Sum rules in SMEFT from helicity amplitudes

LianTao Wang
Univ. of Chicago

Work in collaboration with Jiayin Gu 2008.07551
Work in progress with Jiayin Gu and Cen Zhang

EFT, amplitude, dispersion

Standard, effective tool of parameterizing the IR effect of new physics.

Example: SMEFT

Connection to UV matching, RGE

EFT, amplitude, dispersion

Standard, effective tool of parameterizing the IR effect of new physics.

Example: SMEFT
Connection to UV matching, RGE

Alternative representation.
More direct connection with observables.

Shadmi, Weiss. 1809.09644
Ma, Shu, Xiao. 1902.06752
Aoude, Machado. 1905.11433
Durieux, Kitahara, Shadmi, Weiss. 1909.10511
Franken, Schwinn. 1910.13407
Falkowski. 1912.07865
Durieux, Machado. 1912.08827
Bachu, Yellespur. 1912.04334
Durieux, Kitahara, Machado, Shadmi, Weiss. 2008.09652

EFT, amplitude, dispersion

Standard, effective tool of parameterizing the IR effect of new physics.

Example: SMEFT

Connection to UV matching, RGE

Follows from general principles of QFT.
Leading to sum rules, positivity bounds.
Connection between IR measurement and UV completion

This talk

* Derive the sum rules for dim-6 SMEFT operators.
*. Explore the consequences of sum rules.
* Mostly, work in the limit $E \gg m w$. SM particles effectively massless.

Earlier work on sum rules:
Low, Rattazzi, Vichi, 0907.5413
Falkowski, Rychkov, Urbano, 1202.1532
Bellazzini, Martucci, Torre, 1405.2906

Sum rules, elastic amplitudes

Forward elastic amplitude: $\left.\tilde{\mathcal{A}}_{a b}(s) \equiv \mathcal{A}(a b \rightarrow a b)\right|_{t=0}$
expand $\quad \tilde{\mathcal{A}}_{a b}(s)=\sum_{n} c_{n}\left(s-\mu^{2}\right)^{n}, \quad c_{n}=\frac{1}{2 \pi i} \oint_{s=\mu^{2}} d s \frac{\tilde{\mathcal{A}}_{a b}(s)}{\left(s-\mu^{2}\right)^{n+1}}$
deform the contour

$$
\begin{array}{r}
c_{n}=\int_{4 m^{2}}^{\infty} \frac{d s}{\pi} s \sqrt{1-\frac{4 m^{2}}{s}}\left(\frac{\sigma_{\mathrm{tot}}^{a b}}{\left(s-\mu^{2}\right)^{n+1}}+(-1)^{n} \frac{\sigma_{\mathrm{tot}}^{a \bar{b}}}{\left(s-4 m^{2}+\mu^{2}\right)^{n+1}}\right)+c_{n}^{\infty} \\
c_{n}^{\infty} \equiv \frac{1}{2 \pi i} \oint_{s \rightarrow \infty} d s \frac{\mathcal{A}(s)}{\left(s-\mu^{2}\right)^{n+1}}
\end{array}
$$

$m \sim$ SM particle mass, $\mu \sim$ energy of the experiment, $\Lambda \sim$ scale of NP

$$
m \ll \mu \ll \Lambda
$$

Sum rules, elastic amplitudes

Forward elastic amplitude: $\left.\tilde{\mathcal{A}}_{a b}(s) \equiv \mathcal{A}(a b \rightarrow a b)\right|_{t=0}$

$$
\begin{aligned}
& \tilde{\mathcal{A}}_{a b}(s)=\sum_{n} c_{n}\left(s-\mu^{2}\right)^{n}, \quad c_{n}=\frac{1}{2 \pi i} \oint_{s=\mu^{2}} d s \frac{\tilde{\mathcal{A}}_{a b}(s)}{\left(s-\mu^{2}\right)^{n+1}} \\
& c_{n}=\int_{4 m^{2}}^{\infty} \frac{d s}{\pi} s \sqrt{1-\frac{4 m^{2}}{s}}\left(\frac{\sigma_{\mathrm{tot}}^{a b}}{\left(s-\mu^{2}\right)^{n+1}}+(-1)^{n} \frac{\sigma_{\mathrm{tot}}^{a \bar{b}}}{\left(s-4 m^{2}+\mu^{2}\right)^{n+1}}\right)+c_{n}^{\infty}
\end{aligned}
$$

$$
\operatorname{dim}-6: n=\left.1 \quad \frac{d \tilde{\mathcal{A}}_{a b}(s)}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma_{\mathrm{tot}}^{a b}-\sigma_{\mathrm{tot}}^{a \bar{b}}\right)+c_{\infty}
$$

EFT and amplitude

$$
\mathcal{L}_{\mathrm{SMEFT}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}+\sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)}+\cdots
$$

Contribution to n-point amplitude can be written as

$$
\mathcal{A}_{n}=\sum_{i} g_{[i]} \mathcal{A}_{n}^{[4-n-i]}
$$

$\mathcal{A}_{n} \quad$ n-point amplitude with dimension 4-n
$g_{[i]}$ coupling with dimension $\boldsymbol{i} \mathcal{A}_{n}^{[4-n-i]}$ sub-amplitude with coupling stripped

4-point amplitude

$$
\mathcal{A}_{4}=g_{[0]} \mathcal{A}_{4}^{[0]}+g_{[-2]} \mathcal{A}_{4}^{[2]}+g_{[-4]} \mathcal{A}_{4}^{[4]}+\ldots .
$$

$g_{[0]} \mathcal{A}_{4}^{[0]}$
SM contribution with dimensionless coupling
$g_{[-2]} \mathcal{A}_{4}^{[2]} \quad \begin{aligned} & \text { can come from } 1 \text { insertion of dim-6 operator } \\ & \\ & \text { with } g_{[-2]} \propto 1 / \wedge^{2}\end{aligned}$

$$
g_{[-4]} \mathcal{A}_{4}^{[4]} \quad \operatorname{dim}-8
$$

4-point amplitude

$$
\mathcal{A}_{4}=g_{[0]} \mathcal{A}_{4}^{[0]}+g_{[-2]} \mathcal{A}_{4}^{[2]}+g_{[-4]} \mathcal{A}_{4}^{[4]}+\ldots .
$$

$g_{[0]} \mathcal{A}_{4}^{[0]}$
SM contribution with dimensionless coupling

$$
\begin{array}{ll}
g_{[-2]} \mathcal{A}_{4}^{[2]} \quad \begin{array}{l}
\text { can come from } 1 \\
\text { with } \\
g_{[-2]} \propto 1 / \Lambda^{2}
\end{array}
\end{array}
$$

Of the form of 4-point contact interaction
General statement: all SMEFT contribution to elastic scattering is of the contact form.

Two 3-point amplitudes?

$$
\mathcal{A}_{3}=g_{[0]} \mathcal{A}_{3}^{[1]}+g_{[-2]} \mathcal{A}_{3}^{[3]}+\ldots
$$

$$
\mathcal{A}_{3}^{[1]} \frac{1}{p^{2}} \mathcal{A}_{3}^{[3]}
$$

$$
\begin{aligned}
& \mathcal{O}_{3 W}=\frac{1}{3!} g \epsilon_{a b c} W_{\mu}^{a \nu} W_{\nu \rho}^{b} W^{c \rho \mu} \\
& \mathcal{O}_{3 \widetilde{W}}=\frac{1}{3!} g \epsilon_{a b c} \widetilde{W}_{\mu}^{a \nu} W_{\nu \rho}^{b} W^{c \rho \mu}
\end{aligned}
$$

Not elastic!

Two 3-point amplitudes?

more possible $\mathcal{A}_{3}^{[1]} \frac{1}{p^{2}} \mathcal{A}_{3}^{[3]}$

$$
\begin{aligned}
\mathcal{O}_{H W} & =i g\left(D^{\mu} H\right)^{\dagger} \sigma^{a}\left(D^{\nu} H\right) W_{\mu \nu}^{a}, & \mathcal{O}_{H B}=i g^{\prime}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu} \\
\mathcal{O}_{W} & =\frac{i g}{2}\left(H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a}, & \mathcal{O}_{B}=\frac{i g^{\prime}}{2}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right) \partial^{\nu} B_{\mu \nu},
\end{aligned}
$$

Can generate $\phi \phi \vee$ type 3 point couplings. However, $1 / p^{2}$ cancelled by p^{2} from this vertex

Still of the form of 4 point contact interaction.

Possible elastic amplitudes

Contact interaction + little group scaling fixes the form of amplitude

elastic 4-point amplitudes $\mathcal{A}\left(12 \rightarrow 3_{=1} 4_{=2}\right.$)	spinor form of $\mathcal{A}_{4}^{[2]}$ (d6 operators)	spinor form of $\mathcal{A}_{4}^{[4]}$ (d8 or $\left.\mathrm{d} 6^{2}\right)$
$\phi_{1} \phi_{2} \phi_{1}^{*} \phi_{2}^{*}$	$s_{i j}$	$s_{i j} \times s_{k l}$
$\psi^{-} \phi \psi^{+} \phi^{*}$	$\langle 12\rangle[23]$	$\langle 12\rangle[23] \times s_{i j}$
$\psi_{1}^{-} \psi_{2}^{-} \psi_{1}^{+} \psi_{2}^{+}$	$\langle 12\rangle[34]$	$\langle 12\rangle[34] \times s_{i j}$
$V^{-} \phi V^{+} \phi^{*}$	\boldsymbol{X}	$\langle 12\rangle^{2}[23]^{2}$
$V^{-} \psi^{-} V^{+} \psi^{+}$	\boldsymbol{X}	$\langle 12\rangle^{2}[23][34]$
$V_{1}^{-} V_{2}^{-} V_{1}^{+} V_{2}^{+}$	\boldsymbol{X}	$\langle 12\rangle^{2}[34]^{2},\langle 12\rangle^{[}[34]^{2} \frac{t-u}{s}$

In the forward limit:

$$
\left.\tilde{\mathcal{A}}_{4}^{[2]} \equiv \mathcal{A}_{4}^{[2]}\right|_{t \rightarrow 0} \propto s,\left.\quad \tilde{\mathcal{A}}_{4}^{[4]} \equiv \mathcal{A}_{4}^{[4]}\right|_{t \rightarrow 0} \propto s^{2} .
$$

Higgs-Higgs(Goldstone) amplitudes

Two independent amplitudes

$$
\begin{aligned}
& \mathcal{A}\left(H_{i} H_{j} H_{i}^{\dagger} H_{j}^{\dagger}\right)=c_{s} s+c_{u} u \\
& \mathcal{A}\left(H_{i} H_{i} H_{i}^{\dagger} H_{i}^{\dagger}\right)=2 c_{s} s+c_{u} t+c_{u} u
\end{aligned}
$$

In the forward limit, gives amplitude proportional to

$$
c_{s}-c_{u}, \quad 2 c_{s}-c_{u}
$$

Sum rules

$$
\begin{gathered}
\mathcal{O}_{H}=\frac{1}{2}\left(\partial_{\mu}|H|^{2}\right)^{2} \quad \left\lvert\, \mathcal{O}_{T}=\frac{1}{2}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)^{2}\right. \\
\mathcal{A}^{[2]}\left(\phi^{+} \phi^{-} \rightarrow \phi^{+} \phi^{-}\right)=\frac{c_{H}+3 c_{T}}{\Lambda^{2}} s, \\
\mathcal{A}^{[2]}\left(\phi^{+} \phi^{0} \rightarrow \phi^{+} \phi^{0}\right)=-\frac{c_{H}+c_{T}}{\Lambda^{2}} s-\frac{c_{H}-c_{T}}{\Lambda^{2}} u \\
c_{s} \rightarrow-\frac{c_{H}+c_{T}}{\Lambda^{2}}, \quad c_{u} \rightarrow-\frac{c_{H}-c_{T}}{\Lambda^{2}} \\
\frac{c_{H}+3 c_{T}}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{\phi^{+} \phi^{-}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma_{\text {tot }}^{\phi^{+} \phi^{-}}-\sigma_{\text {tot }}^{\phi^{+} \phi^{+}}\right)+c_{\infty} \\
-\frac{2 c_{T}}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{\phi^{+} \phi^{0}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma_{\text {tot }}^{\phi^{+} \phi^{0}}-\sigma_{\text {tot }}^{\phi^{+} \phi^{0^{*}}}\right)+c_{\infty}
\end{gathered}
$$

Sum rules

$$
\begin{gathered}
\mathcal{O}_{H}=\frac{1}{2}\left(\partial_{\mu}|H|^{2}\right)^{2} \quad \left\lvert\, \mathcal{O}_{T}=\frac{1}{2}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)^{2}\right. \\
\mathcal{A}^{[2]}\left(\phi^{+} \phi^{-} \rightarrow \phi^{+} \phi^{-}\right)=\frac{c_{H}+3 c_{T}}{\Lambda^{2}} s, \\
\mathcal{A}^{[2]}\left(\phi^{+} \phi^{0} \rightarrow \phi^{+} \phi^{0}\right)=-\frac{c_{H}+c_{T}}{\Lambda^{2}} s-\frac{c_{H}-c_{T}}{\Lambda^{2}} u \\
c_{s} \rightarrow-\frac{c_{H}+c_{T}}{\Lambda^{2}}, \quad c_{u} \rightarrow-\frac{c_{H}-c_{T}}{\Lambda^{2}} \\
\frac{c_{H}+3 c_{T}}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{\phi^{+} \phi^{-}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma_{\text {tot }}^{\phi^{+} \phi^{-}}-\sigma_{\mathrm{tot}}^{\phi^{+}+\phi^{+}}\right)+c_{\infty} \\
-\frac{2 c_{T}}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{\phi^{+} \phi^{0}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma_{\mathrm{tot}}^{\phi^{+} \phi^{0}}-\sigma_{\mathrm{tot}}^{\phi^{+} \phi^{o *}}\right)+c_{\infty}
\end{gathered} \text { Low, Rattazzi, } \quad \text { Vichi, 0907.5413 } \quad \text {, }
$$

Higgs-fermion

$$
\begin{array}{l|l}
\mathcal{O}_{H \ell}=i H^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{\ell}_{L} \gamma^{\mu} \ell_{L} & \\
\mathcal{O}_{H \ell}^{\prime}=i H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H \bar{\ell}_{L} \sigma^{a} \gamma^{\mu} \ell_{L} & \mathcal{O}_{H e}=i H^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{e}_{R} \gamma^{\mu} e_{R} \\
\hline \mathcal{O}_{H q}=i H^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{q}_{L} \gamma^{\mu} q_{L} & \mathcal{O}_{H u}=i H^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{u}_{R} \gamma^{\mu} u_{R} \\
\mathcal{O}_{H q}^{\prime}=i H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H \bar{q}_{L} \sigma^{a} \gamma^{\mu} q_{L} & \mathcal{O}_{H d}=i H^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{d}_{R} \gamma^{\mu} d_{R} \\
\hline
\end{array}
$$

$$
\begin{array}{r}
\frac{2\left(c_{H q}-c_{H q}^{\prime}\right)}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{u_{L} \phi^{0}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma_{\text {tot }}^{u_{L} \phi^{0}}-\sigma_{\text {tot }}^{u_{L} \phi^{\phi^{*}}}\right)+c_{\infty} \\
\frac{2 c_{H u}}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{u_{R} \phi^{0}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma_{\text {tot }}^{u_{R} \phi^{0}}-\sigma_{\text {tot }}^{u_{R} \phi^{0^{*}}}\right)+c_{\infty} \\
\frac{2\left(c_{H q}+c_{H q}^{\prime}\right)}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{d_{L} \phi^{0}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma_{\text {tot }}^{d_{L} \phi^{0}}-\sigma_{\text {tot }}^{d_{L} \phi^{0 *}}\right)+c_{\infty} \\
\frac{2 c_{H d}}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{d_{R} \phi^{0}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma_{\text {tot }}^{d_{R} \phi^{0}}-\sigma_{\text {tot }}^{d_{R} \phi^{0 *}}\right)+c_{\infty}
\end{array}
$$

4-fermion

Similar classification and counting leads to 20 sum rules, from amplitudes with $\psi^{+} \Psi^{+} \Psi^{-} \psi^{-}$helicity configuration.

For example:

$$
\begin{aligned}
& \frac{c_{e e}}{\Lambda^{2}}\left(\overline{e_{R}} \gamma_{\mu} e_{R}\right)\left(\overline{e_{R}} \gamma^{\mu} e_{R}\right) \\
- & \frac{2 c_{e e}}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{e_{R}} \overline{e_{R}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma_{\mathrm{tot}}^{e_{R} \overline{e_{R}}}-\sigma_{\mathrm{tot}}^{e_{R} e_{R}}\right)+c_{\infty}
\end{aligned}
$$

IR vs UV contribution

* IR contribution from SM: low energy poles, forward divergences, etc.
* Contribute to both sides of the sum rule.
* Known physics, can be computed and subtracted.

Boundary term

$$
c_{\infty}=\frac{1}{2 \pi i} \oint_{s \rightarrow \infty} d s \frac{\tilde{\mathcal{A}}(s)}{s^{2}}
$$

Froissart bound: $\mathscr{A}<s \log ^{2} s$ as $|s| \rightarrow \infty \Rightarrow c_{n}^{\infty}=0$ for $n>1$.
$\mathrm{n}=1$, some model dependence
t -channel vector $\left.\quad \tilde{\mathcal{A}}(s) \rightarrow \frac{-g s}{t-M^{2}}\right|_{t=0}=\frac{g s}{M^{2}} \quad \Rightarrow \quad c_{\infty}=\frac{g}{M^{2}}$

Precision vs direct search

Schematically

$$
\delta g \propto \frac{c}{M_{1,2}^{2}}=\left.\frac{d A}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{s \pi}\left(\sigma\left(a b \rightarrow X_{1}\right)-\sigma\left(a \bar{b} \rightarrow X_{2}\right)\right)+\ldots
$$

δg shift in low energy coupling
$X_{1,2}$ NP particles with masses $M_{1,2}$

Precision vs direct search

$$
\begin{array}{r}
\delta g \propto \frac{c}{M_{1,2}^{2}}=\left.\frac{d A}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{s \pi}\left(\sigma\left(a b \rightarrow X_{1}\right)-\sigma\left(a \bar{b} \rightarrow X_{2}\right)\right) \\
X_{1,2} \text { mass: } M_{1,2}
\end{array}
$$

Precision vs direct search

Possible cancellation can occur for dim-6 contribution. Possible to implement a symmetry.

Not possible for dim-8. due to positivity.

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi, 2006

$$
\begin{array}{r}
\delta g \propto \frac{c}{M_{1,2}^{2}}=\left.\frac{d A}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{s \pi}\left(\sigma\left(a b \rightarrow X_{1}\right)-\sigma\left(a \bar{b} \rightarrow X_{2}\right)\right) \\
X_{1,2} \text { mass: } M_{1,2}
\end{array}
$$

Custodial symmetries

$$
\tilde{\mathcal{A}}_{a b}^{[2]}(s){ }_{s \neq u} \tilde{\mathcal{A}}_{a \bar{b}}^{[2]}(u)=\tilde{\mathcal{A}}_{a \bar{b}}^{[2]}(-s)=-\tilde{\mathcal{A}}_{a b}^{[2]}(s)
$$

Vanishes if there is a symmetry S :

$$
\tilde{\mathcal{A}}_{a b}^{[2]}(s)=\tilde{\mathcal{A}}_{a b}^{[2]}(s) \quad \text { under } \mathcal{S}: a \leftrightarrow a, \quad b \leftrightarrow \bar{b}
$$

Possibilities of such a symmetry

* a and b share a set of quantum numbers, labelled as i. a and b have charge $\sigma_{a}{ }^{i}$ and $\sigma_{b}{ }^{i}$.

Under symmetry $S \quad \sigma_{a}^{i} \rightarrow \sigma_{a}^{i}, \quad \sigma_{b}^{i} \rightarrow-\sigma_{b}^{i}$
Or, equivalently $\quad \mathcal{S}^{\prime}: a \rightarrow \bar{a}, \quad b \rightarrow b$.

Examples of symmetries

Custodial symmetry of the Higgs:

$$
\begin{aligned}
& t_{3 L}^{t_{3} t_{3 R}} \\
& { }^{1 / 2} \\
& { }_{-1 / 2} \\
& -1 / 2
\end{aligned}\left(\begin{array}{cc}
\phi^{+} & \phi^{0 *} \\
\phi^{0} & -\phi^{-}
\end{array}\right), \quad \text { where } H=\binom{\phi^{+}}{\phi^{0}}
$$

Custodial symmetry of fermions

$$
\begin{aligned}
& P_{L R}: \quad f \rightarrow f, \quad \phi^{0} \rightarrow \phi^{0 *} \\
& T_{L}^{3}=T_{R}^{3}=0, \quad \text { or } \quad T_{L}=T_{R}, \quad T_{L}^{3}=T_{R}^{3}
\end{aligned}
$$

Matching and RGE

* EFT matching can be carried out at different orders (tree, 1-loop, etc.).
* O_{1} is renormalized by O_{2} if O_{2} gives a divergent to helicity amplitude which can come from a contact contribution of O_{1}. Cheung, Shen, 1505.01844

Craig, Jiang, Li, Sutherland, 2001.00017

* Dispersion relation with loop amplitudes should capture some of these information.

Example

Beautiful nirror choudhury, Tait, Wagner, hep-ph/0109097

Introducing a set of new fermions

$$
\begin{aligned}
& \Psi_{L, R}=\binom{B}{X} \sim(3,2,-5 / 6) \\
& \hat{B}_{L, R} \sim(3,1,-1 / 3),
\end{aligned}
$$

which mix with the third gen. quarks after EWSB

$$
-\mathcal{L} \supset M_{1} \bar{\Psi}_{L} \Psi_{R}+M_{2} \overline{\hat{B}}_{L} \hat{B}_{R}+y_{L} \bar{Q}_{L} H \hat{B}_{R}+y_{R} \bar{\Psi}_{L} \tilde{H} b_{R}+\text { h.c. }
$$

Sum rules, leading order

$$
\begin{array}{r}
\frac{4 \delta g_{L b}}{v^{2}}=-\frac{2\left(c_{H q}+c_{H q}^{\prime}\right)}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{t_{L} \phi^{-}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma^{t_{L} \phi^{-} \rightarrow F^{-\frac{1}{3}}}-\sigma^{t_{L} \phi^{+} \rightarrow F^{\frac{5}{3}}}\right) \\
\frac{4 \delta g_{R b}}{v^{2}}=-\frac{2 c_{H d}}{\Lambda^{2}}=\left.\frac{d \tilde{\mathcal{A}}_{b_{R} \phi^{-}}}{d s}\right|_{s=0}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma^{b_{R} \phi^{-} \rightarrow F^{-\frac{4}{3}}}-\sigma^{b_{R} \phi^{+} \rightarrow F^{\frac{2}{3}}}\right)
\end{array}
$$

Evaluating RHS $\Rightarrow \quad \delta g_{L b}=\frac{y_{L}^{2} v^{2}}{4 M_{2}^{2}}, \quad \delta g_{R b}=\frac{y_{R}^{2} v^{2}}{4 M_{1}^{2}}$

Agreeing with integrating out heavy fermions at tree level.

$1-1000 \mathcal{A}^{[2]}\left(\phi^{+} \phi^{0} \rightarrow \phi^{+} \phi^{0}\right)$

$$
\begin{aligned}
\left.\frac{d \tilde{\mathcal{A}}_{\phi^{+} \phi^{0}}}{d s}\right|_{s=0} & =\int_{0}^{\infty} \frac{d s}{\pi s}\left(0-\sigma^{\phi^{+} \phi^{0 *} \rightarrow \bar{X}_{L} B_{L}}-\sigma^{\phi^{+} \phi^{0 *} \rightarrow \bar{t}_{L} b_{L}}\right) \\
& =-\frac{y_{R}^{4}}{8 \pi^{2} M_{1}^{2}}-\frac{3 y_{L}^{4}}{32 \pi^{2} M_{2}^{2}}
\end{aligned}
$$

1-loop

$$
\begin{aligned}
\left.\frac{d \tilde{\mathcal{A}}_{\phi^{+} \phi^{0}}}{d s}\right|_{s=0} & =\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma^{\phi^{+} \phi^{0} \rightarrow \bar{B}_{R} t_{R}}-\sigma^{\phi^{+} \phi^{0 *} \rightarrow \bar{t}_{L} b_{L}}\right) \\
& =\frac{3 y_{t}^{2} y_{L}^{2}}{16 \pi^{2} M_{2}^{2}}\left[\left(2 \log \left(\frac{M_{2}^{2}}{m_{t}^{2}}\right)-\frac{13}{6}+\ldots\right)-\left(\log \left(\frac{M_{2}^{2}}{m_{t}^{2}}\right)-2+\ldots\right)\right] \\
& =\frac{3 y_{t}^{2} y_{L}^{2}}{16 \pi^{2} M_{2}^{2}}\left[\log \left(\frac{M_{2}^{2}}{m_{t}^{2}}\right)-\frac{1}{6}\right]+\mathcal{O}\left(\frac{m_{t}^{2}}{M_{2}^{4}}\right)
\end{aligned}
$$

T-parameter

$$
\begin{gathered}
\left.\frac{d \tilde{\mathcal{A}}_{\phi}+\phi^{0}}{d s}\right|_{s=0}=-\frac{2 c_{T}}{\Lambda^{2}}=\frac{-2 \alpha T}{v^{2}} \\
T \approx \frac{3}{16 \pi^{2} \alpha v^{2}}\left[\frac{16}{3} \delta g_{R b}^{2} M_{1}^{2}+4 \delta g_{L b}^{2} M_{2}^{2}-4 \delta g_{L b} \frac{M_{2}^{2} m_{\mathrm{top}}^{2}}{M_{2}^{2}-m_{\mathrm{top}}^{2}} \log \left(\frac{M_{2}^{2}}{m_{\mathrm{top}}^{2}}\right)\right]
\end{gathered}
$$

$$
\delta g_{L b}=\frac{y_{L}^{2} v^{2}}{4 M_{2}^{2}}, \quad \delta g_{R b}=\frac{y_{R}^{2} v^{2}}{4 M_{1}^{2}}
$$

Agree with 1-loop calculation in the full theory

The log term: RGE running

$$
c_{T}(\mu)=c_{T}\left(\mu_{0}\right)-\frac{3 y_{t}^{2}}{8 \pi^{2}}\left(-c_{H q}^{\prime}+c_{H u}+c_{T}\right) \log \left(\frac{\mu_{0}^{2}}{\mu^{2}}\right)
$$

In this model $\quad \frac{c_{H q}^{\prime}}{\Lambda^{2}}=-\frac{y_{L}^{2}}{4 M_{2}^{2}}, \quad c_{H u}=0$

RGE running generates $\left.\frac{d \tilde{\mathcal{A}}_{\phi^{+} \phi^{0}}}{d s}\right|_{s=0}=\frac{-2\left(c_{T}(\mu)-c_{T}\left(\mu_{0}\right)\right)}{\Lambda^{2}}=\frac{3 y_{t}^{2} y_{L}^{2}}{16 \pi^{2} M_{2}^{2}} \log \left(\frac{\mu_{0}^{2}}{\mu^{2}}\right)$

RGE effect captured by dispersion relation calculation.

Precision vs direct search

Probing dim-8?

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi, 2006. + many.

* Dim-8 operators have positivity bound.
* Stronger limit on the parameter space.
* Could be a cleaner test of general properties (Unitarity, locality, analyticity) of UV completion.
* Unfortunately, typically, dim-6 will dominate a process. Hard to see the effect of dim-8.

The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{\gamma Y}$ channel

Work in progress with Jiayin Gu and Cen Zhang, 2011.xxxxx

* Effect from dim-6 operator either vanishing or suppressed.
* Due to the nature of the amplitude and the experimental constraints.
* $\mathrm{SM} \times$ dim-8 interference is the leading channel.
* Positivity bound on dim-8 leads to prediction

$$
\sigma\left(e^{+} e^{-} \rightarrow \gamma \gamma\right)>\sigma_{\mathrm{SM}}\left(e^{+} e^{-} \rightarrow \gamma \gamma\right)
$$

Dimension 8 operators？（current woik，Jc，c．Zhang and L．T．Wang）

－Positivity bounds resolve the flat direction between a_{L} and a_{R} for unpolarized beams．
－Best reach still from high energy colliders．

$$
\begin{aligned}
\mathcal{O}_{\ell B}^{(8)} & =-\frac{1}{4}\left(i \bar{\ell}_{L} \gamma^{\{\rho} D^{\nu\}} \ell_{L}+\text { h.c. }\right) B_{\mu \nu} B_{\rho}^{\mu}, \\
\mathcal{O}_{e B}^{(8)} & =-\frac{1}{4}\left(i \bar{e}_{R} \gamma^{\{\rho} D^{\nu\}} e_{R}+\text { h.c. }\right) B_{\mu \nu} B_{\rho}^{\mu}, \\
\mathcal{O}_{\ell W}^{(8)} & =-\frac{1}{4}\left(i \bar{\ell}_{L} \gamma^{\{\rho} D^{\nu\}} \ell_{L}+\text { h.c. }\right) W_{\mu \nu}^{a} W_{\rho}^{a \mu}, \\
\mathcal{O}_{e W}^{(8)} & =-\frac{1}{4}\left(i \bar{e}_{R} \gamma^{\{\rho} D^{\nu\}} e_{R}+\text { h.c. }\right) W_{\mu \nu}^{a} W_{\rho}^{a \mu}, \\
\mathcal{O}_{\ell B W}^{(8)} & =-\frac{1}{4}\left(\left(\bar{i}_{L} \sigma^{a} \gamma^{\{\rho} D^{\nu\}} \ell_{L}+\text { h.c. }\right) B_{\mu \nu} W_{\rho}^{a \mu},\right.
\end{aligned}
$$

$$
\begin{aligned}
& a_{L}=\frac{v^{4}}{\Lambda^{4}}\left(\cos ^{2} \theta_{W} c_{\ell B}^{(8)}-\cos \theta_{W} \sin \theta_{W} c_{\ell B W}^{(8)}+\sin ^{2} \theta_{W} c_{\ell W}^{(8)}\right) \\
& a_{R}=\frac{v^{4}}{\Lambda^{4}}\left(\cos ^{2} \theta_{W} c_{e B}^{(8)}+\sin ^{2} \theta_{W} c_{e W}^{(8)}\right)
\end{aligned}
$$

Conclusions

* General principles of QFT \Rightarrow dispersion relation and sum rule.
* An interesting angle in connecting IR precision measurement and UV completion.
* Interesting to investigate more general lessons by going beyond forward elastic scattering.

Arkani-Hamed, Huang: "EFT-hedra"
Remmen, Rodd, 2010.04723

* Interesting to identify unambiguous exp tests, such as positivity of dim-8.
extra

Georgi-Machacek

$$
\begin{gathered}
\mathcal{L}_{\text {int }}=\kappa_{\xi} H^{\dagger} \sigma^{a} H \xi_{a}+\frac{\kappa_{\chi}}{\sqrt{2}}\left(\widetilde{H}^{\dagger} \sigma^{a} H \chi_{a}+\text { h.c. }\right) \quad \xi_{a}: 3_{0}, \quad \chi_{a}: 3_{-1} \\
\frac{c_{H}+3 c_{T}}{\Lambda^{2}}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma^{\phi^{+} \phi^{-} \rightarrow \xi^{0}}-\sigma^{\phi^{+} \phi^{+} \rightarrow \chi^{++}}\right)=\frac{\kappa_{\xi}^{2}}{m_{\xi}^{4}}-\frac{4 \kappa_{\chi}^{2}}{m_{\chi}^{4}} \\
-\frac{2 c_{T}}{\Lambda^{2}}=\int_{0}^{\infty} \frac{d s}{\pi s}\left(\sigma^{\phi^{+} \phi^{0} \rightarrow \chi^{+}}-\sigma^{\phi^{+} \phi^{0 *} \rightarrow \xi^{+}}\right)=\frac{2 \kappa_{\chi}^{2}}{m_{\chi}^{4}}-\frac{2 \kappa_{\xi}^{2}}{m_{\xi}^{4}} \\
c_{T}=0 \text { if } \kappa_{\xi}=\kappa_{\chi}, m_{\xi}=m_{\chi}
\end{gathered}
$$

