Imperial College London Claudia de Rham

All Things EFT: Causality in Effective Field Theories

Lasma Alberte (@ Imperial)

Collaborators

Jeremie Francfort (@ Geneva)

Sumer Jaitly (@ Imperial)

Scott Melville (@ Cambridge)

Andrew Tolley (@ Imperial)

Jun Zhang (@ Imperial)

1806.09417, 1909.00881, 2005.13923, 2007.01847, 2007.12667 + to appear

Within low-energy gravitational EFTs,

- Constraints from standard UV completion?
- Constraints from causality?

- 1) Field content:
 - Graviton
 - Photon
 - Any other light particle with mass smaller than cutoff M
- 2) Symmetries
 - Covariance
 - U(1) for EM
 - ...
- 3) Expansion parameter:

 $rac{| ext{Curvature}|}{M^2}$ (more on that later...)

Non-Gravitational EFT

UV completion

✓ CAUSAL (analyticity)

✓ Local (Froissart Bound)

✓ Lorentz invariant (crossing symmetry)

✓ Unitary (optical theorem)

In low-energy Wilsonian EFT

(sub)luminal sound speed

Adams et. al. 2006

positivity bounds

$$\left. \frac{\mathrm{d}^2 \mathcal{A}(s,t)}{\mathrm{d}s^2} \right|_{t=0} > 0$$

 \mathcal{A} : 2 – 2 elastic scattering amplitude

Non-Gravitational EFT

UV completion

✓ CAUSAL (analyticity)

- ✓ Local (Froissart Bound)
- ✓ Lorentz invariant (crossing symmetry)
- ✓ Unitary (optical theorem)

 \mathcal{A} : 2 – 2 elastic scattering amplitude

Im(s)
$$\mathcal{A}''(s)|_{t=0} \sim \int_{4m^2}^{\infty} \mathrm{d}\mu \frac{\mathrm{Im}\mathcal{A}(\mu)}{(\mu - s)^3} + \mathrm{cross-symmetric}$$

 $\frac{\mathrm{d}^2\mathcal{A}(s,t)}{\mathrm{d}s^2}\Big|_{t=0} > 0$
 $m^2 \quad 3m^2 \quad 4m^2$ Re(s) Adams et. al. 2006

Non-Gravitational EFT

(sub)luminal sound speed

positivity bounds

Adams et. al. 2006

Adding Gravity?

Both of these requirements are more subtle for gravitational EFTs

(sub)luminal sound speed

positivity bounds

Justified for completions of string/Regge higher spin type Hamada, Noumi & Shiu, 1810.03637

Positivity Bounds in Gravitational LEEFT

$$\left. \frac{\mathrm{d}^2 \mathcal{A}(s,t)}{\mathrm{d}s^2} \right|_{t=0} > 0$$

t-channel pole from gravity exchange compromises positivity bound

Positivity Bounds in Gravitational LEEFT

Gravity is non-dynamical in 3d, upon compactifying $4d \rightarrow 3d \times S^1$, contribution from t-channel pole should disappear Are bounds simply applicable to rest of amplitude?

$$4\mathbf{d} \to 3\mathbf{d} \times S^1 \to 4\mathbf{d}$$

$$1902.03250$$

$$\frac{\mathbf{d}^2}{\mathbf{d}s^2} \mathcal{A}_{t-\text{pole subtracted}}^{(4\mathbf{d})}(s,t) \Big|_{t=0} > 0$$

Potential caveats pointed out in Loges, Noumi & Shiu, 1909.01352

Let's explore the validity of this bound in a specific example with known partial UV completion

Scalar QED with gravity

$$\mathcal{L}_{sQED} = \frac{M_{Pl}^2}{2} R - \frac{1}{2} (\partial A)^2 - \frac{1}{2} (\partial \psi)^2 - \frac{1}{2} M^2 \psi^2 - \alpha M A \psi^2 - \frac{1}{2} (\partial \chi)^2 - \frac{1}{2} m^2 \chi^2$$

Scalar QED with gravity

Same type of contradiction for QED minimally coupled to gravity

Compactified bounds & Scalar QED

in contradiction

(Scalar) QED minimally coupled with QED

• **Either** QED minimally coupled with gravity is not consistent...

would require new interactions between any massive particles (eg. DM) and the photon at the scale

 $\Lambda \le (M_{\rm Pl}M)^{1/2}$

Compactified bounds & Scalar QED

in contradiction

(Scalar) QED minimally coupled with QED

• Or 3d compactified bounds are **not** justified

Even though gravity is not dynamical in 3d, the t-channel pole only disappears after Eikonal resummation — leading to an overall delta function

The delta function is the 3d manifestation of 4d pole albeit in a different form

Removing delta function leads to a resulting amplitude $\tilde{\mathcal{A}}$ with $\operatorname{Im} \tilde{\mathcal{A}} \neq 0$ Ciafaloni (1992)

Alternatively amplitude $\tilde{\tilde{\mathcal{A}}}$ can be defined with gravity-redressed states \longrightarrow compromises crossing symmetry

Compactified bounds & Scalar QED

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} \mathcal{A}_{\text{t-pole subtracted}}(s,t) \Big|_{t=0} > 0$$

in contradiction

(Scalar) QED minimally coupled with QED

- **Either** QED minimally coupled with gravity is not consistent...
- Or 3d compactified bounds are **not** justified

There is no properly defined 3d amplitude which is simultaneously:

- Finite and Analytic
- Has positive Imaginary part
- Enjoys manifest crossing symmetry

Essential for the derivation of the positivity bounds

→ t-channel pole affects positivity bounds

Approximate Positivity

• Or 3d compactified bounds are **not** justified

The best we can then argue is that the Positivity bounds ought to be satisfied in a limit $M_{\text{Pl}} \rightarrow \infty$ where gravity decouples

More precisely, if a 2-2 low-energy elastic scattering amplitude is of the form:

$$\mathcal{A}(s,t) \sim -\frac{s^2}{M_{\rm Pl}^2 t} + \frac{c}{M^4} s^2 + \cdots$$

Then the coupling constant needs not be positive but rather

$$c > -\frac{M^2}{M_{\rm Pl}^2} \times \mathcal{O}(1)$$

Not assuming specific UV behavior

$$\mathcal{L}_{\mathrm{IR}} = \sqrt{-g} \left[\overbrace{-\Lambda^{\mathrm{IR}}}^{\Lambda^{\mathrm{IR}}} \frac{M_{\mathrm{Pl}}^2}{2} R + \mathcal{L}_{\psi}^{(\mathrm{light})}(g,\psi) + \mathcal{L}_{R^2} + \frac{1}{M^2} \mathcal{L}_{R^3} + \cdots \right]$$

Standard CC problem (not our concern here...)

$$\mathcal{L}_{\mathrm{IR}} = \sqrt{-g} \left[-\lambda^{\mathrm{IR}} + \frac{M_{\mathrm{Pl}}^2}{2}R + \mathcal{L}_{\psi}^{(\mathrm{light})}(g,\psi) + \mathcal{L}_{R^2} + \frac{1}{M^2}\mathcal{L}_{R^3} + \cdots \right]$$

All the light fields at low-energy (e.g. including photon)

Consider these fields to minimally coupled

In this frame, light travels at the speed of light c = 1 in the vacuum

$$\mathcal{L}_{\mathrm{IR}} = \sqrt{-g} \left[-\lambda^{\mathrm{IR}} + \frac{M_{\mathrm{Pl}}^2}{2}R + \mathcal{L}_{\psi}^{(\mathrm{light})}(g,\psi) + \mathcal{L}_{R^2} + \frac{1}{M^2} \mathcal{L}_{R^3} + \cdots \right]$$

Curvature-square operators *could* be removed by field redefinition

In that frame, light fields are non-minimally coupled photons do not travel at the 'speed of light'...

Respective causal structure remains the same, just shifts the question somewhere else

$$\mathcal{L}_{\rm EFT \ GR} = \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R + \mathcal{L}^{\rm (light)}(g,\psi) + C_{R^2} R^2 + C_{W^2} W_{\mu\nu\alpha\beta}^2 + \dots \right]$$

This is a low-energy EFT in the Wilsonian sense,

1) Field content:

- Graviton
- Photon
- Any other light particle with mass smaller than cutoff M

(more on that later...)

- 2) Symmetries
 - Covariance
 - U(1) for EM
 - ...
- 3) Expansion parameter: $\frac{|\text{Curvature}|}{M^2}$

$$\mathcal{L}_{\rm EFT \ GR} = \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R + \mathcal{L}^{\rm (light)}(g,\psi) + C_{R^2} R^2 + C_{W^2} W_{\mu\nu\alpha\beta}^2 + \dots \right]$$

Consider tensor fluctuations on FLRW,

$$\mathrm{d}s^2 = a^2(\eta)\eta_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + a\,\mathbf{h}_{ij}\mathrm{d}x^i\mathrm{d}x^j$$

$$\left[-\partial_{\eta}^{2} + \left(1 - \frac{16C_{W^{2}}\dot{H}}{M_{\mathrm{Pl}}^{2}}\right)\nabla^{2}\right]\tilde{h} = m_{0}^{2}\tilde{h}$$

with Tolley 1909.00881

$$\mathcal{L}_{\rm EFT \ GR} = \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R + \mathcal{L}^{\rm (light)}(g,\psi) + C_{R^2} R^2 + C_{W^2} W_{\mu\nu\alpha\beta}^2 + \dots \right]$$

Consider tensor fluctuations on FLRW,

$$\mathrm{d}s^2 = a^2(\eta)\eta_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} + a\,\mathbf{h}_{ij}\mathrm{d}x^i\mathrm{d}x^j$$

$$\left[-\partial_{\eta}^{2} + \left(1 - \frac{16C_{W^{2}}\dot{H}}{M_{\rm Pl}^{2}}\right)\nabla^{2}\right]\tilde{h} = m_{0}^{2}\tilde{h}$$

$$c_s^2 = 1 + \frac{16C_{W^2}(-\dot{H})}{M_{\rm Pl}^2} + \mathcal{O}\left(\frac{H^4}{M_{\rm Pl}^4}, \frac{k^4H^2}{M_{\rm Pl}^6}\right)$$

with Tolley 1909.00881

Speed of Gravity

Within the regime of validity of the EFT,

$$c_s^2 = 1 + \frac{16C_{W^2}(-\dot{H})}{M_{\rm Pl}^2} + \mathcal{O}\left(\frac{H^4}{M_{\rm Pl}^4}, \frac{k^4H^2}{M_{\rm Pl}^6}\right)$$

• For a maximally symmetric spacetime $\dot{H} = 0$, modes are luminal

• We expect
$$C_{W^2} \sim \mathcal{O}(1) \quad \Rightarrow \quad |\Delta c_S| \ll \frac{H^2}{M_{\text{Pl}}^2} \sim 10^{-120}$$

Speed of Gravity

Within the regime of validity of the EFT,

$$c_s^2 = 1 + \frac{16C_{W^2}(-\dot{H})}{M_{\rm Pl}^2} + \mathcal{O}\left(\frac{H^4}{M_{\rm Pl}^4}, \frac{k^4H^2}{M_{\rm Pl}^6}\right)$$

If $\dot{H} \neq 0$ and NEC is satisfied, $\dot{H} < 0$ modes are

 $\begin{array}{lll} \text{subluminal} & \Leftrightarrow & C_{W^2} < 0 \\ super \text{luminal} & \Leftrightarrow & C_{W^2} > 0 \end{array}$

Does it mean that the low-energy EFT is only consistent if $C_{W^2} < 0$??

Speed of Gravity

$$\mathcal{L}_{\rm EFT \ GR} = \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R + \mathcal{L}^{\rm (light)}(g,\psi) + C_{R^2} R^2 + C_{W^2} W_{\mu\nu\alpha\beta}^2 + \dots \right]$$

 $\begin{array}{lll} \text{subluminal} & \Leftrightarrow & C_{W^2} < 0 \\ super \text{luminal} & \Leftrightarrow & C_{W^2} > 0 \end{array}$

From a field theory perspective the constraints on enjoying a standard causal high energy completion are (*so far*) simply

$$C_{W^2} > -\mathcal{O}\left(\frac{M^2}{M_{\rm Pl}^2}\right)$$

How is this consistent with causality within the low-energy EFT???

Causality

The physical speed of propagation is given by the front velocity:

$$v_{\text{front}} = \lim_{k \to \infty} v_{\text{phase}}(k)$$

But causality itself requires that the retarded propagator vanishes outside the light-cone which typically requires (sub)luminality even at low-energy

Support Outside Light-Cone

Null geodesic "Superluminal" trajectory Even a tiny amount of SL at low-energy can end up accumulating to macroscopic effects

By waiting long enough, we could always get a large enough support outside the light-cone...

Validity of EFT

EFT has a cutoff $M \leq M_{
m Pl}$

For any mode with physical frequency k, one can only trust EFT so long as

Support Outside Light-Cone

$$\Box_{\rm FLRW} \sim \Box_{\rm Minkowski} + \frac{kH}{a} \ll M_{\rm Pl}^2$$

Cannot send a mode with arbitrarily small wavelength

$$\Delta x_{\rm phys} = a_0 \int_{\eta_i}^{\eta_0} \Delta c_S \mathrm{d}\eta \ = \ a_0 \int_{t_i}^{t_0} \frac{-\dot{H}}{aM_{\rm Pl}^2} \mathrm{d}t < \frac{a_0}{a_i} \frac{H_i}{M_{\rm Pl}^2} \ll \lambda_{\rm phys}$$

Support Outside Light-Cone

 $\Delta x_{\rm phys} \ll \lambda_{\rm phys}(t_0)$

There is never support outside the light cone by a resolvable amount within the regime of validity of the EFT

→ No violation of causality

The amount of superluminality is so small that it can never build up to lead to macroscopic violation of causality.

QED on curved spacetime

Drummond & Hathrell, PRD 1980 Hollowood & Shore 0707.2302, 0707.2303, 0806.1019, 0905.0771, 1006.0145, 1006.1238, 1111.3174, 1205.3291, 1512.04952 Goon & Hinterbichler, 1609.00723

M: electron mass

As the photon propagates, it interacts with virtual electron pairs

→ feels the curvature in region around its geodesic

From Hollowood & Shore

QED on curved spacetime

There are many space-time backgrounds for which the low-energy group velocity is superluminal. Eg. Schwarzschild, Type I & II conformally flat backgrounds, ...

E.g. on Schwarzschild,
$$c_s^2 = 1 + rac{eta_P}{M^2} rac{r_g}{r^3} + \mathcal{O}\left(rac{r_g^2}{M^4 r^6}
ight) + \mathcal{O}\left(rac{k^4}{M^4}
ight)$$

M: electron mass

 $\beta_P \sim 0(1)$ - polarization dependent constant

 $\beta_P > 0$ for radially polarized light

Low-energy `superluminality' is precisely related to (non)-positivity bounds

 $\lim_{k\to\infty} \Delta T(k) = 0$ does not fully explain how *the low-energy EFT* is consistent with causality...

The tiniest amount of superluminality at low-energy is still a priori problematic as it can be integrated out to macroscopic values

Time-delay/advance

but that's not enough...

Time-delay/advance

Regime of Validity of EFT

The low-energy EFT is only valid below the scale MAbove that scale one should go back to the microscopic description

$$\left| \left(W^a{}_{bcd} k^c k^d \right)^p \right| \ll M^{4p}$$

io $\left(rac{\omega^2}{r_g^2} \ll M^4 \quad \Rightarrow \quad rac{1}{M^2 r_g} \ll \lambda
ight)$

In the extreme scenario

 ω : asymptotic energy of the scattering particle

Time-delay/advance

Time-delay/advance

(as it should be)

 $\Delta T^{\rm EFT} \sim -\frac{\beta_P}{M^2 r_a} \ll \lambda$

Causality in Gravitational Theories

Conjecture: In a frame where gravity can be decoupled, a small amount of SL at low-energy is still consistent with causality so long as

$$\lim_{M_{
m Pl}
ightarrow\infty}|c_s^2-1|\sim M_{
m Pl}^{-lpha}$$
 with $lpha\geq 2$

Causality in Gravitational Theories

Conjecture: In a frame where gravity can be decoupled, a small amount of SL at low-energy is still consistent with causality so long as

$$\lim_{M_{
m Pl}
ightarrow\infty}|c_s^2-1|\sim M_{
m Pl}^{-lpha}$$
 with $lpha\geq 2$

Approximate Positivity

if a 2-2 low-energy elastic scattering amplitude is of the form:

$$\mathcal{A}(s,t) \sim -\frac{s^2}{M_{\rm Pl}^2 t} + \frac{c}{M^4} s^2 + \cdots$$

Then the coupling constant needs not be positive but rather

$$c>-rac{M^2}{M_{
m Pl}^2} imes {\cal O}(1)$$
 Not assuming specific UV behavior

Time-advance

In the EFT of gravity or QED, the time advance due to SL is always unresolvable

 $\left|\Delta T_\ell^{\rm EFT}\right| \ll \omega^{-1}$

The time advance is smaller than the geometric optics resolution scale it is not resolvable

This is a very different statement than

$$\left|\Delta T_{\ell}^{\rm EFT}\right| \ll M^{-1}$$

While this relation is also true it is not relevant:

- The low-energy EFT is only used to determine the trajectory, 1. Nothing demands that the time advance should be measured with apparatus that live in the low-energy EFT
- The time delay is not a Lorentz invariant quantity 2. so one cannot use M^{-1} as its cutoff

If $|\Delta T^{\rm EFT}| \ll \omega^{-1}$, its sign cannot be directly linked with causality

If $|\Delta T^{\text{EFT}}| \ll \omega^{-1}$, there are is no dangerous growth of secular effects Retarded Green's function can be computed perturbatively There can be no support outside the light-cone

If $|\Delta T^{\text{EFT}}| \ll \omega^{-1}$, there are is no dangerous growth of secular effects Retarded Green's function can be computed perturbatively There can be no support outside the light-cone

$$\Box \mathcal{G}_{
m ret} = \delta$$

 $\left(\bar{\Box} + \Delta \mathcal{O}_{
m EFT}
ight) \mathcal{G}_{
m EFT} = \delta$

A perturbative approach $\mathcal{G}_{EFT} = \overline{\mathcal{G}}_{ret} (1 + \Delta \mathcal{G} + \cdots)$ is justified if the secular effects are bounded $|\Delta \mathcal{G}| \ll 1 \text{ with } \Delta \mathcal{G} \sim \int \Delta \mathcal{O}_{EFT} \overline{\mathcal{G}}_{ret}$

If $|\Delta T^{\text{EFT}}| \ll \omega^{-1}$, there are is no dangerous growth of secular effects Retarded Green's function can be computed perturbatively There can be no support outside the light-cone

X

In perturbative approach $\mathcal{G}_{EFT} = \overline{\mathcal{G}}_{ret} (1 + \Delta \mathcal{G} + \cdots)$

 $\bar{\mathcal{G}}_{\text{ret}} \sim \theta(t-t')\theta(-(x-x')^2) \quad \Rightarrow \quad \mathcal{G}_{\text{EFT}} \sim \theta(t-t')\theta(-(x-x')^2)$

If $|\Delta T^{\text{EFT}}| \ll \omega^{-1}$, there are is no dangerous growth of secular effects Retarded Green's function can be computed perturbatively There can be no support outside the light-cone

Note: in practice we can replace $\Delta T^{\rm EFT} \iff \partial_{\omega} \delta^{\rm EFT}(\omega)$ $|\Delta T^{\rm EFT}| \ll \omega^{-1} \iff |\delta^{\rm EFT}| \ll 1$

Living with Superluminality

- Gravitational Waves are luminal to a (VERY) good accuracy at LIGO frequencies $-\mathcal{O}(10^{-15}) < c_T 1 < \mathcal{O}(10^{-16})$
- Within the standard EFT of gravity, GWs are no longer perfectly luminal on backgrounds that spontaneously break Lorentz invariance (eg Schwarzschild, FLRW, the real world,...)

Lesson 1:

- In an arbitrary frame, GWs may be superluminal
- Imposing subluminality priors only makes sense in a frame where gravity can be decoupled
- In the original frame this may correspond to GWs being superluminal by a 'large' amount (not suppressed by Mpl⁻²)

Lesson 1

In some low-energy EFTs, causality imposes superluminal GWs... just a trivial (yet Important!) frame artefact

To 0th order, it is safe to impose subluminality for all the fields once we are in the frame where gravity can be decoupled

Frame where we can take a smooth limit $M_{Pl} \rightarrow \infty$

This may imply a large amount of superluminality in original frame

Lesson 1

In some low-energy EFTs, causality imposes superluminal GWs... just a trivial (yet Important!) frame artefact

To 0th order, it is safe to impose subluminality for all the fields once we are in the frame where gravity can be decoupled

Frame where we can take a smooth limit $M_{Pl} \rightarrow \infty$

This may imply a large amount of superluminality in original frame

Lesson 1

In some low-energy EFTs, causality imposes superluminal GWs... just a trivial (yet Important!) frame artefact

To 0th order, it is safe to impose subluminality for all the fields once we are in the frame where gravity can be decoupled

Frame where we can take a smooth limit $M_{Pl} \rightarrow \infty$

This may imply a large amount of superluminality in original frame

Living with Superluminality

Lesson 2:

- Even in the frame where matter and gravity can decouple, a tiny amount of SL *or a negative phase shift* – be it for GWs or other fields – is not in conflict with causality. It may even follow from consistent causal and Lorentz invariant UV completions.
- In the frame where matter and gravity can decouple, superluminality is consistent with causality so long as

$$\lim_{M_{
m Pl}
ightarrow\infty}|c_s^2-1|\sim M_{
m Pl}^{-lpha}$$
 with $lpha\geq 2$

Living with Negativity

Lesson 3: Conjecture

• For a 2 - 2 scattering amplitude of the form

$$\mathcal{A}(s,t) \sim -\frac{s^2}{M_{\rm Pl}^2 t} + \frac{c}{M^4} s^2 + \dots$$

• *c* needs not be positive so long as

$$c > -rac{M^2}{M_{
m Pl}^2} imes \mathcal{O}(1)$$

Not assuming specific UV behavior

Amount of "positivity"-violation directly connected to "allowed" amount of SL

Living with Superluminality & Negativity

- Lesson 1: Imposing subluminality priors only makes sense in a frame where gravity can be decoupled
- Lesson 2: In the frame where matter and gravity can decouple, superluminality is consistent with causality so long as

$$\lim_{M_{
m Pl}
ightarrow\infty} |c_s^2-1| \sim M_{
m Pl}^{-lpha} \hspace{0.5cm} ext{with} \hspace{0.5cm} lpha \geq 2$$

• Lesson 3: An amount of "allowed" SL is directly connected to a level of "positivity"-violation in gravitational EFTs

$$\boxed{c > -\frac{M^2}{M_{\rm Pl}^2} \times \mathcal{O}(1)}$$