Caltech

EFT OF DARK MATTER DIRECT DETECTION WITH COLLECTIVE EXCITATIONS

Based on Trickle, Zhang, KZ 2009.13534

Kathryn M. Zurek

+ work with Hochberg, Pyle, Zhao, Lin, Knapen, Kahn, Lisanti, Coskuner, Mitridate

THE DARK MATTER PANORAMA

- From an observational standpoint, a wide range of dark matter masses are consistent with data.
- Focused on WIMP largely from arguments based on EFT

THE DARK MATTER PANORAMA

- From an observational standpoint, a wide range of dark matter masses are consistent with data.
- Our discussion will focus on extending the window of observability by 12 OOM in mass utilizing collective excitations in materials
- Why look there?

THE DARK MATTER PANORAMA

- Similar argument as to WIMP based on EFT reasoning
- Dark matter abundance is related to SM interactions

THE DARK MATTER PANORAMA

- Similar argument as to WIMP based on EFT reasoning
- Dark matter abundance is related to SM interactions

$$
\sigma_{w k} v_{f o} \simeq \frac{g_{w k}^{4} \mu_{X T}^{2}}{4 \pi m_{Z}^{4}} \frac{c}{3} \simeq 10^{-24} \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}\left(\frac{100 \mathrm{GeV}}{M}\right)^{2}
$$

THE DARK MATTER PANORAMA

$\sigma_{w k} v_{f o} \simeq \frac{g_{w k}^{4} \mu_{X T}^{2}}{4 \pi m_{Z}^{4}} \frac{c}{3} \simeq 10^{-24} \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}\left(\frac{100 \mathrm{GeV}}{M}\right)^{2}$

- Heavier dark matter: setting relic abundance through interactions with Standard Model is challenging (NB: exceptions)
- At heavier masses, detection through Standard Model interactions is (generally) not motivated by abundance

DETECTABLE INTERACTION RATES

- Direct detection searches accordingly focused on weak scale

Z-boson interacting dark matter: ruled out

Higgs interacting dark matter: active target

DARK MATTER DETECTION: A FULL COURT PRESS

- Dark sector dynamics are complex and astrophysically relevant.

$$
\sigma_{s t r} \simeq \frac{4 \pi \alpha_{s}^{2}}{M^{2}} \simeq 10^{-24} \mathrm{~cm}^{2}\left(\frac{1 \mathrm{GeV}}{M}\right)^{2}
$$

- Abundance may still be set by (thermal) population from SM sector

$$
\sigma_{w k} v_{f o} \simeq \frac{g_{w k}^{4} \mu_{X T}^{2}}{4 \pi m_{Z}^{4}} \frac{c}{3} \simeq 10^{-24} \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}\left(\frac{100 \mathrm{GeV}}{M}\right)^{2}
$$

CROSSING SYMMETRY

- Utilize DM Abundance and crossing symmetry as guide for interaction rates

Freeze-in

Asymmetric Dark Matter

COLLECTIVE PHENOMENA IN MATERIALS

BEYOND BILLIARD BALL SCATTERING

- Nuclear recoil experiments; basis of enormous progress in direct detection

$$
\begin{aligned}
& q, E_{D} \\
& v \sim 300 \mathrm{~km} / \mathrm{s} \sim 10^{-3} c \\
& E_{D}=\frac{q^{2}}{2 m_{N}} \quad v \sim 10^{-3} c \\
& q_{\max }=2 m_{X} v
\end{aligned}
$$

LIGHTER TARGETS FOR LIGHTER DARK MATTER

$$
E_{D}=\frac{q^{2}}{2 m_{e}} \quad q_{\max }=2 m_{X} v
$$

- In insulators, like xenon

Tightly bound; ionize for signal

Gap = DM Kinetic Energy

- In semi-conductors, like Ge , Si

Excite electron to conduction band

ELECTRONIC STATES IN MATERIALS

- Unless in a metal, electrons in material do not have free dispersions
- The omega-q relation (= dispersion) of the available states is extremely important for determining viability of target

ELECTRONIC STRUCTURE IN MATERIALS

- Smaller gap materials are available to access lighter dark matter
- Simplest example is a superconductor - meV gap opens

EFFECTIVE COUPLING TO E-M CURRENT

- Photon in medium is impacted by screening effects
- This is characterized by the polarization tensor, just like QED

$$
J_{\mu}=-\Pi_{\mu \nu} A^{\nu}
$$

$$
\Pi_{\mu \nu} \equiv i e^{2}\left\langle J_{\mathrm{EM}}^{\mu} J_{\mathrm{EM}}^{\nu}\right\rangle
$$

$$
\begin{aligned}
\mathscr{L} \supset & -\frac{1}{4} \tilde{F}_{\mu \nu} \tilde{F}^{\mu \nu}-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime \mu \nu}+e J_{\mathrm{EM}}^{\mu}\left(\tilde{A}_{\mu}+\varepsilon A_{\mu}^{\prime}\right)+g_{\mathrm{D}} J_{\mathrm{DM}}^{\mu} A_{\mu}^{\prime}+\frac{m_{A^{\prime}}^{2}}{2} A^{\prime \mu} A_{\mu}^{\prime} \\
& +\frac{1}{2} \tilde{A}^{\mu} \Pi_{\mu \mu} \tilde{A}^{\nu}+\varepsilon \tilde{A}^{\mu} \Pi_{\mu \nu} A^{\prime \nu} \\
\mathscr{L} \supset \varepsilon e & q^{2} \\
q^{2}-\Pi_{L, T} & A_{\mu}^{\prime T, L} J_{\mathrm{EM}}^{\mu}
\end{aligned} \text { Cooskuer, Mititidate, Olivares, Kz 1909.09770 }
$$

EFFECTIVE COUPLING TO E-M CURRENT

- Polarization tensor is normally recast in terms of dielectric function (you can do this with Maxwell equations)

$$
\begin{aligned}
\Pi_{i j} & =-i \omega \sigma_{i j} \\
\Pi_{i 0} & =i \sigma_{i j} q^{j}
\end{aligned}
$$

$$
\sigma_{i j}=i \omega\left(\delta_{i j}-\boldsymbol{\epsilon}_{i j}\right)
$$

- Dielectric can be calculated with electron wavefunctions (e.g. Lindhard formula)

$$
\operatorname{Im}\left[\boldsymbol{\epsilon}_{i i}(\omega)\right]=\frac{g e^{2}}{\mathbf{q}^{2}} \lim _{q \rightarrow 0} \sum_{n n^{\prime}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} 2 \pi \delta\left(E_{n^{\prime} \mathbf{k}}-E_{n \mathbf{k}}-\omega\right)\left|f_{\left[n \mathbf{k} \rightarrow n^{\prime} \mathbf{k}+q \hat{\mathbf{e}}_{i}\right]}\right|^{2}
$$

EFFECTIVE COUPLING TO E-M CURRENT

- End result for scattering:

$$
G^{\mu \nu}=\frac{P_{L}^{\mu \nu}}{q^{2}(\hat{\mathbf{q}} \cdot \boldsymbol{\epsilon} \cdot \hat{\mathbf{q}})}
$$

- In-medium effects reduce reach, even for dark photon and scalar mediators. Superconductor:

OPTICAL RESPONSE OF "SEMI-METALS"

- Band structure can be "quantum engineered"
- The point-like nature of the density of states at Fermi level implies that screening is less problematic

Dark Photon scattering

EXCITING COLLECTIVE MODES

- Once momentum transfer drops below an keV, deBroglie wavelength is longer than the inter particle spacing in typical materials
- Therefore, relevant d.o.f. in target are no longer individual nuclei or ions
- Must coarse grain to describe DM coupling to "collective excitations"
- Collective excitations = phonon modes, spin waves (magnons)
- Can be applied to just about any material
- Details depend on
- 1) nature of collective modes in target material
- 2) nature of DM couplings to target

DARK MATTER DIRECT DETECTION \& KINEMATICS

- Where kinematics is concerned, overarching goal is to find a material with a strong Dynamic Structure Factor in the kinematic region which overlaps with DM
$R=\frac{1}{\rho_{T}} \frac{\rho_{\chi}}{m_{\chi}} \int d^{3} v f_{\chi}(\boldsymbol{v}) \Gamma(\boldsymbol{v})$
(\mathbf{q}, ω)

Mediator propagator
$\Gamma(\boldsymbol{v})=\frac{\pi \bar{\sigma}}{\mu^{2}} \int \frac{d^{3} q}{(2 \pi)^{3}}{ }_{\text {med }}^{2}$

DARK MATTER DIRECT DETECTION \& KINEMATICS

- Where kinematics is concerned, overarching goal is to find a material with a strong Dynamic Structure Factor in the kinematic region which overlaps with DM

$$
\begin{aligned}
& \left.S(\boldsymbol{q}, \omega) \equiv \frac{1}{V} \sum_{f} \right\rvert\,\left.\langle f| \underbrace{\left.\left|\mathcal{F}_{T}(\boldsymbol{q})\right| i\right\rangle}\right|^{2} 2 \pi \delta\left(E_{f}\right. \\
& \begin{array}{l}
\text { Tabulates the (lattice) } \\
\text { potential the incoming }
\end{array} \\
& \begin{array}{l}
\text { DM sees - which in } \\
\text { turn depends on the } \\
\text { collective modes in the } \\
\text { material }
\end{array}
\end{aligned}
$$

LATICE DEGREES OF FREEDOM

－Will focus on crystals that have lattice d．o．f．

Magnons
Animation credit：Kevin Zhang

$$
\begin{aligned}
& \text { Acoustic Iq Iq Iq Iq } \\
& \text { Optical 甲 ゆ } \downarrow \boldsymbol{\downarrow}
\end{aligned}
$$

LATICE DEGREES OF FREEDOM

- Will focus on crystals that have lattice d.o.f.
- Overly simplified; more than one type of ion in a unit cell

DM - COLLECTIVE MODE EFT

- Match relativistic ops onto non-relativistic ops

$$
\psi(\boldsymbol{x}, t)=e^{-i m_{\psi} t} \frac{1}{\sqrt{2}}\binom{\left(1-\frac{\boldsymbol{\sigma} \cdot \boldsymbol{k}}{2 m_{\psi}+\varepsilon}\right) \psi^{+}(\boldsymbol{x}, t)}{\left(1+\frac{\boldsymbol{\sigma} \boldsymbol{k}}{2 m_{\psi}+\varepsilon}\right) \psi^{+}(\boldsymbol{x}, t)} \quad \begin{gathered}
\text { Keep leading order in NR expansion } \\
\frac{\mathbf{q}}{m_{\psi}} \quad \boldsymbol{v}^{\perp} \equiv \frac{\boldsymbol{P}}{2 m_{\chi}}-\frac{\boldsymbol{K}}{2 m_{\psi}}=\boldsymbol{v}-\frac{\boldsymbol{k}}{m_{\psi}}-\frac{\boldsymbol{q}}{2 \mu_{\chi \psi}}
\end{gathered}
$$

- Match NR ops onto lattice d.o.f.

$$
\boldsymbol{u}_{l j}=\boldsymbol{x}_{l j}-\boldsymbol{x}_{l j}^{0}=\sum_{\nu} \sum_{\boldsymbol{k} \in 1 \mathrm{BZ}} \frac{1}{\sqrt{2 N m_{j} \omega_{\nu, \boldsymbol{k}}}}\left(\hat{a}_{\nu, \boldsymbol{k}} \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j} e^{i \boldsymbol{k} \cdot \boldsymbol{x}_{l j}^{0}}+\hat{a}_{\nu, \boldsymbol{k}}^{\dagger} \epsilon_{\nu, \boldsymbol{k}, j}^{*} e^{-i \boldsymbol{k} \cdot \boldsymbol{x}_{l j}^{0}}\right)
$$

- Compute DM excitation rates (apply Fermi's GR)

DM - COLLECTIVE MODE EFT

- Match relativistic ops onto non-relativistic ops

$$
\psi(\boldsymbol{x}, t)=e^{-i m_{\psi} t} \frac{1}{\sqrt{2}}\binom{\left(1-\frac{\boldsymbol{\sigma} \cdot \boldsymbol{k}}{2 m_{\psi}+\varepsilon}\right) \psi^{+}(\boldsymbol{x}, t)}{\left(1+\frac{\boldsymbol{\sigma} \cdot \boldsymbol{k}}{2 m_{\psi}+\varepsilon}\right) \psi^{+}(\boldsymbol{x}, t)} \quad \begin{gathered}
\text { Keep leading order in NR expansion } \\
\frac{\mathbf{q}}{m_{\psi}} \quad \boldsymbol{v}^{\perp} \equiv \frac{\boldsymbol{P}}{2 m_{\chi}}-\frac{\boldsymbol{K}}{2 m_{\psi}}=\boldsymbol{v}-\frac{\boldsymbol{k}}{m_{\psi}}-\frac{\boldsymbol{q}}{2 \mu_{\chi \psi}}
\end{gathered}
$$

- Match NR ops onto lattice d.o.f.

$$
e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{l j}}=e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{i, j}^{0}} e^{-W_{j}(\boldsymbol{q})} \exp \left[\sum_{\nu, k}^{i\left(\boldsymbol{q} \cdot \epsilon_{, L, k}^{*}\right) e^{-i \boldsymbol{k} \cdot \boldsymbol{x}_{i j}^{0}}} \sqrt{2 N m_{j} \omega_{\nu, k}} \hat{\mathrm{~L}}_{\nu, k}^{\dagger}\right] \exp \left[\sum_{\nu, \boldsymbol{k}} \frac{i\left(\boldsymbol{q} \cdot \boldsymbol{\epsilon}_{\nu, k, j}\right) e^{i \boldsymbol{k} \cdot \boldsymbol{x}_{l j}^{0}}}{\sqrt{2 N m_{j} \omega_{\nu, k}}} \hat{a}_{\nu, k}\right]
$$

Lattice form factor

$$
W_{j}(\boldsymbol{q})=\frac{1}{4 N m_{j}} \sum_{\nu} \sum_{\boldsymbol{k} \in 1 \mathrm{BZ}} \frac{\left|\boldsymbol{q} \cdot \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j}\right|^{2}}{\omega_{\nu, \boldsymbol{k}}}
$$

- Compute DM excitation rates (apply Fermi’s GR)

GOAL OF EFT

- To calculate interaction rate with collective excitations from any UV complete DM interaction

Decomposition

 carried out previouslyGresham, KZ 1401.3739

Using NR basis of
Fitzpatrick, Haxton, Katz, Lubbers, Xu

	Model	UV Lagrangian	NR EFT	Responses
Standard SI		$\begin{gathered} \phi\left(g_{\chi} J_{S, \chi}+g_{\psi} J_{S, \psi}\right) \text { or } \\ V_{\mu}\left(g_{\chi} J_{V, \chi}^{\mu}-g_{\psi} J_{V, \psi}^{\mu}\right) \end{gathered}$	$c_{1}^{(\psi)}=\frac{g_{\chi}{ }_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{\phi, V}^{2}}$	N
Standard SD ${ }^{\text {a }}$		$V_{\mu}\left(g_{\chi} J_{A, \chi}^{\mu}+g_{\psi} J_{A, \psi}^{\mu}\right)$	$c_{4}^{(\psi)}=\frac{4 g_{\chi} g_{\psi}}{q^{2}+m_{V}^{2}}$	S
Other scalar mediators	$\mathrm{P} \times \mathrm{S}$	$\phi\left(g_{\chi} J_{P, \chi}+g_{\psi} J_{S, \psi}\right)$	$c_{11}^{(\psi)}=\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{q^{2}+m_{\phi}^{2}}$	N
	$\mathrm{S} \times \mathrm{P}$	$\phi\left(g_{\chi} J_{S, \chi}+g_{\psi} J_{P, \psi}\right)$	$c_{10}^{(\psi)}=-\frac{g_{\chi} g_{\psi}}{q^{2}+m_{\phi}^{2}}$	S
	$\mathrm{P} \times \mathrm{P}$	$\phi\left(g_{\chi} J_{P, \chi}+g_{\psi} J_{P, \psi}\right)$	$c_{6}^{(\psi)}=\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{\phi}^{2}}$	S
Multipole DM models	Electric dipole	$V_{\mu}\left(g_{\chi} J_{\text {edm }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\text {mdm }, \psi}^{\mu}\right)\right)$	$c_{11}^{(\psi)}=-\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}}$	N
	Magnetic dipole	$V_{\mu}\left(g_{\chi} J_{\mathrm{mdm}, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\mathrm{mdm}, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{1}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{4 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{4}^{(\psi)}=\widetilde{\mu}_{\psi}^{\text {eff }} \frac{\boldsymbol{q}^{2}}{m_{\chi} m_{\psi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{5}^{(\psi)}=\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {edf }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{6}^{(\psi)}=-\widetilde{\mu}_{\psi}^{\text {eff }} \frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	N, S, L
	Anapole	$V_{\mu}\left(g_{\chi} J_{\text {ana }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\mathrm{mdm}, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{8}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{9}^{(\psi)}=-\widetilde{\mu}_{\psi}^{\text {eff }} \frac{\boldsymbol{q}^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} \chi_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	N, S, L
$(\boldsymbol{L} \cdot \boldsymbol{S})$-interacting		$V_{\mu}\left(g_{\chi} J_{V, \chi}^{\mu}+g_{\psi}\left(J_{\mathrm{mdm}, \psi}^{\mu}+\kappa J_{V 2, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{1}^{(\psi)}=(1+\kappa) \frac{\boldsymbol{q}^{2}}{4 m_{\psi}^{2}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{3}^{(\psi)}=\frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{4}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{m_{\chi} m_{\psi}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{6}^{(\psi)}=-\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	$N, S, L \otimes S$

GOAL OF EFT

- To calculate interaction rate with collective excitations from any UV complete DM interaction

Start simple with standard SI interactions

Understand material effective Hamiltonian and potential

	Model	UV Lagrangian	NR EFT	Responses
Standard SI		$\begin{gathered} \phi\left(g_{\chi} J_{S, \chi}+g_{\psi} J_{S, \psi}\right) \text { or } \\ V_{\mu}\left(g_{\chi} J_{V, \chi}^{\mu}-g_{\psi} J_{V, \psi}^{\mu}\right) \end{gathered}$	$c_{1}^{(\psi)}=\frac{g_{\chi} g_{\psi}^{\text {eff }}}{q^{2}+m_{\phi, V}^{2}}$	N
Standard SD ${ }^{\text {a }}$		$V_{\mu}\left(g_{\chi} J_{A, \chi}^{\mu}+g_{\psi} J_{A, \psi}^{\mu}\right)$	$c_{4}^{(\psi)}=\frac{4 g_{\chi} g_{\psi}}{q^{2}+m_{V}^{2}}$	S
Other scalar mediators	$\mathrm{P} \times \mathrm{S}$	$\phi\left(g_{\chi} J_{P, \chi}+g_{\psi} J_{S, \psi}\right)$	$c_{11}^{(\psi)}=\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{\phi}^{2}}$	N
	$\mathrm{S} \times \mathrm{P}$	$\phi\left(g_{\chi} J_{S, \chi}+g_{\psi} J_{P, \psi}\right)$	$c_{10}^{(\psi)}=-\frac{g_{\chi} g_{\psi}}{q^{2}+m_{\phi}^{2}}$	S
	$\mathrm{P} \times \mathrm{P}$	$\phi\left(g_{\chi} J_{P, \chi}+g_{\psi} J_{P, \psi}\right)$	$c_{6}^{(\psi)}=\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{\phi}^{2}}$	S
Multipole DM models	Electric dipole	$V_{\mu}\left(g_{\chi} J_{\text {edm }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\text {mdm }, \psi}^{\mu}\right)\right)$	$c_{11}^{(\psi)}=-\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}}$	N
	Magnetic dipole	$V_{\mu}\left(g_{\chi} J_{\mathrm{mdm}, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\mathrm{mdm}, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{1}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{4 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{4}^{(\psi)}=\widetilde{\mu}_{\psi}^{\text {eff }} \frac{\boldsymbol{q}^{2}}{m_{\chi} m_{\psi}} \frac{g_{\chi} \boldsymbol{g}_{\psi}^{2}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{5}^{(\psi)}=\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {enf }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{6}^{(\psi)}=-\widetilde{\mu}_{\psi}^{\text {eff }} \frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	N, S, L
	Anapole	$V_{\mu}\left(g_{\chi} J_{\text {ana }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\mathrm{mdm}, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{8}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{9}^{(\psi)}=-\widetilde{\mu}_{\psi}^{\text {eff }} \frac{\boldsymbol{q}^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	N, S, L
$(\boldsymbol{L} \cdot \boldsymbol{S})$-interacting		$V_{\mu}\left(g_{\chi} J_{V, \chi}^{\mu}+g_{\psi}\left(J_{\mathrm{mdm}, \psi}^{\mu}+\kappa J_{V 2, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{1}^{(\psi)}=(1+\kappa) \frac{\boldsymbol{q}^{2}}{4 m_{\psi}^{2}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{3}^{(\psi)}=\frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{4}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{m_{\chi} m_{\psi}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{6}^{(\psi)}=-\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	$N, S, L \otimes S$

NATURE OF COLLECTIVE OSCILLATIONS OF IONS — PHONONS

- Number of collective modes: 3 x number of ions in unit cell
- 3 of those modes describe in phase oscillation - acoustic phonons - and have a translation symmetry implying gapless dispersion

- The remaining modes are gapped
taosicic $Q_{q} q_{q} Q_{q} \varphi_{q}$
Optical $\downarrow \boldsymbol{\downarrow}$ ゆ $\downarrow \boldsymbol{\downarrow}$ な

NATURE OF COLLECTIVE OSCILLATIONS OF IONS — PHONONS

－Some materials have an abundance of these modes
－When these gapped modes result from oscillations of more than one type of ion，it sets up an oscillating dipole： Polar Materials
－This oscillating dipole allows to compute an effective Acoustic
interaction and compute the to compute an effective
interaction and compute the dynamic structure factor

Sapphire

 Optical
 ゆおしむゆおゆむ

KINEMATICS OF COLLECTIVE MODES

- Each phonon mode is a resonance. The DM needs to be well matched kinematically to the modes to excite large response

$$
E_{D} \sim v_{X} q
$$

vs

$$
c_{s} \ll v_{X}
$$

$E_{D} \sim c_{s} q$

- Better coupling to gapped modes

DM - COLLECTIVE MODE EFT

- Match relativistic ops onto non-relativistic ops

> (Trivial for SI interactions)

- Match NR ops onto lattice d.o.f.
(Provided by Frohlich Hamiltonian or dynamic structure factor computed by DFT methods)
- Compute DM excitation rates
(Straightforward once one understands the (inelastic) kinematics of the system)

FROHLICH HAMILTONIAN AND EFFECTIVE INTERACTIONS

- For sufficiently simple interactions, the effective interaction is already known, e.g. Frohlich Hamiltonian:

$$
\begin{gathered}
\mathcal{H}_{I}=i \frac{\kappa g_{X}}{e} C_{F} \sum_{\mathbf{k}, \mathbf{q}} \frac{1}{|\mathbf{q}|}\left[c_{\mathbf{q}}^{\dagger} a_{\mathbf{k}-\mathbf{q}}^{\dagger} a_{\mathbf{k}}-\text { c.c. }\right] \quad C_{F}=e\left[\frac{\omega_{\mathrm{LO}}}{2 V_{\text {cell }}}\left(\frac{1}{\epsilon_{\infty}}-\frac{1}{\epsilon_{0}}\right)\right]^{1 / 2} \\
\left|\mathcal{M}_{\mathbf{q}}\right|^{2}=\frac{\kappa^{2} g_{X}^{2}}{e^{2}} \frac{C_{F}^{2}}{q^{2}}
\end{gathered}
$$

- Apply Fermi's golden rule: $\Gamma\left(\mathbf{p}_{\mathbf{i}}\right)=2 \pi \int \frac{d^{3} \mathbf{p}_{f}}{(2 \pi)^{3}} \delta\left(E_{f}-E_{i}-\omega\right)\left|\mathcal{M}_{\mathbf{q}}\right|^{2}$
- Integrate over phase space:

$$
R=\frac{1}{\rho} \frac{\rho_{\mathrm{DM}}}{m_{X}} \int d^{3} \mathbf{v} f(\mathbf{v}) \Gamma\left(m_{\chi} \mathbf{v}\right)
$$

FROHLICH HAMILTONIAN AND EFFECTIVE INTERACTIONS

- For sufficiently simple interactions, the effective interaction is already known, e.g. Frohlich Hamiltonian:

- Phonons are excitations of lattice displacements. Write down in terms of the lattice potential:

$$
\langle\nu, \boldsymbol{k}| \widetilde{\mathcal{V}}(-\boldsymbol{q}, \boldsymbol{v})|0\rangle=\sum_{l, j}\langle\nu, \boldsymbol{k}| e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{l j}} \widetilde{\mathcal{V}}_{l j}(-\boldsymbol{q}, \boldsymbol{v})|0\rangle
$$

- Now, quantize the lattice displacements:

$$
\boldsymbol{u}_{l j}=\boldsymbol{x}_{l j}-\boldsymbol{x}_{l j}^{0}=\sum_{\nu=1}^{3 n} \sum_{\boldsymbol{k} \in 1 \mathrm{BZ}} \frac{1}{\sqrt{2 N m_{j} \omega_{\nu, \boldsymbol{k}}}}\left(\hat{a}_{\nu, \boldsymbol{k}} \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j} e^{i \boldsymbol{k} \cdot \boldsymbol{x}_{l j}^{0}}+\hat{a}_{\nu, \boldsymbol{k}}^{\dagger} \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j}^{*} e^{-i \boldsymbol{k} \cdot \boldsymbol{x}_{l j}^{0}}\right)
$$

- Apply BCH to normal-order phonon creation/annihilation

$$
\langle\nu, \boldsymbol{k}| \widetilde{\mathcal{V}}(-\boldsymbol{q}, \boldsymbol{v})|0\rangle=\frac{1}{\sqrt{N}} \sum_{\nu, \boldsymbol{k}, j}\left[\sum_{l} \widetilde{\mathcal{V}}_{l j}(-\boldsymbol{q}, \boldsymbol{v}) e^{i(\boldsymbol{q}-\boldsymbol{k}) \cdot \boldsymbol{x}_{l j}^{0}}\right] e^{-W_{j}(\boldsymbol{q})} \frac{i\left(\boldsymbol{q} \cdot \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j}^{*}\right)}{\sqrt{2 m_{j} \omega_{\nu, \boldsymbol{k}}}}
$$

FIRST PRINCIPLES DERIVATION

- Obtain rate from Fermi's golden rule:

$$
\Gamma(\boldsymbol{v})=\frac{1}{\Omega} \int \frac{d^{3} q}{(2 \pi)^{3}} \sum_{\nu=1}^{3 n} 2 \pi \delta\left(\omega_{\nu, \boldsymbol{k}}-\omega_{\boldsymbol{q}}\right) \frac{1}{2 \omega_{\nu, \boldsymbol{k}}}\left|\sum_{j} e^{-W_{j}(\boldsymbol{q})} e^{i \boldsymbol{G} \cdot \boldsymbol{x}_{j}^{0}} \frac{\boldsymbol{q} \cdot \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j}^{*}}{\sqrt{m_{j}}} \widetilde{\mathcal{V}}_{j}(-\boldsymbol{q}, \boldsymbol{v})\right|^{2}
$$

- Frolich Hamiltonian obtained in limit

$$
\begin{array}{rl}
W_{j} \simeq 0 & \mathbf{G}=0 \\
Z_{1}^{*}=-Z_{2}^{*} \equiv Z^{*}(-\mathbf{q}, \mathbf{v})=-\frac{Z_{j}^{*} q^{2}}{\mathbf{q} \cdot \epsilon_{\infty} \cdot \mathbf{q}} \\
& \left|\epsilon_{\mathrm{LO}, \mathbf{k}, j}\right|=\sqrt{\mu_{12} / m_{j}}
\end{array}
$$

LO polarization vectors anti-parallel

FIRST PRINCIPLES DERIVATION

- Obtain rate from Fermi's golden rule:

$$
\Gamma(\boldsymbol{v})=\frac{1}{\Omega} \int \frac{d^{3} q}{(2 \pi)^{3}} \sum_{\nu=1}^{3 n} 2 \pi \delta\left(\omega_{\nu, \boldsymbol{k}}-\omega_{\boldsymbol{q}}\right) \frac{1}{2 \omega_{\nu, \boldsymbol{k}}}\left|\sum_{j} e^{-W_{j}(\boldsymbol{q})} e^{i \boldsymbol{G} \cdot \boldsymbol{x}_{j}^{0}} \frac{\boldsymbol{q} \cdot \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j}^{*}}{\sqrt{m_{j}}} \widetilde{\mathcal{V}}_{j}(-\boldsymbol{q}, \boldsymbol{v})\right|^{2}
$$

$S(\mathbf{q}, \omega)$

- Dynamic structure factor
- **If** interaction is ordinary SI interaction, can use famous result of Nozieres and Pines

$$
S(\omega, \mathbf{k})=\frac{k^{2}}{2 \pi \alpha_{e m}} \frac{1}{1-e^{-\beta \omega}} \operatorname{Im}\left[\frac{-1}{\epsilon_{L}(\omega, \mathbf{k})}\right]
$$

FIRST PRINCIPLES DERIVATION

- Obtain rate from Fermi's golden rule:

$$
\Gamma(\boldsymbol{v})=\frac{1}{\Omega} \int \frac{d^{3} q}{(2 \pi)^{3}} \sum_{\nu=1}^{3 n} 2 \pi \delta\left(\omega_{\nu, \boldsymbol{k}}-\omega_{\boldsymbol{q}}\right) \frac{1}{2 \omega_{\nu, \boldsymbol{k}}}\left|\sum_{j} e^{-W_{j}(\boldsymbol{q})} e^{i \boldsymbol{G} \cdot x_{j}^{0}} \frac{\boldsymbol{q} \cdot \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j}^{*}}{\sqrt{m_{j}}} \widetilde{\nu}_{j}(-\boldsymbol{q}, \boldsymbol{v})\right|^{2}
$$

- The inverse lattice vector G maps momentum transfer outside 1BZ back inside it

$$
\mathbf{q}=\mathbf{k}+\mathbf{G}
$$

- Including the inverse lattice vector allows to extend calculation to high DM masses

OPTICAL PHONONS IN POLAR MATERIALS

Griffin, Inzani, Trickle, Zhang, KZ, 1910.10716

Generalize to NR EFT

Trickle, Zhang, KZ 2009.13534

- Recall we are interested in matrix elements of the form

$$
\left.\Gamma(\boldsymbol{v})=\frac{1}{V} \int \frac{d^{3} q}{(2 \pi)^{3}} \sum_{\nu, \boldsymbol{k}}\left|\sum_{l, j}\langle\nu, \boldsymbol{k}| e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{l j}} \tilde{\mathcal{V}}_{l j}(-\boldsymbol{q}, \boldsymbol{v})\right| 0\right\rangle\left.\right|^{2} 2 \pi \delta\left(\omega_{\nu, \boldsymbol{k}}-\omega_{\boldsymbol{q}}\right)
$$

- We need to calculate the lattice potential in the NR basis

	Model	UV Lagrangian	NR EFT	Responses
Standard SI		$\begin{gathered} \phi\left(g_{\chi} J_{S, \chi}+g_{\psi} J_{S, \psi}\right) \text { or } \\ V_{\mu}\left(g_{\chi} J_{V, \chi}^{\mu}-g_{\psi} J_{V, \psi}^{\mu}\right) \end{gathered}$	$c_{1}^{(\psi)}=\frac{g_{\chi} g_{\psi}^{\text {eff }}}{q^{2}+m_{\phi, V}^{2}}$	N
Standard SD ${ }^{\text {a }}$		$V_{\mu}\left(g_{\chi} J_{A, \chi}^{\mu}+g_{\psi} J_{A, \psi}^{\mu}\right)$	$c_{4}^{(\psi)}=\frac{4 g_{\chi} g_{\psi}}{q^{2}+m_{V}^{2}}$	S
Other scalar mediators	$\mathrm{P} \times \mathrm{S}$	$\phi\left(g_{\chi} J_{P, \chi}+g_{\psi} J_{S, \psi}\right)$	$c_{11}^{(\psi)}=\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} \underline{g}_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{\phi}^{2}}$	N
	$\mathrm{S} \times \mathrm{P}$	$\phi\left(g_{\chi} J_{S, \chi}+g_{\psi} J_{P, \psi}\right)$	$c_{10}^{(\psi)}=-\frac{g_{\chi} g_{\psi}}{q^{2}+m_{\phi}^{2}}$	S
	$\mathrm{P} \times \mathrm{P}$	$\phi\left(g_{\chi} J_{P, \chi}+g_{\psi} J_{P, \psi}\right)$	$c_{6}^{(\psi)}=\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{\phi}^{2}}$	S
Multipole DM models	Electric dipole	$V_{\mu}\left(g_{\chi} J_{\text {edm }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\text {mdm }, \psi}^{\mu}\right)\right)$	$c_{11}^{(\psi)}=-\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}}$	N
	Magnetic dipole	$V_{\mu}\left(g_{\chi} J_{\mathrm{mdm}, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\mathrm{mdm}, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{1}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{4 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{4}^{(\psi)}=\widetilde{\mu}_{\psi}^{\text {eff }} \frac{\boldsymbol{q}^{2}}{m_{\chi} m_{\psi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{5}^{(\psi)}=\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi} \boldsymbol{q}^{2}+m_{V}^{2}}{\boldsymbol{q}^{\text {enf }}} \\ c_{6}^{(\psi)}=-\widetilde{\mu}_{\psi}^{\text {eff }} \frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	N, S, L
	Anapole	$V_{\mu}\left(g_{\chi} J_{\text {ana }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\text {mdm }, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{8}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{9}^{(\psi)}=-\widetilde{\mu}_{\psi}^{\text {eff }} \frac{\boldsymbol{q}^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	N, S, L
$(\boldsymbol{L} \cdot \boldsymbol{S})$-interacting		$V_{\mu}\left(g_{\chi} J_{V, \chi}^{\mu}+g_{\psi}\left(J_{\mathrm{mdm}, \psi}^{\mu}+\kappa J_{V 2, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{1}^{(\psi)}=(1+\kappa) \frac{\boldsymbol{q}^{2}}{4 m_{\psi}^{2}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{3}^{(\psi)}=\frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{4}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{m_{\chi} m_{\psi}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{6}^{(\psi)}=-\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	$N, S, L \otimes S$

- Recall we are interested in matrix elements of the form

$$
\left.\Gamma(\boldsymbol{v})=\frac{1}{V} \int \frac{d^{3} q}{(2 \pi)^{3}} \sum_{\nu, \boldsymbol{k}}\left|\sum_{l, j}\langle\nu, \boldsymbol{k}| e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{l j}} \tilde{\mathcal{V}}_{l j}(-\boldsymbol{q}, \boldsymbol{v})\right| 0\right\rangle\left.\right|^{2} 2 \pi \delta\left(\omega_{\nu, \boldsymbol{k}}-\omega_{\boldsymbol{q}}\right)
$$

- We need to calculate the lattice potential in the NR basis

Interaction Type	NR Operators	Point-like Response	Composite Response
Coupling to charge, \boldsymbol{v}^{\perp}-independent	$\begin{gathered} \hline \mathcal{O}_{1}^{(\psi)}=\mathbb{1} \\ \mathcal{O}_{11}^{(\psi)}=S_{\chi} \cdot \frac{i q}{m_{\psi}} \end{gathered}$	N	-
Coupling to charge, \boldsymbol{v}^{\perp}-dependent	$\begin{gathered} \mathcal{O}_{5}^{(\psi)}=S_{\chi} \cdot\left(\frac{i q}{m_{\psi}} \times \boldsymbol{v}^{\perp}\right) \\ \mathcal{O}_{8}^{(\psi)}=S_{\chi} \cdot \boldsymbol{v}^{\perp} \end{gathered}$	N	L
Coupling to spin, \boldsymbol{v}^{\perp}-independent	$\begin{gathered} \mathcal{O}_{4}^{(\psi)}=\boldsymbol{S}_{\chi} \cdot \boldsymbol{S}_{\psi} \\ \mathcal{O}_{6}^{(\psi)}=\left(\boldsymbol{S}_{\chi} \cdot \frac{q}{m_{\psi}}\right)\left(\boldsymbol{S}_{\psi} \cdot \frac{\boldsymbol{q}}{m_{\psi}}\right) \\ \mathcal{O}_{9}^{(\psi)}=\boldsymbol{S}_{\chi} \cdot\left(\boldsymbol{S}_{\psi} \times \frac{i \boldsymbol{q}}{m_{\psi}}\right) \\ \mathcal{O}_{10}^{(\psi)}=\boldsymbol{S}_{\psi} \cdot \frac{i \boldsymbol{q}}{m_{\psi}} \end{gathered}$	S	-
Coupling to spin, \boldsymbol{v}^{\perp}-dependent	$\begin{gathered} \mathcal{O}_{3}^{(\psi)}=\boldsymbol{S}_{\psi} \cdot\left(\frac{i \boldsymbol{q}}{m_{\psi}} \times \boldsymbol{v}^{\perp}\right) \\ \mathcal{O}_{7}^{(\psi)}=\boldsymbol{S}_{\psi} \cdot \boldsymbol{v}^{\perp} \\ \mathcal{O}_{12}^{(\psi)}=\boldsymbol{S}_{\chi} \cdot\left(\boldsymbol{S}_{\psi} \times \boldsymbol{v}^{\perp}\right) \\ \mathcal{O}_{13}^{(4)}=\left(\boldsymbol{S}_{\chi} \cdot \boldsymbol{v}^{\perp}\right)\left(\boldsymbol{S}_{\psi} \cdot \frac{i \boldsymbol{q}}{m_{\psi}}\right) \\ \mathcal{O}_{14}^{(\psi)}=\left(\boldsymbol{S}_{\psi} \cdot \boldsymbol{v}^{\perp}\right)\left(\boldsymbol{S}_{\chi} \cdot \frac{i \boldsymbol{q}}{m_{\psi}}\right) \\ \psi_{5}^{(4)}=\left(\boldsymbol{S}_{\chi} \cdot\left(\frac{i \boldsymbol{q}}{m_{\psi}} \times \boldsymbol{v}^{\perp}\right)\right)\left(\boldsymbol{S}_{\psi} \cdot \frac{i \boldsymbol{q}}{m_{\psi}}\right) \end{gathered}$	S	$L \otimes S$

- Recall we are interested in matrix elements of the form

$$
\left.\Gamma(\boldsymbol{v})=\frac{1}{V} \int \frac{d^{3} q}{(2 \pi)^{3}} \sum_{\nu, \boldsymbol{k}}\left|\sum_{l, j}\langle\nu, \boldsymbol{k}| e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{l j}} \tilde{\mathcal{V}}_{l j}(-\boldsymbol{q}, \boldsymbol{v})\right| 0\right\rangle\left.\right|^{2} 2 \pi \delta\left(\omega_{\nu, \boldsymbol{k}}-\omega_{\boldsymbol{q}}\right)
$$

- We need to calculate the lattice potential in the NR basis

$$
\begin{aligned}
& \tilde{\mathcal{\nu}}_{i j}(-q, v)=\sum_{\psi=p, n_{c}} c_{c}^{(q)}\left(N_{v}\right\rangle_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& +c_{4}^{(\psi)} S_{X} \cdot\left\langle S_{\psi}\right\rangle_{j} \\
& \left.+c_{5}^{(\varphi)}\left[\frac{i q}{m_{\varphi}} \cdot\left(v^{\prime} \times S_{X}\right)\left\langle N_{\psi}\right\rangle\right\rangle_{j}+\frac{q^{2}}{2 m_{\psi}^{2}} S_{X} \cdot(\mathbb{1}-\hat{q} \hat{q}) \cdot\left\langle L_{\psi}\right\rangle_{i}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.++_{8}^{\left(\varphi_{8}\right)}\left[\left(v^{\prime} \cdot S_{\chi}\right)\left(N_{\psi}\right\rangle_{i}\right) \frac{i q}{2 m_{\psi}} S_{\chi} \cdot\left(\hat{a} \times\left\langle L_{\psi}\right\rangle_{b i}\right)\right] \\
& +c_{9}^{(i)} \frac{i q}{m_{\psi}} S_{x} \cdot\left(\left\langle S_{\psi}\right)_{i j} \times \hat{q}\right) \\
& +{ }_{10}^{(i)} \frac{i(1)}{m_{\psi}} \cdot\left\langle S_{\psi}\right\rangle_{\psi_{j}} \\
& ++_{11}^{(i)} \frac{i q}{m_{\psi}} \cdot S_{\chi}\left\langle N_{\psi}\right)_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& +c_{13}^{\left(\varphi_{\psi}^{(\psi)}\right.}\left[\frac{i q}{m_{\psi}}\left(v^{\prime} \cdot S_{\chi}\right)\left(\hat{q} \cdot\left\langle S_{\psi} \psi_{i j}\right)+\frac{q^{2}}{2 m_{\psi}^{2}}\left(\hat{q} \times S_{\chi}\right) \cdot\left\langle L_{\psi} \otimes S_{\psi}\right\rangle_{i j} \cdot \hat{q}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& +c_{15}^{\left(\psi_{15}\right)}\left[-\frac{q^{2}}{m_{\psi}^{2}}\left(\hat{q} \cdot\left(v^{\prime} \times S_{\chi}\right)\right)\left(\hat{q} \cdot\left\langle S_{\psi} \psi_{i j}\right)\right.\right. \\
& +\frac{i q^{3}}{2 m_{\psi}^{3}} S_{X} \cdot(1-\hat{q} \hat{q}) \cdot\left\langle L_{\psi} \otimes S_{\psi} l_{l j} \cdot \hat{q}\right],
\end{aligned}
$$

LATIICE POTENTIAL

- Recall, displacements contain phonon annihilation and creation operators

$$
\Gamma(\boldsymbol{v})=\frac{1}{\Omega} \int \frac{d^{3} q}{(2 \pi)^{3}} \sum_{\nu=1}^{3 n} 2 \pi \delta\left(\omega_{\nu, \boldsymbol{k}}-\omega_{\boldsymbol{q}}\right) \frac{1}{2 \omega_{\nu, \boldsymbol{k}}}\left|\sum_{j} e^{-W_{j}(\boldsymbol{q})} e^{i \boldsymbol{G} \cdot \boldsymbol{x}_{j}^{0}} \frac{\boldsymbol{q} \cdot \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j}^{*}}{\sqrt{m_{j}}} \widetilde{\mathcal{V}}_{j}(-\boldsymbol{q}, \boldsymbol{v})\right|^{2}
$$

- Evaluate potential, taking one type of each operator in table on previous page $\quad c_{1}^{(\psi)}\left\langle N_{\psi}\right\rangle_{l_{j}} \quad c_{4}^{(\psi)} \boldsymbol{S}_{\chi} \cdot\left\langle\boldsymbol{S}_{\psi}\right\rangle_{l_{j}}$

$$
\begin{aligned}
\widetilde{\mathcal{V}}_{l j}(-\boldsymbol{q}, \boldsymbol{v}) \supset \sum_{\alpha}[& c_{1}^{(\psi)}\left\langle e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{\alpha}}\right\rangle_{l j}+c_{4}^{(\psi)} \boldsymbol{S}_{\chi} \cdot\left\langle e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{\alpha}} \boldsymbol{S}_{\psi, \alpha}\right\rangle_{l j} \\
& \left.+c_{8}^{(\psi)} \boldsymbol{S}_{\chi} \cdot\left\langle e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{\alpha}} \boldsymbol{v}_{\alpha}^{\perp}\right\rangle_{l j}+c_{3}^{(\psi)} \frac{i \boldsymbol{q}}{m_{\psi}} \cdot\left\langle e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{\alpha}} \boldsymbol{v}_{\alpha}^{\perp} \times \boldsymbol{S}_{\psi, \alpha}\right\rangle_{l j}\right]
\end{aligned}
$$

LATICE POTENTIAL

- Recall, displacements contain phonon annihilation and creation operators

$$
\Gamma(\boldsymbol{v})=\frac{1}{\Omega} \int \frac{d^{3} q}{(2 \pi)^{3}} \sum_{\nu=1}^{3 n} 2 \pi \delta\left(\omega_{\nu, \boldsymbol{k}}-\omega_{\boldsymbol{q}}\right) \frac{1}{2 \omega_{\nu, \boldsymbol{k}}}\left|\sum_{j} e^{-W_{j}(\boldsymbol{q})} e^{i \boldsymbol{G} \cdot x_{j}^{0}} \frac{\boldsymbol{q} \cdot \boldsymbol{\epsilon}_{\nu, \boldsymbol{k}, j}^{*}}{\sqrt{m_{j}}} \widetilde{\mathcal{V}}_{j}(-\boldsymbol{q}, \boldsymbol{v})\right|^{2}
$$

- Evaluate potential, taking one type of each operator in table on previous page

$$
c_{3}^{(\psi)}\left[\left(\frac{i \boldsymbol{q}}{m_{\psi}} \times \boldsymbol{v}\right) \cdot\left\langle\boldsymbol{S}_{\psi}\right\rangle_{l j}+\frac{1}{2 m_{\psi}^{2}}\left(\boldsymbol{q}^{2} \delta^{i k}-q^{i} q^{k}\right)\left(\left\langle\boldsymbol{L}_{\psi} \otimes \boldsymbol{S}_{\psi}\right\rangle_{l j}\right)^{i k}\right]
$$

$$
\widetilde{\mathcal{V}}_{l j}(-\boldsymbol{q}, \boldsymbol{v}) \supset \sum_{\alpha}\left[c_{1}^{(\psi)}\left\langle e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{\alpha}}\right\rangle_{l j}+c_{4}^{(\psi)} \boldsymbol{S}_{\chi} \cdot\left\langle e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{\alpha}} \boldsymbol{S}_{\psi, \alpha}\right\rangle_{l j}\right.
$$

$$
c_{8}^{(\psi)} \boldsymbol{S}_{\chi} \cdot\left[\left(\boldsymbol{v}-\frac{\boldsymbol{q}}{2 m_{\chi}}\right)\left\langle N_{\psi}\right\rangle_{l j}+\frac{i \boldsymbol{q}}{2 m_{\psi}} \times\left\langle\boldsymbol{L}_{\psi}\right\rangle_{l j}\right]
$$

$$
\left.\longleftarrow_{i \boldsymbol{q}}+c_{8}^{(\psi)} \boldsymbol{S}_{\chi} \cdot\left\langle e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{\alpha}} \boldsymbol{v}_{\alpha}^{\perp}\right\rangle_{l j}+c_{3}^{(\psi)} \frac{i \boldsymbol{q}}{m_{\psi}} \cdot\left\langle e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{\alpha}} \boldsymbol{v}_{\alpha}^{\perp} \times \boldsymbol{S}_{\psi, \alpha}\right\rangle_{l j}\right]
$$

2 NEW RESPONSES — L, LXS

$$
\begin{aligned}
& \frac{i}{2 m_{\psi}}\left\langle x^{i} \vec{\nabla}_{\alpha}^{k}-x^{k} \vec{\nabla}_{\alpha}^{i}\right\rangle_{l j}=-\frac{1}{2 m_{\psi}} \epsilon_{i k k^{\prime}}\left\langle L_{\alpha}^{k^{\prime}}\right\rangle_{l j} \\
& \left(\left\langle\boldsymbol{L}_{\psi} \otimes \boldsymbol{S}_{\psi}\right\rangle_{l j}\right)^{i k}=\left\langle L_{\psi}^{i} S_{\psi}^{k}\right\rangle_{l j} \equiv \sum_{\alpha}\left\langle L_{\psi, \alpha}^{i} S_{\psi, \alpha}^{k}\right\rangle_{l j}
\end{aligned}
$$

Appears from gradient in vperp

$$
\boldsymbol{v}_{\alpha}^{\perp}=\boldsymbol{v}-\frac{\boldsymbol{q}}{2 m_{\chi}}-\frac{\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right)_{\alpha}}{2 m_{\psi}}=\boldsymbol{v}-\frac{\boldsymbol{q}}{2 m_{\chi}}+\frac{i}{2 m_{\psi}} \overleftrightarrow{\nabla}_{\alpha}
$$

FOUR CRYSTAL RESPONSES $\quad N, S, L, L \otimes S$

- All four responses generate phonons

MAGNON COLLECTIVE EXCITATIONS

- Magnons couple to S and L responses

$$
\langle\nu, \boldsymbol{k}| \widetilde{\mathcal{V}}(-\boldsymbol{q}, \boldsymbol{v})|0\rangle=\sum_{l, j} e^{i \boldsymbol{q} \cdot \boldsymbol{x}_{l j}} \boldsymbol{f}_{j}(-\boldsymbol{q}, \boldsymbol{v}) \cdot\langle\nu, \boldsymbol{k}| \boldsymbol{S}_{l j}|0\rangle
$$

- Project onto ionic spins $\left\langle\boldsymbol{S}_{e}\right\rangle_{l j} \rightarrow \lambda_{S, j} \boldsymbol{S}_{l j}, \quad\left\langle\boldsymbol{L}_{e}\right\rangle_{l j} \rightarrow \lambda_{L, j} \boldsymbol{S}_{l j}$
- Expand in Holstein-Primakoff bosons, Diagonalize spin Hamiltonian (nearest neighbor Heisenberg interaction)
- Need magnetic material to have non-zero spin expectation value over unit cell
- YIG as benchmark

SPIN-ORBIT MATERIALS

- Angular momentum - spin-orbit-entangled Mott insulator
- Effective spins $\quad \lambda_{S, j}=-\frac{1}{3}, \lambda_{L, j}=-\frac{4}{3}$

$$
\alpha-\mathrm{RuCl}_{3}
$$

- Kitaev material with bond directional coupling
- Antiferromagnetic order

DIPOLE INTERACTIONS

Multipole DM models	Electric dipole	$V_{\mu}\left(g_{\chi} J_{\text {edm }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\operatorname{mdm}, \psi}^{\mu}\right)\right)$	$c_{11}^{(\psi)}=-\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{q^{2}+m_{V}^{2}}$	N
	Magnetic dipole	$V_{\mu}\left(g_{\chi} J_{\text {mdm }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\text {mdm }, \psi}^{\mu}\right)\right)$		N, S, L
	Anapole	$V_{\mu}\left(g_{\chi} J_{\text {ana }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\text {mdm }, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{8}^{(\psi)}=\frac{q^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{q}^{\text {eff }}}{q^{2}+m_{V}^{2}} \\ c_{9}^{(\psi)}=-\widetilde{\mu}_{\psi}^{\text {eff }} \frac{q^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}{ }^{\text {ef }}}{q^{2}+m_{V}^{2}} \end{gathered}$	N, S, L

All have N response, probed by phonons

DIPOLE INTERACTIONS

$$
\begin{aligned}
& \tilde{\nu}_{l j}(-\boldsymbol{q}, v)=\sum_{w=p, w, e} c_{1}^{(\hat{v})}\left\langle N_{w}\right\rangle_{k j} \\
& +c_{3}^{(\psi)}\left[-\frac{i q}{m_{\psi}} \boldsymbol{v}^{\prime} \cdot\left(\hat{q} \times\left\langle S_{\psi \psi}\right\rangle_{t j}\right)+\frac{q^{2}}{2 m_{\psi}^{2}}\left(\delta^{i k}-\hat{q}^{i} \hat{\underline{q}}^{k}\right)\left(\left\langle L_{\psi \psi} \otimes S_{\psi}\right\rangle_{t j}\right)^{i k}\right] \\
& +c_{1}^{\left(\psi^{\psi}\right)} \boldsymbol{S}_{\chi} \cdot\left(\boldsymbol{S}_{\gamma}\right)_{\ell /} \\
& +c_{\sigma}^{(\psi)}\left[\frac{i \boldsymbol{q}}{m_{\psi}} \cdot\left(\boldsymbol{v}^{\prime} \times \boldsymbol{S}_{\chi}\right)\left\langle N_{\psi}\right\rangle i j+\frac{q^{2}}{2 m_{\psi}^{2}} \boldsymbol{S}_{\chi} \cdot(\mathbb{1}-\hat{q} \hat{q}) \cdot\left(\boldsymbol{L}_{\psi}\right\rangle / j j\right] \\
& +c_{B}^{(\psi)} \frac{q^{2}}{\pi n_{\psi}^{2}}\left(\hat{\boldsymbol{q}} \cdot \boldsymbol{S}_{\chi}\right)\left(\hat{\boldsymbol{q}} \cdot\left\langle\boldsymbol{S}_{\psi /{ }_{\psi}}\right)\right. \\
& +c_{7}^{(\psi)}\left[\boldsymbol{v}^{\prime} \cdot\left\langle S_{\psi}\right\rangle_{l j}+\epsilon^{i k k^{\prime}} \frac{i q^{k^{\prime}}}{2 m_{\chi}}\left(\left\langle L_{\psi} \otimes S_{\psi}\right\rangle_{l j}\right)^{i k}\right] \\
& +c_{8}^{(\psi)}\left[\left(v^{\prime} \cdot \boldsymbol{S}_{\chi}\right)\left\langle N_{\psi}{ }^{\prime} / l_{j}+\frac{i q}{2 m_{\psi}} \boldsymbol{S}_{X} \cdot\left(\hat{\boldsymbol{q}} \times\left\langle\boldsymbol{L}_{\psi}\right\rangle_{l} j\right)\right]\right. \\
& +c_{9}^{(v)} \frac{i \underline{q}}{m_{\psi}} \boldsymbol{S}_{\chi} \cdot\left(\left\langle S_{\psi}\right\rangle_{l j} \times \hat{q}\right) \\
& +c_{10}^{(\psi)} \frac{i q}{m_{\psi}} \cdot\left\langle S_{\psi\rangle l y}\right. \\
& +c_{11}^{(w)} \frac{i \boldsymbol{q}}{n_{\psi}} \cdot \boldsymbol{S}_{\chi}\left\langle N_{\dot{\psi} / h_{j}}\right. \\
& +c_{12}^{(i)}\left[\left(v^{\prime} \times S_{\chi}\right) \cdot\left\langle S_{\psi}\right\rangle h_{j}+\frac{i q}{2 m_{\psi}}\left(\left(\hat{q} \cdot S_{\chi}\right) \delta^{i k}-\hat{q}^{k} S_{\chi}^{\mathrm{i}}\right)\left(\left\langle L_{\psi} \otimes S_{w}\right\rangle l_{j}\right)^{i k}\right] \\
& +c_{13}^{\left(q^{(j)}\right.}\left[\frac { i q } { m _ { \psi } ^ { \prime } } (v ^ { \prime } \cdot \boldsymbol { S } _ { \chi }) \left(\hat{\boldsymbol{q}} \cdot\left(\boldsymbol{S}_{\psi} h_{j}\right)+\frac{q^{2}}{2 m_{w}^{2}}\left(\hat{\boldsymbol{q}} \times \boldsymbol{S}_{\chi}\right) \cdot\left(L_{\psi} \otimes S_{\psi} \lambda_{l j} \cdot \hat{\boldsymbol{q}}\right]\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& +c_{1 \omega}^{(\phi)}\left[-\frac{q^{2}}{m_{\psi}^{2}}\left(\hat{q} \cdot\left(\boldsymbol{v}^{\prime} \times \boldsymbol{S}_{\chi}\right)\right)\left(\hat{\boldsymbol{q}} \cdot\left\langle\boldsymbol{S}_{\psi}\right\rangle_{l_{j}}\right)\right. \\
& +\frac{i q^{3}}{2 \pi \eta_{\psi}^{3}} \boldsymbol{S}_{\chi} \cdot(\mathbf{1}-\hat{q} \hat{q}) \cdot\left(L_{\psi} \otimes \boldsymbol{S}_{\psi} \lambda_{2 j} \cdot \hat{\boldsymbol{q}}\right], \\
& \begin{array}{rlr}
c_{11}^{(\psi)} & =-\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} & N \\
c_{1}^{(\psi)} & =\frac{\boldsymbol{q}^{2}}{4 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} & \\
c_{V}^{(\psi)}=\widetilde{\mu}_{\psi}^{\text {eff }} \frac{\boldsymbol{q}^{2}}{m_{\chi} m_{\psi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} & N, S, L \\
c_{4}^{(\psi)} & =\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} & \\
c_{6}^{(\psi)}= & -\widetilde{\mu}_{\psi}^{\text {eff }} \frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} & \\
c_{8}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\
\text {,) } & & \\
c_{9}^{(\psi)}= & -\widetilde{\mu}_{\psi}^{\text {eff }} \frac{\boldsymbol{q}^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} & N, S, L
\end{array}
\end{aligned}
$$

DIPOLE INTERACTIONS — COMPARE SI AND SD REACH

Multipole DM models	Electric dipole	$V_{\mu}\left(g_{\chi} J_{\text {edm }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\mathrm{mdm}, \psi}^{\mu}\right)\right)$	$c_{11}^{(\psi)}=-\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}}$	N
	Magnetic dipole	$V_{\mu}\left(g_{\chi} J_{\mathrm{mdm}, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\mathrm{mdm}, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{1}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{4 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{4}^{(\psi)}=\widetilde{\mu}_{\psi}^{\text {eff }} \frac{\boldsymbol{q}^{2}}{m_{\chi} m_{\psi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{5}^{(\psi)}=\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{6}^{(\psi)}=-\widetilde{\mu}_{\psi}^{\text {eff }} \frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	N, S, L
	Anapole	$V_{\mu}\left(g_{\chi} J_{\text {ana }, \chi}^{\mu}+g_{\psi}\left(J_{V, \psi}^{\mu}+\delta \widetilde{\mu}_{\psi} J_{\mathrm{mdm}, \psi}^{\mu}\right)\right)$	$\begin{gathered} c_{8}^{(\psi)}=\frac{\boldsymbol{q}^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \\ c_{9}^{(\psi)}=-\widetilde{\mu}_{\psi}^{\text {eff }} \frac{\boldsymbol{q}^{2}}{2 m_{\chi}^{2}} \frac{g_{\chi} g_{\psi}^{\text {eff }}}{\boldsymbol{q}^{2}+m_{V}^{2}} \end{gathered}$	N, S, L

Polar crystals - N response
YIG - S response
Kitaev material - S\&L

DIRECTIONALITY IN ANISOTROPIC MATERIALS!

G̈riffin, Knapen, Lin, ǨZ 1807.10291
Coskuner, Trickle, Zhang, KZ 2102.xxxxx

- Crystal Lattice is not Isotropic
- Especially pronounced in certain materials, like sapphire

DIRECTIONALITY IN ANISOTROPIC MATERIALS!

- Crystal Lattice is not Isotropic
- Especially pronounced in certain materials, like sapphire

EXPERIMENTAL PROSPECTS

- Sensor to detect phonons coupled to DM "absorber"
- Zero-field read-out of phonons
- Now funded by DoE - TESSERACT (TES with Sub-EV Resolution and Cryogenic Targets)
- For a polar crystal target - Sub-eV Polar Interactions Cryogenic Experiment (SPICE)

Snowmass 2021 - Letter of Interest

The TESSERACT Dark Matter Project

Thematic Areas:

- IF1 Quantum Sensors
- IF8 Noble Elements
- CF1 Dark Mattar: Particle like
- CF2 Dark Matter: Wavelike

Contact Information:

Dan McKinsey (LBNL and UC Berkeley) [daniel mckinsey (\%berkeley.edu]:
TESSERACT Collaboration

[^0] P. Sorensen (LBNL), A. Suzuki (LBNL), G. Wang (ANL), K Zurek (Caltech)

SUMMARY

- Collective excitations provide a novel path to detect light DM
- Theory framework for computing DM interaction rates in materials is now well-developed
- New experiments such as SPICE have broad discovery potential for light DM

[^0]: Authors:
 C. Chang (ANL), S. Derenzo (LBNL), Y. Efremenko (ANL), W. Guo (Florida State University), S. Hertel (University of Massachusetts), M. Garcia-Sciveres, R. Mahapatra (Texas A\&M University), D. N. McKinsey (LBNL and UC Berkeley), B. Penning (University of Michigan), M. Pyle (LBNL and UC Berkeley),

