mixing e�ects, if the one-loop contributions of the
new physics model are included and if the corresponding operators are generated by the
model. As such, we expect the sum rules to reproduce the results of one-loop matching
and RG running of the SMEFT. This is verified specifically for an example model later
in Section 5.3.

4.2 Custodial symmetries

The sum rule in Eq. (3.1) suggests that the amplitude Ã
[2]
ab

(s) = dÃab(s)
ds

---
s=0

could be
highly suppressed if ‡ab

tot ¥ ‡ab̄

tot. It is possible that the full theory exhibits certain (at least
approximate) symmetries which fulfill this condition without fine tuning. We find that
such symmetries can indeed be imposed in a general sense regardless of the boundary
term, and leads to the familiar custodial symmetries for the Higgs-Higgs and Higgs-
fermion amplitudes. To start, we recall that in the massless limit, Ã

[2]
ab

(s) Ã s and is an
odd function of it. Under the s ¡ u crossing one has

Ã
[2]
ab

(s) =
s¡u

Ã
[2]
ab̄

(u) = Ã
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[2]
ab̄

(s) . (4.1)

To make Ã
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ds

---
s=0

could be
highly suppressed if ‡ab

tot ¥ ‡ab̄

tot. It is possible that the full theory exhibits certain (at least
approximate) symmetries which fulfill this condition without fine tuning. We find that
such symmetries can indeed be imposed in a general sense regardless of the boundary
term, and leads to the familiar custodial symmetries for the Higgs-Higgs and Higgs-
fermion amplitudes. To start, we recall that in the massless limit, Ã
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Vanishes if there is a symmetry S: 

Possibilities of such a symmetry
a and b share a set of quantum numbers, labelled as i. 

a and b have charge σai and σbi .
the theory must be invariant under

‡i

a
æ ‡i

a
, ‡i

b
æ ≠‡i

b
, (4.5)

for all is. The condition in Eq. (4.5) is generally nontrivial and can be satisfied in two
ways:

1. For each nonzero ‡i

a
, one has ‡i

b
= 0, and vice versa. In this case S is either trivial

or an overall transformation that makes ‡i
æ ≠‡i.

2. Under certain setups, S can be a parity that exchanges some of the quantum num-
bers. For example, suppose i = 1, 2, ‡1

a
= ‡2

a
and ‡1

b
= ≠‡2

b
, then a parity that

exchanges the two quantum numbers P (1 ¡ 2) satisfies Eq. (4.5).

Note that the two conditions above are also symmetric under a and b. One could equiv-
alently consider the crossing of particle a and require the symmetry S

Õ that

S
Õ : a æ ā , b æ b . (4.6)

S and S
Õ can be exchanged by a CP transformation along with a spatial rotation to

compensate p̨ æ ≠p̨ from parity. The massless forward elastic amplitudes are indeed
invariant under CP , since one gets the original amplitude by crossing it twice (Ãab æ

Ã
ab̄

æ Ã
āb̄

).9 It is also clear that S or S
Õ could not eliminate the Ã

[4]
ab

amplitudes
(generated by dimension-8 operators), which instead exhibit positivity relations. The SM
Higgs sector has a SU(2)L ◊SU(2)R global symmetry. Naturally, a parity that relates the
left-handed and right-handed symmetries, PLR, could fulfill the requirement of S. Indeed,
the embedding of the Higgs doublet under SU(2)L ◊ SU(2)R gives the following quantum
numbers

At3L
\
t3R 1/2 ≠1/2

1/2 „+ „0ú

≠1/2 „0
≠„≠

B

, where H =
A

„+

„0

B

. (4.7)

Under a PLR symmetry that exchanges SU(2)L and SU(2)R, we have

PLR : „+
æ „+, „0

æ „0ú , (4.8)

which makes the following amplitude vanish,

Ã
[2]
„+„0 © A

[2](„+„0
æ „+„0)|t=0 = ≠

2cT

�2 s = 0 . (4.9)

Indeed, this is nothing but the consequence of the custodial symmetry. The operator OT

breaks the custodial symmetry together with PLR, so cT must vanish if the symmetry is

9Note that this is only true in the helicity basis in which the particles are eigenstates of parity.
In the linear basis, for instance, the 4-vector elastic amplitude receives contribution from the CP-odd
dimension-8 operators [13].
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[4]
ab

amplitudes
(generated by dimension-8 operators), which instead exhibit positivity relations. The SM
Higgs sector has a SU(2)L ◊SU(2)R global symmetry. Naturally, a parity that relates the
left-handed and right-handed symmetries, PLR, could fulfill the requirement of S. Indeed,
the embedding of the Higgs doublet under SU(2)L ◊ SU(2)R gives the following quantum
numbers

At3L
\
t3R 1/2 ≠1/2

1/2 „+ „0ú

≠1/2 „0
≠„≠

B

, where H =
A

„+

„0

B

. (4.7)

Under a PLR symmetry that exchanges SU(2)L and SU(2)R, we have

PLR : „+
æ „+, „0

æ „0ú , (4.8)

which makes the following amplitude vanish,

Ã
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preserved. A more intuitive understanding can be obtained by using SO(4) ≥ SU(2)L ◊

SU(2)R and writing the Higgs doublet in terms of the field � with four real components,

H = 1
Ô

2

A
„2 + i„1
„4 + i„3

B

, � =

Q

ccca

„1
„2
„3
„4

R

dddb . (4.10)

We could then enlarge the symmetry group to O(4) by imposing a parity that flips the
sign of any of the „is. In fact, with only the SM Higgs field, it is not possible to write
down a term that preserves SO(4) while breaking the parity. This parity exchanges either
„0

¡ „0ú or „+
¡ „≠, and is exactly the symmetry needed for Eq. (4.9) to hold. On the

other hand, with PLR it is not possible to explicitly break SU(2)R without also breaking
SU(2)L and violate gauge invariance. We thus conclude that Eq. (4.9) holds if and only
if the SU(2)L ◊ SU(2)R symmetry of the SM Higgs sector is preserved.

For the Higgs-fermions amplitudes, the same symmetry can be imposed with certain
embedding of the fermion f under SU(2)L ◊ SU(2)R. The symmetry

PLR : f æ f, „0
æ „0ú , (4.11)

can be imposed by requiring the isospins of f to satisfy either

T 3
L

= T 3
R

= 0 , or TL = TR , T 3
L

= T 3
R

, (4.12)

which are exactly the same conditions in Ref. [52] for protecting the SM Zff̄ coupling.
In particular, the second condition in Eq. (4.12) is very common in the construction in
composite Higgs models for protecting the ZbLb̄L coupling, which we discuss further in
Section 5.4.

In principle one could also apply the symmetry to the fermion-fermion amplitudes.
However, note the symmetry S in Eq. (4.2) also flips the helicity of particle b. For the
the fermion-fermion amplitude, it can be shown that the two amplitudes A

[2]
ab

and A
[2]
ab̄

have di�erent total angular momenta [47]. At tree level, this means that the symmetry
necessarily relates heavy particles with di�erent spins. More specifically, consider the
2 æ 1 cross section of two fermions to a heavy scalar, and the two fermions must have the
same helicity. By changing one of the fermion to its antiparticle, they will have opposite
helicity and the final state must be a vector. The symmetry thus connects a scalar with
a vector. We do not consider such possibilities in this paper.

4.3 Boundary term

The boundary term, cŒ = 1
2fii

i
sæŒ

ds Ã(s)
s2 , is generally nonzero and needs to be included

in the sum rule. The typical contribution from a weakly coupled UV theory at the leading
order is from the t-channel exchange of a heavy vector. Assuming the low energy forward
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Custodial symmetry of the Higgs: 

Custodial symmetry of fermions
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Matching and RGE

EFT matching can be carried out at different 
orders (tree, 1-loop, etc.). 


O1 is renormalized by O2  if O2 gives a divergent to 
helicity amplitude which can come from a contact 
contribution of O1 . 


Dispersion relation with loop amplitudes should 
capture some of these information.

Cheung, Shen, 1505.01844 
Craig, Jiang, Li, Sutherland, 2001.00017



Example



Beautiful mirror 

Georgi-Machacek Model in Refs. [55–57].11 On the other hand, we see from Eq. (5.5) that
cH receives a negative overall contribution in this limit, cH

�2 = ≠3 Ÿ
2

m4 . Our result for cH

agrees with the one in Ref. [57] (expressed in terms of ŸV = 1 ≠
cH

2
v

2

�2 ), but is obtained
with much less e�ort with the help of the sum rules.12

It is also interesting to note that by combining Eq. (5.5) and Eq. (5.6), we obtain

cH

�2 = ≠
2Ÿ2

›

m4
›

≠
Ÿ2

‰

m4
‰

, (5.7)

suggesting that cH < 0 for any triplet scalar extension, even for the › triplet scalar alone
which does not contain a doubly charged scalar. Needless to say, › alone gives a nonzero
cT and is strongly disfavored by electroweak measurements.

5.3 The Beautiful Mirror model

The Beautiful Mirror (BM) model, proposed in Ref [58], provides an interesting bench-
mark for both the Higgs-fermion and the Higgs-Higgs sum rules. The BM model intro-
duces exotic vector-like quarks which modifies the Zbb̄ couplings in order to provide better
agreements with the A0,b

FB measurement at LEP [59], which favors a positive value for both
”gLb and ”gRb (as defined in Eq. (4.15)).13 To achieve this, one introduces a vector-like
quark doublet, �L,R and a vector-like quark singlet, B̂L,R,

�L,R =
A

B
X

B

≥ (3, 2, ≠5/6) ,

B̂L,R ≥ (3, 1, ≠1/3) , (5.8)

where the three numbers in the bracket denote representations under SU(3)c, SU(2)L,
and the U(1)Y hypercharge, respectively. Their mass terms and the interactions with SM
are given by

≠ L ∏ M1�̄L�R + M2
¯̂BLB̂R + yLQ̄LHB̂R + yR�̄LH̃bR + h.c. . (5.9)

11Our conventions for the fields are also chosen to match the ones in these references. In par-
ticular, by setting Ÿ› = Ÿ‰ æ ≠M1/2 and m

2
›

= m
2
‰

æ µ
2
3 we reproduce the trilinear term

≠M1Tr(�†
·

a�·
b)(UXU

†)ab in Eq. (5) of Ref. [57].
12To be precise, both OH and Or = |H|

2
|DµH|

2 are generated in the Georgi-Machacek model. Their
contributions to the 4-scalar amplitude could not be distinguished, but Or also contributes to the hhhhV V

contact interaction. OH modifies the Higgs couplings universally, while Or only modifies the couplings
to gauge bosons. Or is usually eliminated via field redefinition, and can be replaced by a combination of
OH , O6, and Oy operators which directly modify the Yukawa couplings [43]. This explains why ŸV and
Ÿf are di�erent in Ref. [57].

13See e.g. Ref [60] for a more updated summary and also future prespectives. A global fit with the
LEP/SLD data shows that the SM predictions of the Zbb̄ couplings are just outside the 95% CL region.
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Introducing a set of new fermions

which mix with the third gen. quarks after EWSB

Choudhury, Tait, Wagner, hep-ph/0109097



Sum rules, leading order

The vev of the Higgs boson generates mixings between the new quarks and the SM ones,
which modifies the Zbb̄ couplings as

”gLb = y2
L
v2

4M2
2

, ”gRb = y2
R

v2

4M2
1

, (5.10)

both are positive as desired. While Eq. (5.10) can be directly derived from the mass
mixing, the sum rules in Eq. (3.10) provides a transparent connection between the signs
of ”gLb and ”gRb and the properties of the exotic quarks. Taking the 3rd and 4th equations
in Eq. (3.10), with an SU(2) rotation one could write
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where F denotes collectively the BSM fermions with the superscript indicating the electric
charge. Indeed, F ≠ 1

3 and F ≠ 4
3 correspond to B̂R and X̂L in Eq. (5.8), while F

5
3 and F

2
3

are absent. The boundary terms cŒ are also absent in the BM model. It is clear from
Eq. (5.12) that a charge ≠4/3 quark is required to generate a positive ”gRb. A straight
forward calculation of the 2 æ 1 cross sections on the right-hand side of Eq. (5.11) and
Eq. (5.12) reproduces the results in Eq. (5.10).

A non-zero T parameter is also generated in the BM model. A direct computation
of the fermion loop contributions to the gauge boson propagators gives (assuming mb =
0) [60]
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16fi2–v2

C
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, (5.13)

in which the first two terms are generated by the fermion loop of the two physical heavy
bottom partners while the third term comes from the mixed loop of the mostly B̂ partner
and top. Correspondingly, the fermion loops also contribute to A

[2](„+„0
æ „+„0) in

Eq. (3.6). We note that these contribution must be finite, as otherwise a dimension-six
counter term is needed for the full theory, in contradiction with the full theory being
renormalizable. In addition, the boundary term cŒ also vanishes for these contributions
as they could only grow as fast as log(s) for large s. Let us focus on the first two terms
in Eq. (5.13), which are proportional to y4

R
and y4

L
. The corresponding loop diagrams of

the 4-scalar amplitude are shown in Fig. 3. Their contribution can either be computed
directly or by using the sum rule in Eq. (3.9). In the latter case, one simply needs to
calculate the tree-level 2 æ 2 cross sections of „+„0ú

æ X̄LBL and „+„0ú
æ t̄LbL. We
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Evaluating RHS ⇒ 

Agreeing with integrating out heavy fermions at tree level.
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There are additional 1-loop diagrams contributing to the amplitude Ã„+„0 that are
proportional to y2

t
y2

L
, as shown in Fig. 4. The corresponding 2 æ 2 processes are shown

in Fig. 5. Note in particular that one needs to also include the contribution from the
interference term of ‡(„+„0ú

æ tLbL). We also restore a finite mt while still keeping the
scalars massless, which gives
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Combining Eq. (5.14) and the leading log term in Eq. (5.15), and imposing the relation
dÃ

„+„0
ds

----
s=0

= ≠
2cT

�2 = ≠2–T

v2 , we indeed reproduce the result in Eq. (5.13).

From the point of the EFT, we will generate OHf operators by integrating out heavy
fermions at the tree level at some matching scale close to the heavy fermion masses. On
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dÃ„+„0

ds

-----
s=0

=
⁄ Œ

0

ds

fis

1
0 ≠ ‡„

+
„

0úæXLBL ≠ ‡„
+

„
0úætLbL

2

= ≠
y4

R

8fi2 M2
1

≠
3 y4

L

32fi2 M2
2

. (5.14)

There are additional 1-loop diagrams contributing to the amplitude Ã„+„0 that are
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Figure 5: The diagrams for the 2 æ 2 cross sections corresponding to the amplitudes in
Fig. 4 (via the optical theorem). The two diagrams on the left contribute to ‡(„+„0

æ

B̂RtR). The two diagrams on the right contribute to ‡(„+„0ú
æ tLbL), but only the

interference term is proportional to y2
t
y2

L
.

the other hand, the contribution to the low energy T parameter, encapsulated in the
SMEFT operator OT , comes from one-loop matching. There is also the contribution from
the operator mixing between OT and OHf induced by the RGE running from the matching
scale to the scale of low energy measurement. To calculate this contribution, we take the
RG equation of cT (for instance, from Ref. [40]) and keep only the parts proportional to
y2

t
. This gives the running of cT as

cT (µ) = cT (µ0) ≠
3y2

t

8fi2 (≠cÕ
Hq

+ cHu + cT ) log(µ2
0

µ2 ) , (5.16)

where cT (µ0) is the value of cT evaluated at a reference scale µ0. In the BM model, we
have

cÕ
Hq

�2 = ≠
y2

L

4M2
2

, cHu = 0 . (5.17)

As cT itself is generated at one-loop, the cT coe�cient of the log term in Eq. (5.16) is
formally a two-loop contribution and can be omitted. We then have

cT (µ)
�2 = cT (µ0)

�2 ≠
3y2

t
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L

32fi2M2
2

log(µ2
0

µ2 ) . (5.18)

The running from µ0 to µ then generates a contribution to the amplitude
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= ≠2 (cT (µ) ≠ cT (µ0))
�2 = 3y2

t
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2
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0

µ2 ) , (5.19)

which, when setting µ0 = M2 and µ = mt, agrees with the log term in Eq. (5.15). This
is exactly what one would expect, as the RG running of the coupling captures the log
enhanced loop contribution to it. We thus conclude that our direct computation of cT

from the sum rules is consistent with the matching and running procedures of the EFT
for the BM model.

5.4 Models with the Zbb̄ custodial symmetry

It is also plausible that the discrepancy in the LEP A0,b

FB measurement is caused by sta-
tistical fluctuations or systematic e�ects rather than new physics. In this case, since tL
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There are additional 1-loop diagrams contributing to the amplitude Ã„+„0 that are
proportional to y2

t
y2

L
, as shown in Fig. 4. The corresponding 2 æ 2 processes are shown

in Fig. 5. Note in particular that one needs to also include the contribution from the
interference term of ‡(„+„0ú
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Combining Eq. (5.14) and the leading log term in Eq. (5.15), and imposing the relation
dÃ

„+„0
ds

----
s=0

= ≠
2cT

�2 = ≠2–T

v2 , we indeed reproduce the result in Eq. (5.13).

From the point of the EFT, we will generate OHf operators by integrating out heavy
fermions at the tree level at some matching scale close to the heavy fermion masses. On
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The vev of the Higgs boson generates mixings between the new quarks and the SM ones,
which modifies the Zbb̄ couplings as

”gLb = y2
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4M2
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, ”gRb = y2
R

v2

4M2
1

, (5.10)

both are positive as desired. While Eq. (5.10) can be directly derived from the mass
mixing, the sum rules in Eq. (3.10) provides a transparent connection between the signs
of ”gLb and ”gRb and the properties of the exotic quarks. Taking the 3rd and 4th equations
in Eq. (3.10), with an SU(2) rotation one could write
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where F denotes collectively the BSM fermions with the superscript indicating the electric
charge. Indeed, F ≠ 1

3 and F ≠ 4
3 correspond to B̂R and X̂L in Eq. (5.8), while F

5
3 and F

2
3

are absent. The boundary terms cŒ are also absent in the BM model. It is clear from
Eq. (5.12) that a charge ≠4/3 quark is required to generate a positive ”gRb. A straight
forward calculation of the 2 æ 1 cross sections on the right-hand side of Eq. (5.11) and
Eq. (5.12) reproduces the results in Eq. (5.10).

A non-zero T parameter is also generated in the BM model. A direct computation
of the fermion loop contributions to the gauge boson propagators gives (assuming mb =
0) [60]
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in which the first two terms are generated by the fermion loop of the two physical heavy
bottom partners while the third term comes from the mixed loop of the mostly B̂ partner
and top. Correspondingly, the fermion loops also contribute to A

[2](„+„0
æ „+„0) in

Eq. (3.6). We note that these contribution must be finite, as otherwise a dimension-six
counter term is needed for the full theory, in contradiction with the full theory being
renormalizable. In addition, the boundary term cŒ also vanishes for these contributions
as they could only grow as fast as log(s) for large s. Let us focus on the first two terms
in Eq. (5.13), which are proportional to y4

R
and y4

L
. The corresponding loop diagrams of

the 4-scalar amplitude are shown in Fig. 3. Their contribution can either be computed
directly or by using the sum rule in Eq. (3.9). In the latter case, one simply needs to
calculate the tree-level 2 æ 2 cross sections of „+„0ú

æ X̄LBL and „+„0ú
æ t̄LbL. We
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Agree with 1-loop calculation in the full theory
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in which the first two terms are generated by the fermion loop of the two physical heavy
bottom partners while the third term comes from the mixed loop of the mostly B̂ partner
and top. Correspondingly, the fermion loops also contribute to A
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The log term: RGE running
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Figure 5: The diagrams for the 2 æ 2 cross sections corresponding to the amplitudes in
Fig. 4 (via the optical theorem). The two diagrams on the left contribute to ‡(„+„0

æ

B̂RtR). The two diagrams on the right contribute to ‡(„+„0ú
æ tLbL), but only the

interference term is proportional to y2
t
y2

L
.

the other hand, the contribution to the low energy T parameter, encapsulated in the
SMEFT operator OT , comes from one-loop matching. There is also the contribution from
the operator mixing between OT and OHf induced by the RGE running from the matching
scale to the scale of low energy measurement. To calculate this contribution, we take the
RG equation of cT (for instance, from Ref. [40]) and keep only the parts proportional to
y2

t
. This gives the running of cT as

cT (µ) = cT (µ0) ≠
3y2

t

8fi2 (≠cÕ
Hq

+ cHu + cT ) log(µ2
0

µ2 ) , (5.16)

where cT (µ0) is the value of cT evaluated at a reference scale µ0. In the BM model, we
have

cÕ
Hq
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L

4M2
2

, cHu = 0 . (5.17)

As cT itself is generated at one-loop, the cT coe�cient of the log term in Eq. (5.16) is
formally a two-loop contribution and can be omitted. We then have

cT (µ)
�2 = cT (µ0)
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The running from µ0 to µ then generates a contribution to the amplitude
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which, when setting µ0 = M2 and µ = mt, agrees with the log term in Eq. (5.15). This
is exactly what one would expect, as the RG running of the coupling captures the log
enhanced loop contribution to it. We thus conclude that our direct computation of cT

from the sum rules is consistent with the matching and running procedures of the EFT
for the BM model.

5.4 Models with the Zbb̄ custodial symmetry

It is also plausible that the discrepancy in the LEP A0,b

FB measurement is caused by sta-
tistical fluctuations or systematic e�ects rather than new physics. In this case, since tL
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which, when setting µ0 = M2 and µ = mt, agrees with the log term in Eq. (5.15). This
is exactly what one would expect, as the RG running of the coupling captures the log
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Precision vs direct search

1.31.522.55
M1/3[TeV]

1.3

1.5

2

2.5

5

M5/3[TeV]
Sum rule on δgLb

current LHC bound (35.9fb-1)

HL-LHC +
-

Fu
tur
e Z

-fa
cto
ry

Fu
tur
e Z

-fa
cto
ry

LE
P/S
LD

LE
P/S
LD

Figure 6: A more specific example of the schematic plot of Fig. 2 for the ”gLb sum rule in
Eq. (5.11) with realistic bounds from current and future experiments (all at 95% CL). Note
that the axes are scaled linearly with 1/M2. The diagonal line corresponds to ”gLb = 0,
while the plus (minus) sign denotes the region in which ”gLb is positive (negative). The
relevant Yukawa couplings (as in Eq. (5.9)) are assumed to be one for simplicity.

and bL are in the same SU(2)L doublet, the measurement of the ZbLb̄L coupling provides
very stringent constraints on many new physics models that has extended top sectors.
However, as mentioned in Section 4.2, it is possible to impose a symmetry that makes
the amplitude in Eq. (5.11) vanishes, and protects the ZbLb̄L coupling to be SM-like even
with the presence of new physics. To illustrate this, we present in Fig. 6 the interplay
between precision measurements and direct searches for the sum rule in Eq. (5.11), which
is a refined version of Fig. 2 with realistic bounds. For simplicity, we assume the cross sec-
tion ‡tL „

≠æF
≠ 1

3 (‡tL „
+æF

5
3 ) is generated by a single heavy quark with mass M1/3 (M5/3),

and the relevant Yukawa couplings are set to one. The constraints are shown in the
(M1/3, M5/3) plane. The bounds on ”gLb from current and future Z-pole measurements
are taken from the global fitting results in Ref. [61]. The bounds from searches of heavy
quarks are taken from Ref. [62].14 The bounds from precision measurements are gener-
ally more constraining than the ones from direct searches, except for the region near the
diagonal line as a result of the sum rule. This can be realized without tuning model pa-
rameters by imposing the symmetry on the amplitude as in Section 4.2. A common setup
in composite Higgs models is to impose a PLR parity in addition to the SU(2)L ◊ SU(2)R

14We take the bounds from QCD productions which are more robust. We also assume the bound on
the charge 1/3 quark is similar to the one of the charge 5/3 quark.
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Probing dim-8?

Dim-8 operators have positivity bound. 


Stronger limit on the parameter space.  


Could be a cleaner test of general properties 
(Unitarity, locality, analyticity) of UV completion.


Unfortunately, typically, dim-6 will dominate a 
process. Hard to see the effect of dim-8.

Adams, Arkani-Hamed, Dubovsky,  
Nicolis, Rattazzi, 2006. + many. 



The e+e- →γγ channel
Effect from dim-6 operator either vanishing or 
suppressed.


Due to the nature of the amplitude and the 
experimental constraints. 


SM × dim-8 interference is the leading channel. 


Positivity bound on dim-8 leads to prediction
σ(e+e− → γγ) > σSM(e+e− → γγ)

Work in progress with Jiayin Gu and Cen Zhang, 2011.xxxxx
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Dimension 8 operators? (current work, JG, C. Zhang and L.-T. Wang)
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95%CL reach from e+e-(μ+μ-) → γγ

CEPC/FCC 240GeV
ILC 250GeV

FCC 365GeV
CLIC 380GeV

ILC 500GeV
CLIC 1.5TeV

CLIC 3TeV

muon collider 10TeV

muon collider 30TeV

! Positivity bounds resolve the
flat direction between aL and
aR for unpolarized beams.

! Best reach still from high
energy colliders.

Jiayin Gu (顾嘉荫) JGU Mainz

Towards v2.0 of the CEPC EFT fit

PRELIMINARY



Conclusions
General principles of QFT ⇒ dispersion relation and 
sum rule. 


An interesting angle in connecting IR precision 
measurement and UV completion.


Interesting to investigate more general lessons by 
going beyond forward elastic scattering.


 Interesting to identify unambiguous exp tests, such 
as positivity of dim-8.

Arkani-Hamed, Huang: “EFT-hedra” 
Remmen, Rodd, 2010.04723
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Georgi-Machacek
5.2 Triplet scalars

Models with heavy triplet scalars provide an interesting case for the Higgs sum rules in
Eq. (3.8) and Eq. (3.9) since they can contribute to both cH and cT . At tree level, the
contributions to the Higgs 4-point amplitudes must come from an intermediate heavy
scalar. For the sum rules it is thus su�cient to consider only the 3-scalar interactions of
two Higgs and one heavy scalar. In this case, the hypercharge of the triplet scalar needs
to be either 0 or ±1. The relevant interaction terms in the Lagrangian can be written as

Lint = Ÿ›H
†‡aH›a + Ÿ‰

Ô
2

(ÊH†‡aH‰a + h.c.) , (5.2)

where › and ‰ are triplet scalars with hypercharge 0 and ≠1, respectively. The couplings
Ÿ› and Ÿ‰ have mass dimension one. Writing down the components explicitly, one has

Lint = Ÿ›

ËÔ
2 „0„≠›+ +

Ô
2 „0ú„+›≠ + („0„0ú

≠ „≠„+)›0
È
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Ë
„0„0‰0ú + „+„+‰≠≠ +

Ô
2 „0„+‰≠ + h.c.

È
, (5.3)

where

›+ = ›1 ≠ i›2
Ô

2
, ›0 = ≠›3 , ›≠ = ›1 + i›2

Ô
2

,

‰0ú = ‰1 ≠ i‰2
Ô

2
, ‰≠ = ‰3 , ‰≠≠ = ≠

‰1 + i‰2
Ô

2
, (5.4)

with all fields canonically normalized. The triplet interactions in Eq. (5.2) do not con-
tribute to the boundary term cŒ in the sum rules. This is because the t-channel amplitudes
have the form ≥

Ÿ
2

t≠m2 and have no s dependence. Therefore, we could set cŒ to zero and
write Eq. (3.8) and Eq. (3.9) as10
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where m› (m‰) is the mass of › (‰). Note that Ÿ› and Ÿ‰ both have mass dimension one,
and Ÿ2/m4

≥ 1/�2 as expected.
As shown in Eq. (5.6), the two triplet scalars in Eq. (5.2) both contribute to cT , but

with opposite signs. It is thus possible to arrange cancellations of the two terms by
imposing the custodial symmetry, as in the Georgi-Machacek Model [54]. Indeed, by
setting Ÿ = Ÿ› = Ÿ‰ and m = m› = m‰ we reproduce the trilinear interactions in the

10Note that the „
+

„
+

‰
≠≠ vertex has a symmetry factor of 2, which gives the extra factor of 4 in

‡(„+
„

+
æ ‰

++).
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ξa : 30, χa : 3−1
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to be either 0 or ±1. The relevant interaction terms in the Lagrangian can be written as

Lint = Ÿ›H
†‡aH›a + Ÿ‰

Ô
2

(ÊH†‡aH‰a + h.c.) , (5.2)

where › and ‰ are triplet scalars with hypercharge 0 and ≠1, respectively. The couplings
Ÿ› and Ÿ‰ have mass dimension one. Writing down the components explicitly, one has

Lint = Ÿ›

ËÔ
2 „0„≠›+ +

Ô
2 „0ú„+›≠ + („0„0ú

≠ „≠„+)›0
È

+ Ÿ‰

Ë
„0„0‰0ú + „+„+‰≠≠ +

Ô
2 „0„+‰≠ + h.c.

È
, (5.3)

where

›+ = ›1 ≠ i›2
Ô

2
, ›0 = ≠›3 , ›≠ = ›1 + i›2

Ô
2

,

‰0ú = ‰1 ≠ i‰2
Ô

2
, ‰≠ = ‰3 , ‰≠≠ = ≠

‰1 + i‰2
Ô

2
, (5.4)

with all fields canonically normalized. The triplet interactions in Eq. (5.2) do not con-
tribute to the boundary term cŒ in the sum rules. This is because the t-channel amplitudes
have the form ≥

Ÿ
2

t≠m2 and have no s dependence. Therefore, we could set cŒ to zero and
write Eq. (3.8) and Eq. (3.9) as10

cH + 3cT

�2 =
⁄ Œ

0

ds

fis

1
‡„

+
„

≠æ›
0

≠ ‡„
+

„
+æ‰

++2
=

Ÿ2
›

m4
›

≠
4Ÿ2

‰

m4
‰

, (5.5)

≠
2cT

�2 =
⁄ Œ

0

ds

fis

1
‡„

+
„

0æ‰
+

≠ ‡„
+

„
0úæ›

+2
=

2Ÿ2
‰

m4
‰

≠
2Ÿ2

›

m4
›

, (5.6)

where m› (m‰) is the mass of › (‰). Note that Ÿ› and Ÿ‰ both have mass dimension one,
and Ÿ2/m4

≥ 1/�2 as expected.
As shown in Eq. (5.6), the two triplet scalars in Eq. (5.2) both contribute to cT , but

with opposite signs. It is thus possible to arrange cancellations of the two terms by
imposing the custodial symmetry, as in the Georgi-Machacek Model [54]. Indeed, by
setting Ÿ = Ÿ› = Ÿ‰ and m = m› = m‰ we reproduce the trilinear interactions in the

10Note that the „
+

„
+

‰
≠≠ vertex has a symmetry factor of 2, which gives the extra factor of 4 in

‡(„+
„

+
æ ‰

++).
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cT = 0 if κξ = κχ, mξ = mχ


