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▸ From an observational standpoint, a wide range of dark 
matter masses are consistent with data. 

▸ Focused on WIMP largely from arguments based on EFT
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▸ From an observational standpoint, a wide range of dark 
matter masses are consistent with data. 

▸ Our discussion will focus on extending the window of 
observability by 12 OOM in mass utilizing collective 
excitations in materials 

▸ Why look there? 
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▸ Similar argument as to WIMP based on EFT reasoning 

▸ Dark matter abundance is related to SM interactions
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▸ Similar argument as to WIMP based on EFT reasoning 

▸ Dark matter abundance is related to SM interactions

THE DARK MATTER PANORAMA

(Lyman-alpha forest)(deBroglie wavelength of galaxy)

1000 M�10�23 eV 100 GeV

WIMP paradigm

1 meV

�wkvfo ' g4wkµ
2
XT

4⇡m4
Z

c

3
' 10�24 cm

3

s

✓
100 GeV

M

◆2



▸ Heavier dark matter: setting relic abundance through 
interactions with Standard Model is challenging (NB: 
exceptions) 

▸ At heavier masses, detection through Standard Model 
interactions is (generally) not motivated by abundance

THE DARK MATTER PANORAMA

(Lyman-alpha forest)(deBroglie wavelength of galaxy)

1000 M�10�23 eV 100 GeV

WIMP paradigm

1019 GeV

�wkvfo ' g4wkµ
2
XT

4⇡m4
Z

c

3
' 10�24 cm

3

s

✓
100 GeV

M

◆2



DETECTABLE INTERACTION RATES

▸ Direct detection searches accordingly focused on weak 
scale 10 Direct Detection Program Roadmap 39
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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DARK MATTER DETECTION: A FULL COURT PRESS

▸ Dark sector dynamics are complex and astrophysically 
relevant.   

▸ Abundance may still be set by (thermal) population from 
SM sector

(Lyman-alpha forest)(deBroglie wavelength of galaxy)

1000 M�10�23 eV 100 GeV

WIMP paradigm

1 keV

�str ' 4⇡↵2
s

M2
' 10�24 cm2

✓
1 GeV

M

◆2

�wkvfo ' g4wkµ
2
XT

4⇡m4
Z

c

3
' 10�24 cm

3

s

✓
100 GeV

M

◆2



CROSSING SYMMETRY

▸ Utilize DM Abundance and crossing symmetry as guide 
for interaction rates
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FIG. 5: Sample processes considered in this section to detect DM, �. Top left: DM-nucleus
scattering. Top middle: DM-electron scattering. Top right: DM-nucleus scattering with emission
of a photon. Bottom left: Absorption by an electron of a bosonic DM particle (a vector A0, scalar
�, or pseudoscalar a). Bottom middle: Absorption by an electron of a bosonic DM particle, made
possible by emission of a phonon �. Bottom right: Emission of multiple phonons in DM scattering
o↵ helium.

2. Ideas to Probe Low-Mass Dark Matter

Over the past decade, several strategies have been proposed that maximize the energy
transfer to the target. In some cases this is at the expense of a modest rate suppression,
but this is at least partially o↵set by the larger DM particle flux expected as m� is lowered.
These interactions include:

• DM-Electron Scattering (1 keV – 1 GeV): For low-mass DM elastic scattering
(Fig. 5, top middle), the DM energy is transferred far more e�ciently to an electron
than to a nucleus [48]. If the DM is heavier than the electron, the maximum energy
transfer is equal to the DM kinetic energy,

Ee 
1

2
m�v2

� . 3 eV
⇣ m�

MeV

⌘
. (10)

Bound electrons with binding energy �EB can thus in principle produce a measurable
signal for

m� & 0.3 MeV ⇥
�EB

1 eV
. (11)

This allows low-mass DM to produce ionized excitations in drift chambers (�EB ⇠

10 eV) for m� & 3 MeV [48, 90, 91], to promote electrons from the valence band to the
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FIG. 3. Sensitivity to DM scattering via an ultralight dark
photon, for kg-yr exposure on GaAs. On the orange line the
relic abundance can be explained by freeze-in [19–21]. The
reach for mX < MeV is from scattering into LO phonons.
For mX > MeV, the reach comes from considering GaAs as a
scintillator for DM-electron scattering [10]. The blue region
indicates stellar and BBN constraints [22, 57], while the green
region is a Xenon10 limit [7]. Projections for various exper-
imental proposals are from Refs. [24, 28, 58] (dotted lines).

Scalar-mediated nucleon scattering. Finally we
consider the case of sub-MeV DM with coupling to nu-
cleons only, similar to what was explored in Ref. [26, 27]
for multiphonon production in superfluid helium. GaAs
improves over helium for several reasons: first, DM can
scatter by exciting a single ⇠ 36 meV optical phonon,
rather than going through higher-order multiphonon in-
teractions. Second, the speed of sound is ⇠ 20 times
higher in GaAs, such that the energy of acoustic phonons
is higher and better matched to DM kinematics.

The di↵erential DM scattering rate is

d2�

dqd!
=

4⇡

Vcell

q

mXpi
S(q, !), (9)

where pi is the initial DM momentum, Vcell is the primi-
tive cell volume, and S(q, !) is the dynamical structure
factor, defined in the same way as for neutron scattering
(see e.g. [59]). In the long-wavelength limit, S(q, !) is
given by

S(q, !) =
1

2

X

⌫

|F⌫(q)|2
!⌫,q

�(!⌫,q�!) (10)

where ⌫ sums over the various phonon branches. The
phonon form factor is

|F⌫(q)|2 =

�����
X

d

b̄dp
md

e�Wd(q)
q · e⌫,d,qe�iq·rd

�����

2

(11)

where d sums over atoms in the primitive cell with mass
md and position rd. b̄d is the scattering length, e⌫,d,q is

FIG. 4. Sensitivity of GaAs to scattering o↵ nucleons via a
scalar mediator, with kg-yr exposure. We consider the pro-
jected reach due to production of LO phonons (! = !LO ⇡ 36
meV) and that due to production into LA phonons as well,
with an even lower threshold ! > meV. Also shown is the
reach from multiphonon production in superfluid helium [26].

the phonon eigenvector of branch ⌫ and atom d at mo-
mentum q, and Wd the Debye-Waller factor of atom d.
Summing over the phonon eigenmodes requires a dedi-
cated software tool; we reserve this and a derivation of
Eq. (10) for future work [29].

Here we estimate the rate in the isotropic and long-
wavelength limit where Wd ⇡ 0:

|F⌫(q)|2 ⇡ b̄2
n

2mn

q2

���
p

AGae
irGa·q ±

p
AAse

irAs·q
���
2

(12)

with mn the nucleon mass, b̄n the DM-nucleon scatter-
ing length and AGa (AAs) the mass number of Ga (As).
The + (�) sign applies to the LA (LO) branch, where
both atoms are in phase (anti-phase). For a rough esti-
mate when mX ⌧ MeV, the phase factors in (12) can be
neglected.

For scattering via a massless mediator, we also in-
clude a (mXv0/q)4 form factor and express the reach
in terms of the cross section per nucleon at a reference
qref = mXv0, �n ⌘ 4⇡[b̄n(qref)]2. The result is shown in
Fig. 4, where we find a competitive reach with superfluid
helium. The astrophysical and cosmological constraints
on this scenario are rather tight but model dependent
and hence not shown; see Refs. [22, 23] for details. The
large di↵erence in sensitivity for the optical and acoustic
modes is due to the near cancellation in (12) for the op-
tical modes, since AGa ⇡ AAs. The phase factor in (12)
also induces a directional dependence for producing op-
tical phonons, which we will explore in future work [29].
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COLLECTIVE PHENOMENA IN MATERIALS
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BEYOND BILLIARD BALL SCATTERING

▸ Nuclear recoil experiments; basis of enormous progress in 
direct detection

v ⇠ 300 km/s ⇠ 10�3c

ED =
q2

2mN

qmax = 2mXv

v ⇠ 10�3cq, ED



LIGHTER TARGETS FOR LIGHTER DARK MATTER
3

of outgoing electrons are found by numerically solving
the radial Schrödinger equation with a central potential
Ze↵(r)/r. Ze↵(r) is determined from the initial electron
wavefunction, assuming it to be a bound state of the same
central potential. We evaluate the form-factors numeri-
cally, cutting o↵ the sum at large l

0
, L once it converges.

Only the ionization rates of the 3 outermost shells (5p,
5s, and 4d, with binding energies of 12.4, 25.7, and 75.6
eV, respectively) are found to be relevant.

The energy transferred to the primary ionized electron
by the initial scattering process is ultimately distributed
into a number of (observable) electrons, ne, (unobserved)
scintillation photons, n� , and heat. To calculate ne, we
use a probabilistic model based on a combined theoreti-
cal and empirical understanding of the electron yield of
higher-energy electronic recoils. Absorption of the pri-
mary electron energy creates a number of ions, Ni, and
a number of excited atoms, Nex, whose initial ratio is
determined to be Nex/Ni ⇡ 0.2 over a wide range of ener-
gies above a keV [18, 19]. Electron–ion recombination ap-
pears well-described by a modified Thomas-Imel recombi-
nation model [20, 21], which suggests that the fraction of
ions that recombine, fR, is essentially zero at low energy,
resulting in ne = Ni and n� = Nex. The fraction, fe,
of initial quanta observed as electrons is therefore given
by fe = (1 � fR)(1 + Nex/Ni)�1

⇡ 0.83 [21]. The total
number of quanta, n, is observed to behave, at higher
energy, as n = Eer/W , where Eer is the outgoing energy
of the initial scattered electron and W = 13.8 eV is the
average energy required to create a single quanta [23].
As with fR and Nex/Ni, W is only well measured at en-
ergies higher than those of interest to us, and thus adds
to the theoretical uncertainty in the predicted rates. We
use Nex/Ni = 0.2, fR = 0 and W = 13.8 eV to give
central limits, and to illustrate the uncertainty we scan
over the ranges 0 < fR < 0.2, 0.1 < Nex/Ni < 0.3,
and 12.4 < W < 16 eV. The chosen ranges for W and
Nex/Ni are reasonable considering the available data
[9, 18, 19, 22]. The chosen range for fR is conserva-
tive considering the fit of the Thomas-Imel model to low-
energy electron-recoil data [20].

We extend this model to DM-induced ionization as fol-
lows. We calculate the di↵erential single-electron ion-
ization rate following Eqs. (1–3). We assume the scat-
tering of this primary electron creates a further n

(1) =
Floor(Eer/W ) quanta. In addition, for ionization of the
next-to-outer 5s and 4d shells, we assume that the pho-
ton associated with the de-excitation of the 5p-shell elec-
tron, with energy 13.3 or 63.1 eV, can photoionize, cre-
ating another n

(2) = 0 (1) or 4 quanta, respectively, for
W > 13.3 eV (< 13.3 eV). The total number of detected
electrons is thus ne = n

0
e + n

00
e , where n

0
e represents the

primary electron and is thus 0 or 1 with probability fR

or (1 � fR), respectively, and n
00
e follows a binomial dis-

tribution with n
(1) + n

(2) trials and success probability
fe. This procedure is intended to reasonably approxi-
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FIG. 2: Top: Expected signal rates for 1-, 2-, and 3-electron
events for a DM candidate with �e = 10�36 cm2 and FDM = 1.
Widths indicate theoretical uncertainty (see text). Bottom:
90% CL limit on the DM–electron scattering cross section
�e (black line). Here the interaction is assumed to be in-
dependent of momentum transfer (FDM = 1). The dashed
lines show the individual limits set by the number of events
in which 1, 2, or 3 electrons were observed in the XENON10
data set, with gray bands indicating the theoretical uncer-
tainty. The light green region indicates the previously allowed
parameter space for DM coupled through a massive hidden
photon (taken from [2]).

mate the detailed microscopic scattering processes, but
presents another O(1) source of theoretical uncertainty.
The 1-, 2-, and 3-electron rates as a function of DM mass
for a fixed cross section and FDM = 1 are shown in Fig. 2
(top). The width of the bands arises from scanning over
fR, Nex/Ni and W , as described above, and illustrates
the theoretical uncertainty.

RESULTS. Fig. 2 (bottom) shows the exclusion limit in
the mDM-�e plane based on the upper limits for 1-, 2-,
and 3-electrons rates in the XENON10 data set (dashed
lines), and the central limit (black line), corresponding
to the best limit at each mass. The gray bands show the
theoretical uncertainty, as described above. This bound
applies to DM candidates whose non-relativistic inter-
action with electrons is momentum-transfer independent
(FDM = 1). For DM masses larger than ⇠15MeV, the
bound is dominated by events with 2 or 3 electrons, due
to the small number of such events observed in the data
set. For smaller masses, the energy available is insu�-
cient to ionize multiple electrons, and the bound is set
by the number of single-electron events. The light green
shaded region shows the parameter space spanned by

Prospects for Upcoming DM–Electron Scattering Searches
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Figure 1. Selected near-term projections for the
DAMIC (green curves) and SuperCDMS-silicon (dark
red curves) experiments, for different ionization thresh-
olds and (background-free) exposures, as indicated. Solid
curves show the 95% C.L. exclusion reach from sim-
ple counting searches, while dashed curves show the
5�-discovery reach from annual modulation searches.
The gray shaded region shows the current XENON10
bound [31], while the shaded green region shows the es-
timated (much weaker) bound from 2012 DAMIC data
with a ⇠11-electron-hole pair threshold. The projections
for SuperCDMS-germanium (not shown) are comparable
to silicon. See §6.5 for more details. The three plots show
results for the different indicated DM form factors, corre-
sponding to different DM models.

expands on the previous calculation in [9]. Higher recoil energies for the scattered electron allow
a larger number of additional electron-hole pairs to be promoted via secondary scattering. Using
a semi-empirical understanding of these secondary scattering processes, we convert our calculated
differential event rate to an estimated event rate as a function of the number of observed electron-hole
pairs. These results will allow several experimental collaborations, such as DAMIC and SuperCDMS,
to calculate their projected sensitivity to the DM-electron scattering cross-section, given their specific
experimental setups and thresholds. It will also allow them to derive limits on this cross section in the
absence of a signal, or the preferred cross section value should there be a signal, in forthcoming data.

– 4 –
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P. Sorensen et al 1206.2644

▸ In insulators, like xenon 

▸ In semi-conductors, like Ge, Si

Tightly bound; ionize for signal

Excite electron to conduction band

Gap = DM Kinetic Energy

ED =
q2

2me

qmax = 2mXv



ELECTRONIC STATES IN MATERIALS

▸ Unless in a metal, electrons in material do not have free 
dispersions 

▸ The omega-q relation (= dispersion) of the available 
states is extremely important for determining viability of 
target
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Figure 7. Calculated electronic band structures of targets in Table I.
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(a) Diamond: diamond-C,
Si, Ge. Two interpene-
trating face centered cubic
lattices, one o↵set by 1/4
along the cubic diagonal.
Each atom has four nearest
neighbors, forming corner-
sharing tetrahedra.

(b) Zincblende: ZnS, GaAs,
InSb, GaSb. Same arrange-
ment as diamond cubic, but
with two atom types, each
occupying one of the face
centered cubic lattices.

(c) Rock salt: NaCl, MgO,
LiF, NaF, NaI, PbS, PbSe,
PbTe. The two atom types
each form a face centered
cubic lattice, o↵set by 1/2
along the cubic axis. One
atom type is octahedrally
coordinated to the other
atom type and vice versa.

(d) Fluorite: CaF
2
. Ca

ions form a face centered
cubic lattice. Each Ca ion
is surrounded by eight F
ions in a cubic geometry.

(e) CsI. The two atom
types form interpenetrat-
ing primitive cubic lattices,
with an atom of one type
at the center of each cube
of the other type.

(f) ↵-quartz: SiO
2
. Each

Si ion is bonded to four
O ions, forming corner-
sharing tetrahedra.

(g) Corundum: Al
2
O

3
.

Each Al ion is bonded to
six O ions, forming octahe-
dra with a mixture of cor-
ner, edge and face-sharing
connectivities.

(h) Rutile: MgF
2
. Each

Mg ion is bonded to six
F ions, forming octahedra
with a mixture of corner
and edge-sharing connec-
tivities.

(i) Wurtzite: GaN, AlN,
ZnO. One atom type is
tetrahedrally bonded to the
other atom type and vice
versa. The tetrahedra
are corner-sharing and the
structure is a member of
the hexagonal crystal sys-
tem.

(j) CaWO
4
. Each Ca ion is

bonded to eight O ions, and
each W ion is bonded to
four O ions, forming corner-
sharing octahedra.

Figure 4. Crystal structures of targets in Table I.



ELECTRONIC STRUCTURE IN MATERIALS

▸ Smaller gap materials are available to access lighter dark 
matter 

▸ Simplest example is a superconductor — meV gap opens



EFFECTIVE COUPLING TO E-M CURRENT

▸ Photon in medium is impacted by screening effects 

▸ This is characterized by the polarization tensor, just like 
QED

in Appendix C, is due to an incorrect prescription for incorporating the dielectric tensor, which
underestimated the impact of in-medium screening.

Since, for the scattering signal, the shape of the modulation depends on the orientation of
the crystal with respect to the dark matter wind, modulation effects can be used to validate any
putative dark matter signal simply by changing the orientation of the crystal and observing
a change in the shape of the modulation. Moreover, since the amplitude of the modulation
depends on the DM mass, a definitive observation of the modulation could be used to infer the
value of the DM mass.
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Appendix A: In medium polarization tensor

The in-medium vacuum polarization tensor can be related to the optical response of the
medium by using the two following relations [50]:2

Jµ = �⇧µ⌫A
⌫ (A1)

J i = �i
jE

j (A2)

where �ij = i!(�ij � ✏ij) is the conductivity tensor. Specifically, using eq.(A2) and taking the
spatial component of eq.(A1) we get:
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(in the Ã, A0 basis)

L � �
1

4
F̃µ⌫F̃

µ⌫
�

1

4
F 0
µ⌫F

0µ⌫ + eJµ
EM

⇣
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One then finds that transverse and longitudinal dark photons remain decoupled during their
propagation in the medium and interact with the electromagnetic current with reduced cou-
plings [33]:
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In the case of anisotropic materials, the polarization tensor cannot be decomposed into a
longitudinal and a transverse component. This induces a mixing between longitudinal and
transverse polarizations that can be parametrized in terms of a symmetric 3⇥3 mixing matrix,
K, defined as
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✏L =
1p
q2

⇣
|q|,! q̂

⌘
✏± =

1
p
2

⇣
0, 1,±i, 0

⌘
. (4)

One then finds that transverse and longitudinal dark photons remain decoupled during their
propagation in the medium and interact with the electromagnetic current with reduced cou-
plings [33]:

L � "e
q2

q2 � ⇧L,T
A

0T,L
µ Jµ

EM . (5)

In the case of anisotropic materials, the polarization tensor cannot be decomposed into a
longitudinal and a transverse component. This induces a mixing between longitudinal and
transverse polarizations that can be parametrized in terms of a symmetric 3⇥3 mixing matrix,
K, defined as

KAB ⌘ (✏µA)
?⇧µ⌫✏

⌫
B, (6)

with A and B running over longitudinal and transverse polarizations. It is therefore useful to
choose a basis, ✏µi=1,2,3, for the physical polarizations that is not mixed by in-medium propa-
gation. This basis is found using the 3 ⇥ 3 unitary matrix, S, that diagonalizes the mixing
matrix:

(✏µ1 , ✏
µ
2 , ✏

µ
3 ) = S

0

B@
✏µL
✏µ+
✏µ�

1

CA with S
�1

KS = diag
⇣
⇡1(q), ⇡2(q), ⇡3(q)

⌘
. (7)

In this new basis, the Lagrangian of Eq. (2) takes the form

L � �
1

4
F̃ i
µ⌫F̃

µ⌫
i �

1

4
F

0i
µ⌫F

0µ⌫
i + eJµ

EM

⇣
Ãi
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EFFECTIVE COUPLING TO E-M CURRENT

▸ Polarization tensor is normally recast in terms of dielectric 
function (you can do this with Maxwell equations) 

▸ Dielectric can be calculated with electron wavefunctions 
(e.g. Lindhard formula)

in Appendix C, is due to an incorrect prescription for incorporating the dielectric tensor, which
underestimated the impact of in-medium screening.

Since, for the scattering signal, the shape of the modulation depends on the orientation of
the crystal with respect to the dark matter wind, modulation effects can be used to validate any
putative dark matter signal simply by changing the orientation of the crystal and observing
a change in the shape of the modulation. Moreover, since the amplitude of the modulation
depends on the DM mass, a definitive observation of the modulation could be used to infer the
value of the DM mass.
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Appendix A: In medium polarization tensor

The in-medium vacuum polarization tensor can be related to the optical response of the
medium by using the two following relations [50]:2

Jµ = �⇧µ⌫A
⌫ (A1)

J i = �i
jE

j (A2)

where �ij = i!(�ij � ✏ij) is the conductivity tensor. Specifically, using eq.(A2) and taking the
spatial component of eq.(A1) we get:
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where in the second equation we have used the Maxwell equation Ej = i!Aj
� iqjA0. From

this we see that

⇧ij = �i!�ij (A4)

⇧i0 = i�ijq
j . (A5)

2
To be precise the relation between J and ⇧ is given by Jµ = �Rµ⌫A

⌫
and the imaginary part of R and ⇧

have a different sign when ! is negative. This does not seems to be ever important for us.
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While from Eq. (A2), together with current conservation @µJµ = 0 and Maxwell equation
Ej = i!Aj

� iqjA0, we get
⇧00 =

1

i!
~q · � · ~q . (A6)

Appendix B: Dielectric tensor

Following [51], the imaginary part of the macroscopic dielectric tensor is given by the Lind-
hard formula

Im[✏ii(!)] =
ge2

q2
lim
q!0

X

nn0

Z
d3k

(2⇡)3
2⇡ �(En0k � Enk � !)|f[nk!n0k+q êi]|

2 , (B1)

where êi are the unit vectors for the three cartesian components, and the sum runs over the
energy levels. The energy conserving delta ensures that for small ! (i.e., ! . vF⇤ ⇠ eV) only
transition between the valence (n = �) and conduction (n0 = +) band near the Dirac point
will contribute. The form factor |f[nk!n0k0]|

2 for these low energy transitions can be computed
analytically in Dirac materials [35]:

|f[�k!+k0]|
2 =

1

2

 
1 �

k̃ · k̃0 +�2

p
k̃2 +�2

p
k̃02 +�2

!
. (B2)

where, as in the main text, k̃ = (vFxkx, vFyky, vFzkz). Plugging this expression in Eq. (B1) we
are able to compute the imaginary part of the dielectric tensor for low energy deposition (i.e.,
! . vF⇤ ⇠ eV).

The real and imaginary part of the dielectric are related by the Kramers-Kronig relation:

Re[✏ij(!)] = 1 +
2

⇡
P

Z 1

0

Im[✏ij(!0)]!0

!02 � !2
d!0 (B3)

where P denotes the principal part value. From this relation it is clear that the real part of
the dielectric, even for small values of !, receives contributions also from transitions between
states far away from the Dirac point. For these transitions the analytic expression of the form
factor given in Eq. (B2) is no longer accurate and we have to resort to a density functional
perturbation theory calculation. The result, that we will use as an input for our calculations,
is shown in Table I.

Appendix C: Comparison with previous results

In this appendix we highlight the reasons behind the discrepancy between our results and
the ones presented in references [35] and [46].
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EFFECTIVE COUPLING TO E-M CURRENT

▸ End result for scattering: 

▸ In-medium effects reduce reach, even for dark photon and 
scalar mediators.  Superconductor:

and can be diagonalized making the following field redefinition:

Ãi
µ = Āi

µ +
"⇡i(q)

m2
A0 � ⇡i(q)

Ā
0i
µ A

0i
µ = Ā

0i
µ �

"⇡i(q)

m2
A0 � ⇡i(q)

Āi
µ . (10)

One then finds that the propagating dark photons Ā0
i couple to the electromagnetic current as:

L � "e
q2

q2 � ⇡i
Ā

0i
µJ

µ
EM . (11)

Thus we see that in the anisotropic case the role of ⇧L,T is played by the mixing matrix
eigenvalues ⇡i.

Working in Lorentz gauge, the in-medium photon propagator takes the form

Gµ⌫
med(q) =

X

i

P µ⌫
i

⇡i � q2
(12)

where q = (!,q) is the four-momentum transfer and Pi is the projector operator on the direction
of the i-th polarization. In order to compute the eigenvalues of the mixing matrix, we relate
its components to the optical properties of the medium (see appendix A for details):

KLL = q2 (1 � q̂ · ✏ · q̂) KL± = �!q q̂ · ✏ · ✏̂± K±± = !2 (1 � ✏̂⌥ · ✏ · ✏̂±) (13)

where ✏ is the dielectric tensor.1

From Eq. (13), it is clear that in the scattering limit (|q2| ⇠ q2
� !2) the mixing matrix is

dominated by the KLL component. Therefore, for DM scattering there is a negligible mixing
between longitudinal and transverse polarizations, and the rate is dominated by the longitudinal
degrees of freedom whose in-medium propagator is given by

Gµ⌫ =
P µ⌫
L

q2(q̂ · ✏ · q̂)
. (14)

Conversely, in the absorption limit, all components of the mixing matrix are of the same
order. Hence in-medium propagation gives rise to a sizable mixing. Therefore, to study DM
absorption we need to work in the basis defined in Eq. (7) and use the general in-medium
propagator given in Eq. (12).

III. PRELIMINARIES: DARK MATTER WIND

The effects we are considering arise because the DM velocity with respect to the detector
changes as the Earth rotates around its axis, see Fig. 1. There are two kinds of effects. The

1
We will neglect the ion contribution to the dielectric tensor since it is expected to be sub-leading compared

to the electronic one.

6

Figure 6. Real and imaginary parts of the in-medium polarization tensor
p
⇧L as a function of

momentum transfer, for deposited energies ! = 10 meV (left) and ! = 10 eV (right). Here we use the
Fermi energy of aluminum, EF = 11.7 eV.

where the projection operators are

P
00
T = P
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i0
T = 0 ,

P
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j
,
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⌫
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� P

µ⌫

T
. (5.13)

Utilizing the Ward identity, one finds that the second term of the first factor in Eq. (5.11)

vanishes. Further, since we are only interested in non-relativistic scattering between the DM

and electron, the zeroth components of the external momenta are much larger than the spatial

components. In the non-relativistic limit, we find that the leading contribution comes from the

longitudinal component, with the transverse components su↵ering velocity suppression. Thus

in the following calculation, we keep only the longitudinal component of the photon propagator,

and use

G
µ⌫

IM =
g
µ⌫

q2(1�⇧L/q
2)

=
g
µ⌫

q2 (1�⇧00/|q|
2)

. (5.14)

where we use the relation ⇧L = q
2

|q|2⇧00. Plugging this back to Eq. (5.11), and simplifying using

the Ward identity, we find

Gµ⌫(q) =
✏ gµ⌫�

q2 �m
2
A0
�
(1�⇧00/|q|

2)
. (5.15)

Combining Eqs. (5.10) and (5.15) we obtain

h|M|
2
i '

16m2
em

2
�g

2
�e
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2

�
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2
A0
�2

(1�⇧00/|q|
2)2

, (5.16)
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OPTICAL RESPONSE OF “SEMI-METALS”

▸ Band structure can be 
“quantum engineered” 

▸ The point-like nature of the 
density of states at Fermi 
level implies that screening 
is less problematic

Zr
Te

Y Γ Z T S R-1.5

-1

-0.5

0

0.5

1

E-
E F (e

V)

No spin-orbit
Spin-orbit

(a) (b)

Figure 11: (a) ZrTe5 in the Cmcm space group. (b) Calculated electronic band structure for ZrTe5
with and without spin-orbit coupling. The Fermi level is set to 0 eV and marked by the dashed
line.

near the Fermi level as well.

In light of this, and with the additional motivation of reducing the band gap, we consider

replacing Te with Se in the hypothetical new compound ZrSe5 in the same Cmcm structure as

shown in Fig. 12(c). This chemical substitution has three e↵ects on the electronic properties of

the material. Firstly, the smaller ionic radius of Se reduces the total volume of the compound

which results in a Fermi level in the gap without any external pressure; however, this also has the

undesired e↵ect of increasing the band gap. Independent of the volume change, the lower spin-orbit

coupling in Se reduces the spin-orbit splitting of the bands to 2� ' 15 meV. Therefore, our DFT

estimates suggest that ZrTe5 with a small amount of Se alloying could provide a more desirable

volume contraction and spin-orbit-driven reduction in band gap. Interestingly, another Dirac cone

is present in the ZrSe5 compound, which doubles the number of Dirac cones and Dirac valence-

band electrons per unit cell. Since the DM scattering rate scales as ne/g, from stoichiometry

alone we would expect the overall rate to increase by a factor of mTe/mSe ' 1.5 for ZrSe5, with

additional increases near threshold from the reduced gap. Neither ZrSe5 nor Zr(Te,Se)5 have yet

been synthesized; should synthesis be possible, these compounds may be be promising targets for

DM detection.
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FIG. 3. Projected reach of dark matter scattering in Dirac material for a background-free 95% C.L.

sensitivity (3 events) assuming a 1 kg-year exposure of ZrTe5 with band gaps of 2.5 meV (red line),

7.5 meV (blue line) and 11.75 meV (purple line). For ZrTe5 curves, “Th” indicates the use of theoreti-

cal parameters, and “Exp” indicates the use of experimental parameters (See Table I). For comparison,

we show the respective reaches of superconductors with a 1 meV threshold (black line) [33] and sap-

phire (Al2O3) with a 1 meV threshold (orange line) [38]. The thick orange line indicates the region of

parameter space where the freeze-in production results in the correct dark matter relic abundance, as

computed in Ref. [15]. Shaded regions are bounds from red giants, white dwarfs, big bang nucleosynthe-

sis and supernovae, and are derived from millicharged particle limits [19, 47]. The dashed line is the

self interacting dark matter bound derived from observations of the Bullet Cluster [48].

is the minimum velocity (in the galactic reference frame) that a DM particle should have to
induce a scattering with energy deposition �E and momentum transfer q. To obtain the total
rate, R�,k!+,k0 is summed over initial and final state BZ momenta, over a region of size ⇤ near
the Dirac point

Rcrystal = gsV
2

Z

BZ

d3kd3k0

(2⇡)6
R�,k!+,k0 = gsgCV

2

Z

cone

d3kd3k0

(2⇡)6
Rk,k0 . (33)

The scattering rate per unit time per unit detector mass is then given by

R =
⇢�
m�

⇡�e

µ2
�e

Z
d3q
(2⇡)3

Z
d3k

(2⇡)3
Fmed(q)

2
|hf |FT |ii|2 g(q,�Ek,k0) (34)
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EXCITING COLLECTIVE MODES

▸ Once momentum transfer drops below an keV, deBroglie wavelength 
is longer than the inter particle spacing in typical materials 

▸ Therefore, relevant d.o.f. in target are no longer individual nuclei or 
ions 

▸ Must coarse grain to describe DM coupling to “collective excitations” 

▸ Collective excitations = phonon modes, spin waves (magnons) 

▸ Can be applied to just about any material  

▸ Details depend on  

▸ 1) nature of collective modes in target material  

▸ 2) nature of DM couplings to target

Schutz, KZ 1604.08206, Knapen, 
Lin, KZ 1611.06228, Knapen, Lin, 
Pyle, KZ 1712.06598 Griffin, 
Knapen, Lin, KZ 1807.10291



DARK MATTER DIRECT DETECTION & KINEMATICS

▸ Where kinematics is concerned, overarching goal is to 
find a material with a strong Dynamic Structure Factor in 
the kinematic region which overlaps with DM

𝜒 
DM

| i 〉 → | f 〉 
crystal lattice

p

p’

9

• If only one of the constituent particles p, n, e is responsible for the transitions |ii ! |fi,

S(q,!) is DM model independent. Otherwise it depends on ratios (but not the overall

strength) of the couplings f0
p , f

0
n, f

0
e .

• For any given DM mass m� and incoming velocity v, only a slice in the (q,!) space, ! = !q,

is probed in the scattering process. The parabolic boundary of kinematic region for each m�

in Fig. 1 is the envelope of these slices for all v directions for fixed magnitude of v.

Finally, to obtain the total rate per target mass, we average over the DM’s initial velocity,

multiply by the number of DM particles in the detector, and divide by the detector mass, giving

R =
1

⇢T

⇢�

m�

Z
d
3
v f�(v)�(v) , (16)

where ⇢T is the target mass density, ⇢� is the local DM energy density, and f� is the DM’s velocity

distribution in the target rest frame. A common choice for f� is a truncated Maxwell-Boltzmann

(MB) distribution boosted by the Earth’s velocity with respect to the galactic rest frame,

f
MB
� (v) =

1

N0
e
�(v+ve)2/v20 ⇥

�
vesc � |v + ve|

�
, (17)

N0 = ⇡
3/2

v
2
0

"
v0 erf

�
vesc/v0

�
�

2 vesc
p
⇡

exp
�
�v

2
esc/v

2
0

�
#
. (18)

In the calculations presented in this paper, we take ⇢� = 0.4GeV/cm3, v0 = 230 km/s, vesc =

600 km/s, ve = 240 km/s.

In addition to the total rate, it is often useful to know the di↵erential rate with respect to

the energy deposition onto the target !. This simply requires inserting delta functions into the

integrals to pick out the contributions with ! = !q:

d�

d!
=

⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
�
�
! � !q

�
, (19)

dR

d!
=

1

⇢T

⇢�

m�

Z
d
3
v f�(v)

d�

d!
. (20)

To summarize, we have the following algorithm for computing the rate for a given detection

channel.

• First, identify the initial and final states |ii, |fi according to the type of excitation.

• Next, quantize FT (q) in terms of the relevant degrees of freedom such that it acts on the

target Hilbert space to induce the transitions |ii ! |fi.

8

where M stands for M�n or M�e. We can further factor out the q dependence of M, which can

only come from the mediator propagator for tree-level scattering:

M(q) = M(q0)Fmed(q) , (11)

Fmed(q) =

8
><

>:

1 (heavy mediator),

(q0/q)2 (light mediator).
(12)

The reference momentum transfer is conventionally chosen to be q0 = m�v0 (with v0 the DM’s

velocity dispersion) for DM-neutron scattering, and q0 = ↵me for DM-electron scattering.

The factorization in Eq. (10) is a key component of the formalism. From the target-independent

particle-level matrix element M, we define the reference cross sections:

�n ⌘
µ
2
�n

⇡
|M�n(q0)|2q0=m�v0

, �e ⌘
µ
2
�e

⇡
|M�e(q0)|2q0=↵me

, (13)

where µ denotes the reduced mass. These coincide with the total cross sections of DM-neutron

and DM-electron scattering in the heavy mediator case. On the other hand, FT is target specific,

from which we define the dynamic structure factor:4

S(q,!) ⌘
1

V

X

f

��hf |FT (q)|ii
��2 2⇡�

�
Ef � Ei � !

�
, (14)

which encapsulates response of the target to DM couplings to the proton, neutron and electron.

Combining the two parts, we have

�(v) =
⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
, (15)

where �̄, µ, again, denote either �̄n, µ�n or �̄e, µ�e.

Let us highlight the following regarding the dynamic structure factor S(q,!).

• S(q,!) captures the target’s response to an energy-momentum deposition (q,!).

• S(q,!) depends on the distribution of constituent particles p, n, e in the target system via

enp, enn, ene, which in turn depends on the nucleus types and electron wavefunctions. It is

therefore target material specific.

• S(q,!) also depends on the active degrees of freedom in the target system via the choice

of |fi, which in turn determines how FT (q) should be quantized. It is therefore excitation

(detection channel) specific.

4 Here we adopt a slightly di↵erent normalization convention compared to Ref. [45]. The right hand side of Eq. (14)

here is identified with 2⇡
⌦ S(q,!) in Ref. [45], where ⌦ is the primitive cell volume.

Dynamic structure factor

Mediator propagator{
{

(q,!)
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where M stands for M�n or M�e. We can further factor out the q dependence of M, which can

only come from the mediator propagator for tree-level scattering:

M(q) = M(q0)Fmed(q) , (11)

Fmed(q) =

8
><

>:

1 (heavy mediator),

(q0/q)2 (light mediator).
(12)

The reference momentum transfer is conventionally chosen to be q0 = m�v0 (with v0 the DM’s

velocity dispersion) for DM-neutron scattering, and q0 = ↵me for DM-electron scattering.

The factorization in Eq. (10) is a key component of the formalism. From the target-independent

particle-level matrix element M, we define the reference cross sections:
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|M�n(q0)|2q0=m�v0
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2
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⇡
|M�e(q0)|2q0=↵me

, (13)

where µ denotes the reduced mass. These coincide with the total cross sections of DM-neutron

and DM-electron scattering in the heavy mediator case. On the other hand, FT is target specific,

from which we define the dynamic structure factor:4

S(q,!) ⌘
1

V

X

f

��hf |FT (q)|ii
��2 2⇡�
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Ef � Ei � !
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, (14)

which encapsulates response of the target to DM couplings to the proton, neutron and electron.

Combining the two parts, we have

�(v) =
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Z
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3
q

(2⇡)3
F
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med(q)S
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, (15)

where �̄, µ, again, denote either �̄n, µ�n or �̄e, µ�e.

Let us highlight the following regarding the dynamic structure factor S(q,!).

• S(q,!) captures the target’s response to an energy-momentum deposition (q,!).

• S(q,!) depends on the distribution of constituent particles p, n, e in the target system via

enp, enn, ene, which in turn depends on the nucleus types and electron wavefunctions. It is

therefore target material specific.

• S(q,!) also depends on the active degrees of freedom in the target system via the choice

of |fi, which in turn determines how FT (q) should be quantized. It is therefore excitation

(detection channel) specific.

4 Here we adopt a slightly di↵erent normalization convention compared to Ref. [45]. The right hand side of Eq. (14)

here is identified with 2⇡
⌦ S(q,!) in Ref. [45], where ⌦ is the primitive cell volume.

{
Tabulates the (lattice) 
potential the incoming 
DM sees — which in 
turn depends on the 
collective modes in the 
material

𝜒 
DM

(q,!)
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LATTICE DEGREES OF FREEDOM

▸ Will focus on crystals that have lattice d.o.f.
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LATTICE DEGREES OF FREEDOM

▸ Will focus on crystals that have lattice d.o.f. 

▸ Overly simplified; more than one type of ion in a unit cell



▸ Match relativistic ops onto non-relativistic ops 

▸ Match NR ops onto lattice d.o.f. 

▸ Compute DM excitation rates (apply Fermi’s GR)

DM - COLLECTIVE MODE EFT

7

Let us start from a relativistic model of a DM particle � interacting with the proton (p),

neutron (n) and electron (e);2 we denote these Standard Model (SM) particles collectively by  

in the following. To compute the NR EFT, we take the NR limit of the relativistic theory and

map it on to the appropriate NR degrees of freedom. The EFT consists of the NR fields �±,  ±,

generally defined by (using the SM fermion  for example):

 +(x, t) ⌘

X

I

e�i"I t I(x) b̂I ,  �
⌘ ( +)† . (6)

Here the sum is over energy eigenstates, "I = EI � m are the energy eigenvalues minus the rest

mass,  I(x) are the wavefunctions (which are two-component for spin-12 fermions) and b̂I are the

annihilation operators. In the familiar case of a fermion in free space, the energy eigenstates are

labeled by momentum k and spin s = ±, with eigenvalues "k,s = "k =
q

k2 +m2
 � m '

k2

2m 
,

and therefore3

 +
free(x, t) =

Z
d3k

(2⇡)3
e�i"kt eik·x ⇠s b̂k,s , (7)

where ⇠+ = ( 10 ), ⇠� = ( 01 ).

For a spin-12 fermion, the relation between the relativistic field  and NR field  + is (see

Appendix A)

 (x, t) = e�im t
1

p
2

0

@

⇣
1 �

�·k
2m +"

⌘
 +(x, t)

⇣
1 + �·k

2m +"

⌘
 +(x, t)

1

A , (8)

at leading order in m�1
 , where k, " are operators acting on  +. For a fermion in free space,

we have k = �ir, " = i@t, which become simply numbers in momentum space. In the presence

of an external potential (�,A) (e.g. electromagnetic fields from the ions), k = �ir � A is the

kinematical momentum, while " = i@t � �. Eq. (8) applies for the SM fermions  = p, n, e. If the

DM � is a spin-12 fermion, it also applies for the DM, with  replaced by �. For a spin-0 DM, on

the other hand, � = e�im�t�+, with �+ given by Eq. (7) without the ⇠s factor.

To demonstrate the procedure of matching a relativistic model onto the NR EFT, we focus

on tree level DM scattering mediated by a spin-0 or abelian spin-1 particle, denoted by � and Vµ

respectively. While it should be kept in mind that the EFT is capable of describing a broader class

of models, including e.g. loop-mediated scattering, we find it useful to organize our thinking by

2 The DM-proton and DM-neutron couplings follow from the DM-quark and DM-gluon couplings in the fundamental

Lagrangian by standard methods, see e.g. Ref. [58].
3 In this and the next subsection, we shall use k to denote a SM fermion’s momentum while deriving the lattice

potential, which should not be confused with the phonon momentum in Eq. (5). Afterward, starting from Sec. II C,

we will no longer need to deal with fermion momenta, and the notation k will be recycled for phonon momentum.

11

nuclear recoils [57–62]. We list the operators up to linear order in v? (defined below in Eq. (13)) in

Table III (grouped into four categories to be explained below), adopting the basis of Ref. [62]. These

encompass all the operators generated at leading order in the benchmark models we consider here.

The standard SI and SD interactions correspond to O1 and O4, respectively.5 Other types of scalar

mediators generate O6, O10 and O11. A well-motivated class of (hidden sector) models contain DM

particles coupling to a vector mediator via a multipole moment, which in turn kinetically mixes

with the photon (see e.g. Refs. [60, 66, 68–73]). We consider the electric dipole, magnetic dipole and

anapole DM models, which generate O11, O1,4,5,6 and O8,9, respectively. Finally, Table II includes a

model where a vector mediator couples to the SM fermion’s magnetic dipole moment Jµ
mdm, and as

a result generates O3. Among other things, this leads to a coupling to the SM fermion’s spin-orbit

coupling, which can be the leading interaction if one simultaneously introduces a coupling to the

“O(q2) vector current” Jµ
V 2 (see Table I), with a coe�cient (relative to Jµ

mdm) tuned to  = �1 to

cancel the standard SI interaction O1.

For kinematic conventions, we take

q ⌘ k0
� k = p � p0 (12)

to denote the momentum transfer from the DM to the target, which agrees with Refs. [58, 62]

but has an opposite sign compared to the definitions in Refs. [57, 59–61]. The other independent

combination of momenta is

v?
⌘

P

2m�
�

K

2m 
= v �

k

m 
�

q

2µ� 
, (13)

where P = p0 + p, K = k0 + k, and µ� is the reduced mass. Recall from the beginning of

this section that we use v = p
m�

for the incoming DM’s velocity. So v �
k
m 

in Eq. (13) is the

relative velocity, and v? is the component of the relative velocity perpendicular to the momentum

transfer, q · v? = 0. Note that Eq. (13) reduces to the familiar relation with k = 0 for DM

scattering o↵ a target particle at rest; the term proportional to k accounts for motions of the

initial state  = p, n, e, and will be important for deriving DM-ion scattering potentials below.

We also note that, in the case of a vector mediator coupling to the electron’s vector current

Jµ
V,e, in-medium screening e↵ects modify the e↵ective couplings to the proton and electron [33, 38,

41, 42, 74]. For NR scattering, as shown in Refs. [33, 74], this amounts to replacing

gp ! ge↵p = gp +

✓
1 �

q2

q · " · q

◆
ge , ge ! ge↵e =

q2

q · " · q
ge , (14)

5 Note that the standard SD interaction cannot be realized with a light mediator. In that case the leading interaction

is induced by longitudinal vector exchange, and is proportional to JP,�JP, rather than Jµ
A,�JA, µ.

q

m 
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Keep leading order in NR expansion
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FIG. 3. Total rate of electron transitions R in hexagonal BN, normalized to its daily average hRi as a

function of time (left), and di↵erential rates at several times of the day assuming �e = 10�37 cm2 (right),

for a 5, 10, 100MeV DM scattering via a light mediator.

cell, and a momentum vector k within the first Brillouin zone. For a crystal with N primitive unit

cells, k takes N discrete values. In the end we take the limit N ! 1, where k becomes continuous.

To see how FT (q) should be quantized in the phonon Hilbert space, we note that phonons arise

from atom/ion displacements:

ulj = xlj � x0
lj =

X

⌫

X

k21BZ

1p
2Nmj!⌫,k

⇣
â⌫,k ✏⌫,k,j e

ik·x0
lj + â

†
⌫,k ✏

⇤
⌫,k,j e

�ik·x0
lj

⌘
, (79)

where xlj is the position of the jth atom/ion in the lth primitive cell, x0
lj is the equilibrium position,

mj are the atom/ion masses, !⌫,k are the phonon energies, and ✏⌫,k,j are the phonon polarization

vectors, normalized such that
P

j |✏⌫,k,j |
2 = 1. The task is thus to find how FT (q) depends on the

atom/ion positions xlj and displacements ulj .

To do so, let us revisit the scattering potential in Eq. (4). For a periodic crystal, it can be

written as a sum over contributions from individual atoms/ions:

V(x) =
X

l,j

Z

⌦lj

d
3
x
0⇥
n
lj
p (x

0)Vp(x� x0) + n
lj
n (x

0)Vn(x� x0) + n
lj
e (x

0)Ve(x� x0)
⇤

=
X

l,j

Z

⌦lj

d
3
r
⇥
n
lj
p (r)Vp(x� xlj � r) + n

lj
n (r)Vn(x� xlj � r) + n

lj
e (r)Ve(x� xlj � r)

⇤
,

(80)

where ⌦lj is a volume surrounding the lattice site l, j. Within each site volume, we have changed

the integration variable to r = x0
� xlj , the position relative to the center of the site, and defined
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the other hand, � = e�im�t�+, with �+ given by Eq. (7) without the ⇠s factor.
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on tree level DM scattering mediated by a spin-0 or abelian spin-1 particle, denoted by � and Vµ

respectively. While it should be kept in mind that the EFT is capable of describing a broader class

of models, including e.g. loop-mediated scattering, we find it useful to organize our thinking by

2 The DM-proton and DM-neutron couplings follow from the DM-quark and DM-gluon couplings in the fundamental

Lagrangian by standard methods, see e.g. Ref. [58].
3 In this and the next subsection, we shall use k to denote a SM fermion’s momentum while deriving the lattice

potential, which should not be confused with the phonon momentum in Eq. (5). Afterward, starting from Sec. II C,
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nuclear recoils [57–62]. We list the operators up to linear order in v? (defined below in Eq. (13)) in
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encompass all the operators generated at leading order in the benchmark models we consider here.
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mediators generate O6, O10 and O11. A well-motivated class of (hidden sector) models contain DM
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with the photon (see e.g. Refs. [60, 66, 68–73]). We consider the electric dipole, magnetic dipole and

anapole DM models, which generate O11, O1,4,5,6 and O8,9, respectively. Finally, Table II includes a

model where a vector mediator couples to the SM fermion’s magnetic dipole moment Jµ
mdm, and as

a result generates O3. Among other things, this leads to a coupling to the SM fermion’s spin-orbit

coupling, which can be the leading interaction if one simultaneously introduces a coupling to the
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V 2 (see Table I), with a coe�cient (relative to Jµ
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cancel the standard SI interaction O1.

For kinematic conventions, we take
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to denote the momentum transfer from the DM to the target, which agrees with Refs. [58, 62]

but has an opposite sign compared to the definitions in Refs. [57, 59–61]. The other independent
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v?
⌘

P

2m�
�

K

2m 
= v �

k

m 
�

q

2µ� 
, (13)

where P = p0 + p, K = k0 + k, and µ� is the reduced mass. Recall from the beginning of

this section that we use v = p
m�

for the incoming DM’s velocity. So v �
k
m 

in Eq. (13) is the

relative velocity, and v? is the component of the relative velocity perpendicular to the momentum

transfer, q · v? = 0. Note that Eq. (13) reduces to the familiar relation with k = 0 for DM

scattering o↵ a target particle at rest; the term proportional to k accounts for motions of the

initial state  = p, n, e, and will be important for deriving DM-ion scattering potentials below.

We also note that, in the case of a vector mediator coupling to the electron’s vector current

Jµ
V,e, in-medium screening e↵ects modify the e↵ective couplings to the proton and electron [33, 38,
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quantized in terms of phonon modes as in Eq. (79) – via both the phase factor eiq·xlj = e
iq·(x0
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and the �j(q) · ulj term.
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where we have used the fact that the commutator between creation and annihilation operators is

a classical number so the BCH series terminates. In the last equation,
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is the Debye-Waller factor (in the continuum limit
P

k ! V
R

d3k
(2⇡)3 = N⌦

R
d3k
(2⇡)3 with ⌦ the

volume of the primitive cell). The physical meaning of this factor is that a transition |ii ! |fi can

be accompanied by additional phonons’ creation out of the vacuum followed by their annihilation,

and all these processes are resummed into the exponential. The matrix element thus becomes
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The l sum can be eliminated via the identity

X

l

e
i(q�k)·xl = N

X

G

�q�k,G , (89)

where x0
lj = xl+x0

j with xl being the position of the lth primitive cell and x0
j being the equilibrium

position of the jth atom/ion within the primitive cell, andG runs over the reciprocal lattice vectors.
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â
†
⌫,k

�
· exp


i(q · ✏⌫,k,j) e

ik·x0
lj

p
2Nmj!⌫,k
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â
†
⌫,k, â⌫,k
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â⌫,k

�
⇥

exp

✓
|q · ✏⌫,k,j |2

4Nmj!⌫,k

⇥
â
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â
†
⌫0,k0

�
|0i

=
X

l,j

e
i(q�k)·x0

lj e
�Wj(q) ip

2Nmj!⌫,k
⇥


F

0
j q � i�j +

q

Nmj

X

⌫0,k0

(i�j · ✏⌫0,k0,j)(q · ✏⇤⌫0,k0,j)

2!⌫0,k0

�
· ✏⇤⌫,k,j . (88)

The l sum can be eliminated via the identity

X

l

e
i(q�k)·xl = N

X

G

�q�k,G , (89)

where x0
lj = xl+x0

j with xl being the position of the lth primitive cell and x0
j being the equilibrium

position of the jth atom/ion within the primitive cell, andG runs over the reciprocal lattice vectors.



GOAL OF EFT

▸ To calculate interaction rate with collective excitations 
from any UV complete DM interaction10

Model UV Lagrangian NR EFT Responses

Standard SI
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�
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a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. Each model is matched

onto the NR EFT by multiplying the currents J�J (defined in Table I) and the mediator propagator,

and accounting for in-medium e↵ects (if present) according to Eq. (14). The leading order nonvanishing

coe�cients c( )i for the operators O
( )
i (defined in Table III) are listed in the second to last column. For

the multipole DM models, �eµ ⌘ eµ � 1 where eµ is half the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9,

eµe ' 1), and we have defined eµe↵
 ⌘ 1 + g 

geff
 
�eµ . The last column lists the lattice degrees of freedom which

enter the scattering potential, Eq. (30). All models can excite phonons, and models with S or L response

generated by DM-electron coupling can also excite magnons.

For each UV model, the coe�cients c( )i of the NR operators generated at leading order are given

in Table II. These coe�cients contain all the information for constructing the lattice potential eVlj

for a given DM model, and will be exploited below for computing the DM detection rate. The list

of NR operators O
( )
i is already familiar from previous works on the EFT for direct detection via

Decomposition 
carried out previously 

Gresham, KZ 1401.3739

Using NR basis of 
Fitzpatrick, Haxton, Katz, Lubbers, Xu 

1203.3542

Trickle, Zhang, KZ 2009.13534
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NATURE OF COLLECTIVE OSCILLATIONS OF IONS — PHONONS

▸ Number of collective modes: 
3 x number of ions in unit 
cell 

▸ 3 of those modes describe in 
phase oscillation — acoustic 
phonons — and have a 
translation symmetry 
implying gapless dispersion 

▸ The remaining modes are 
gapped
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).

wave which stores a finite amount of energy.
A priori, the dark matter can excite both the optical and acoustic modes, but the energy deposited

in the acoustic modes is much smaller and is only detectable in the most optimistic circumstances.
Concretely, for mX . MeV, the DM momentum mXv . keV is sufficiently small that it is only possible
to excite a phonon mode within the first Brillouin zone. Consider a DM scattering with momentum
transfer q and energy deposition !, which excites a single acoustic phonon; the phonon must absorb
all of the energy and momentum transferred. This leads to the scaling

! = cs |q| . 2 cs v mX ⇠ 7 meV ⇥
mX

100 keV
. (1)

with v ⇠ 10�3 the DM velocity and assuming the speed of sound for sapphire. The threshold for near
future devices will be at best in the 10 � 100 meV range, which means that single acoustic phonon
excitations from light DM will be difficult or impossible to detect, depending on mX . However, the
scaling in (1) does not apply for the optical modes since they have an energy of ! ⇠ 30 meV or more
as |q| ! 0, as is evident from Fig. 2.

The gapped dispersion of optical phonons is a particularly appealing feature, as it allows nearly the
maximum amount of DM kinetic energy to be extracted in the scattering, even when the momentum
transfer is much less than a keV. This is in contrast to recoils off free nuclei, where the energy deposited
from light DM is much less than the initial DM kinetic energy. The presence of optical phonons is also
advantageous compared to a material such as superfluid helium. Superfluid helium does have gapped
quasiparticle excitations (rotons), but they only occur at high q and are much lower energy that
the optical phonons in a solid. Since single phonon production in superfluid helium is undetectable
in the foreseeable future, one must resort to multi-phonon production to break the relation in (1),
as was demonstrated in Refs. [30, 31]. However, the rate is suppressed since this is a higher order

7

Momentum transfer

Knapen, Lin, Pyle, KZ 1712.06598 Griffin, Knapen, Lin, KZ 1807.10291

Acoustic

Optical



▸ Some materials have an 
abundance of these modes 

▸ When these gapped modes 
result from oscillations of 
more than one type of ion, it 
sets up an oscillating dipole: 
Polar Materials 

▸ This oscillating dipole allows 
to compute an effective 
interaction and compute the 
dynamic structure factor
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).

wave which stores a finite amount of energy.
A priori, the dark matter can excite both the optical and acoustic modes, but the energy deposited

in the acoustic modes is much smaller and is only detectable in the most optimistic circumstances.
Concretely, for mX . MeV, the DM momentum mXv . keV is sufficiently small that it is only possible
to excite a phonon mode within the first Brillouin zone. Consider a DM scattering with momentum
transfer q and energy deposition !, which excites a single acoustic phonon; the phonon must absorb
all of the energy and momentum transferred. This leads to the scaling
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100 keV
. (1)

with v ⇠ 10�3 the DM velocity and assuming the speed of sound for sapphire. The threshold for near
future devices will be at best in the 10 � 100 meV range, which means that single acoustic phonon
excitations from light DM will be difficult or impossible to detect, depending on mX . However, the
scaling in (1) does not apply for the optical modes since they have an energy of ! ⇠ 30 meV or more
as |q| ! 0, as is evident from Fig. 2.

The gapped dispersion of optical phonons is a particularly appealing feature, as it allows nearly the
maximum amount of DM kinetic energy to be extracted in the scattering, even when the momentum
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KINEMATICS OF COLLECTIVE MODES

▸ Each phonon mode is a resonance.  The DM needs to be 
well matched kinematically to the modes to excite large 
response 

▸ Better coupling to gapped modes
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).
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DM - COLLECTIVE MODE EFT

▸ Match relativistic ops onto non-relativistic ops 

▸ Match NR ops onto lattice d.o.f. 

▸ Compute DM excitation rates

(Trivial for SI interactions)

(Provided by Frohlich Hamiltonian or dynamic structure 
factor computed by DFT methods)

(Straightforward once one understands the (inelastic) 
kinematics of the system)



FROHLICH HAMILTONIAN AND EFFECTIVE INTERACTIONS

▸ For sufficiently simple interactions, the effective 
interaction is already known, e.g. Frohlich Hamiltonian: 

▸ Apply Fermi’s golden rule: 

▸ Integrate over phase space:

3

products) have typical energy scales that are much larger
than the energies of interest here, and thus are not ex-
pected to be problematic given demonstrated capabilities
for controlling such backgrounds [44]. The dominant re-
maining particle backgrounds in such an experiment are
pp neutrinos, where a few events per kg-year can be ex-
pected [26], and coherent scattering of high-energy pho-
tons [45], which we estimate to be ⇠ 50 events/kg-year
accounting for structure e↵ects. The latter background
can be suppressed to the ⇠ 10�2 level with an active veto
on the hard photon, and so we take the zero background
limit for our projections.

Dark photon absorption. We first consider DM
consisting of nonthermally-produced dark photons with
kinetic mixing given by �F 0

µ⌫F
µ⌫/2, for the mass range

of ⇡ meV - 100 eV. The DM can be detected through
absorption, where all of the mass-energy of the DM goes
into the excitation. The absorption rate can be related to
the optical properties of the material (see Ref. [46, 47]):

R =
1

⇢

⇢DM

mA0
2

e↵
�1. (2)

where �1 is the absorption rate of photons, ⇢ is the mass
density of the target and ⇢DM = 0.3 GeV/cm3 is the local
DM density. e↵ is the in-medium coupling of A0 with
the EM current, obtained by diagonalizing the in-medium
polarization tensors for the photon and dark photon:

2

e↵
=

2m4

A0

[m2

A0 � Re ⇧(!)]
2

+ Im ⇧(!)2
. (3)

⇧(!) = �i�! is the photon polarization tensor in the
q ! 0 limit, valid for absorption processes where |q| ⌧
!. � is the complex optical conductivity. From the opti-
cal theorem, the absorption rate is given by the real part
of the optical conductivity, �1 = � Im⇧(!)

! . Finally, these
quantities are related to the permittivity of a material by
✏̂ = n̂2 = 1+i�/! with n̂ the complex index of refraction.

To determine the reach on the kinetic mixing parame-
ter , we use calculations of the sub-eV absorption coe�-
cient in the T = 0 limit from Ref. [55], supplemented with
the optical conductivity data of Ref. [56] that extends up
to 100 eV. The result is shown in Fig. 2, assuming 3
events for a kg-year exposure. The reach below 100 meV
is obtained from absorption into phonon modes; there is
resonant absorption into the LO phonon at mA0 ⇡ 36
meV, as well as sidebands from multiphonon processes.
The reach for mA0 > eV is due to electron excitations
above the bandgap, considered before in Ref. [51].

DM scattering via ultralight dark photon.

In this case we assume a fermionic DM interaction
gXX�µXA0

µ, in addition to kinetic mixing. Taking the
limit mA0 ⌧ eV, the results are best understood in
the basis where X is e↵ectively millicharged under the
standard model photon with coupling gXX�µXAµ (see
e.g. appendix D of [23]). The interaction of X with an
LO phonon is e↵ectively that of a test charge with elec-
tric charge gX . We can then follow the derivation of

FIG. 2. Reach for absorption of dark photon DM, in terms
of the kinetic mixing parameter  for kg-year exposure.
Shaded regions are stellar constraints [48, 49], and direct
detection constraints from DAMIC [50], Xenon10 [46, 51],
Xenon100 [51, 52], and CDMSlite [52]. The dotted lines are
the projected reach with an Al superconductor [47], Ge and Si
semiconductors [52], Dirac materials [29] and molecules [53].
See Ref. [51] for absorption on GaAs for mA0 > eV, and
Ref. [54] for the reach of molecular magnets.

the well-known Fröhlich Hamiltonian for interactions of
electrons with LO phonons in the long-wavelength and
isotropic limit [33, 57–59]. These long-range interactions
are important in explaining electron mobility data in po-
lar materials, and have previously been computed for
GaAs in Refs. [60, 61]. To obtain the interaction of DM
with LO phonons in this limit, we rescale the original
Fröhlich Hamiltonian by the electric charge ratio of DM
to electrons, gX/e. This coupling is well-suited to de-
scribe scattering of DM in the keV-MeV mass range, with
corresponding low momentum transfer q . keV. The re-
sulting interaction is

HI = i
gX
e

CF

X

k,q

1

|q|

h
c†qa

†
k�qak � c.c.

i
(4)

where c†q and a†k are phonon and X creation operators,
respectively. The coupling is

CF = e


!LO

2Vcell

✓
1

✏1
� 1

✏0

◆�1/2
, (5)

where e is the electric charge, ✏0 (✏1) is the static (high
frequency) dielectric constant, and Vcell is the primitive
cell volume. For GaAs, ✏0 = 12.9 and ✏1 = 10.88 [34].
The above approximations are expected to break down
for anisotropic crystals, such as sapphire, and for mX & 1
MeV. For these DM masses, the typical momentum
transfer becomes comparable or larger to the inverse in-
terparticle spacing, requiring a description of processes
where phonons are excited outside the first Brillouin
zone. In addition, multiphonon processes are expected
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MeV. For these DM masses, the typical momentum
transfer becomes comparable or larger to the inverse in-
terparticle spacing, requiring a description of processes
where phonons are excited outside the first Brillouin
zone. In addition, multiphonon processes are expected
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FIG. 3. Sensitivity to DM scattering via an ultralight dark
photon, for kg-yr exposure on GaAs. On the orange line the
relic abundance can be explained by freeze-in [17–19]. The
reach for mX < MeV is from scattering into LO phonons.
For mX > MeV, the reach comes from considering GaAs as
a scintillator for DM-electron scattering [11]. The blue re-
gion indicates stellar [62] and BBN constraints [63], while the
green region is a Xenon10 limit [8]. Projections for various
experimental proposals are from Refs. [19, 25, 29, 64] (dotted
lines).

to contribute and the scattering rate transitions to reg-
ular nuclear recoils for su�ciently large momentum and
energy deposited. We therefore restrict to the sub-MeV
mass regime, while other experimental proposals are well
suited for MeV-GeV DM scattering (Fig. 3).

Using Eq. (4), we find that the scattering rate for X
with initial momentum pi is:

�(pi) = 2⇡

Z
d3pf

(2⇡)3
�(Ef � Ei � !)|Mq|2, (6)

with matrix element

|Mq|2 =
2g2X
e2

C2

F

q2
. (7)

The total rate per unit time and target mass is then
given by R = 1

⇢
⇢DM

mX

R
d3vf(v)�(m�v), where f(v) is a

boosted, truncated Maxwell-Boltzmann distribution (see
e.g. [65]) with velocity dispersion v0 = 220 km/s, Earth
velocity ve = 240 km/s and escape velocity vesc = 500
km/s. To estimate the reach, we require 3 events for a
kg-year exposure. As is conventional in the literature, we
show in Fig. 3 the resulting sensitivity on gX in terms
of the DM-electron cross section,

�̄e ⌘ 4µ2

Xe
2g2X↵em

(↵emme)4
. (8)

where ↵em is the fine structure constant, me is the elec-
tron mass, and µXe is the electron-DM reduced mass.
We find that even with ⇠ gram-month exposures, polar
materials can reach the freeze-in benchmark. Away from

the freeze-in line, a kg-year exposure can extend the reach
of existing proposals by several orders of magnitude.

Scalar-mediated nucleon scattering. Finally we
consider the case of sub-MeV DM with coupling to nu-
cleons only, similar to what was explored in Ref. [27, 28]
for multiphonon production in superfluid helium. The
strength of such an interaction can be parametrized by
the average DM-nucleon scattering length b̄n. GaAs im-
proves over helium for several reasons: first, DM can
scatter by exciting a single ⇠ 36 meV optical phonon,
rather than going through higher-order multiphonon in-
teractions. Second, the speed of sound is ⇠ 20 times
higher in GaAs, such that the energy of acoustic phonons
is higher and better matched to DM kinematics.

The di↵erential DM scattering rate is

d2�

dqd!
=

4⇡

Vcell

q

mXpi
S(q,!), (9)

where pi is the initial DM momentum, and S(q,!) is
the dynamical structure factor, defined in the same way
as for neutron scattering. In the long-wavelength limit,
S(q,!) is given by [66]

S(q,!) =
1

2

X

⌫

|F⌫(q)|2
!⌫,q

�(!⌫,q�!) (10)

where ⌫ sums over the various phonon branches. The
phonon form factor is

|F⌫(q)|2 =

�����
X

d

b̄dp
md

e�Wd(q)q · e⌫,d,qe�iq·rd

�����

2

(11)

where d labels atoms in the primitive cell with mass md

and position rd. b̄d is the scattering length, e⌫,d,q is the
phonon eigenvector of branch ⌫ and atom d at momentum
q, and Wd the Debye-Waller factor of atom d.

Here we estimate the rate in the isotropic and long-
wavelength limit where Wd ⇡ 0 and the phonon eigen-
vectors have a simple form:

|F⌫(q)|2 ⇡ b̄2n
2mn

q2
���
p
AGae

irGa·q ±
p

AAse
irAs·q

���
2

(12)

with mn the nucleon mass, b̄n the DM-nucleon scatter-
ing length and AGa (AAs) the mass number of Ga (As).
The + (�) sign applies to the LA (LO) branch, where
both atoms are in phase (anti-phase). For a rough esti-
mate when mX ⌧ MeV, the phase factors in (12) can
be neglected. Similar to the Fröhlich Hamiltonian, the
analytic approximations made here are only valid in the
sub-MeV mass regime; for larger masses, a reliable the-
oretical treatment requires a complete description of the
phonon band structure over the Brillouin Zone as well
as multiphonon processes, which are beyond the scope of
this work.

The approximations made here are expected to break
down for mX & 1 MeV. For such masses, the typical mo-
mentum transfer becomes comparable to or larger than
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velocity ve = 240 km/s and escape velocity vesc = 500
km/s. To estimate the reach, we require 3 events for a
kg-year exposure. As is conventional in the literature, we
show in Fig. 3 the resulting sensitivity on gX in terms
of the DM-electron cross section,

�̄e ⌘ 4µ2

Xe
2g2X↵em

(↵emme)4
. (8)

where ↵em is the fine structure constant, me is the elec-
tron mass, and µXe is the electron-DM reduced mass.
We find that even with ⇠ gram-month exposures, polar
materials can reach the freeze-in benchmark. Away from

the freeze-in line, a kg-year exposure can extend the reach
of existing proposals by several orders of magnitude.

Scalar-mediated nucleon scattering. Finally we
consider the case of sub-MeV DM with coupling to nu-
cleons only, similar to what was explored in Ref. [27, 28]
for multiphonon production in superfluid helium. The
strength of such an interaction can be parametrized by
the average DM-nucleon scattering length b̄n. GaAs im-
proves over helium for several reasons: first, DM can
scatter by exciting a single ⇠ 36 meV optical phonon,
rather than going through higher-order multiphonon in-
teractions. Second, the speed of sound is ⇠ 20 times
higher in GaAs, such that the energy of acoustic phonons
is higher and better matched to DM kinematics.

The di↵erential DM scattering rate is

d2�

dqd!
=

4⇡

Vcell

q

mXpi
S(q,!), (9)

where pi is the initial DM momentum, and S(q,!) is
the dynamical structure factor, defined in the same way
as for neutron scattering. In the long-wavelength limit,
S(q,!) is given by [66]

S(q,!) =
1

2

X

⌫

|F⌫(q)|2
!⌫,q

�(!⌫,q�!) (10)

where ⌫ sums over the various phonon branches. The
phonon form factor is

|F⌫(q)|2 =

�����
X

d

b̄dp
md

e�Wd(q)q · e⌫,d,qe�iq·rd

�����

2

(11)

where d labels atoms in the primitive cell with mass md

and position rd. b̄d is the scattering length, e⌫,d,q is the
phonon eigenvector of branch ⌫ and atom d at momentum
q, and Wd the Debye-Waller factor of atom d.

Here we estimate the rate in the isotropic and long-
wavelength limit where Wd ⇡ 0 and the phonon eigen-
vectors have a simple form:

|F⌫(q)|2 ⇡ b̄2n
2mn

q2
���
p
AGae

irGa·q ±
p

AAse
irAs·q

���
2

(12)

with mn the nucleon mass, b̄n the DM-nucleon scatter-
ing length and AGa (AAs) the mass number of Ga (As).
The + (�) sign applies to the LA (LO) branch, where
both atoms are in phase (anti-phase). For a rough esti-
mate when mX ⌧ MeV, the phase factors in (12) can
be neglected. Similar to the Fröhlich Hamiltonian, the
analytic approximations made here are only valid in the
sub-MeV mass regime; for larger masses, a reliable the-
oretical treatment requires a complete description of the
phonon band structure over the Brillouin Zone as well
as multiphonon processes, which are beyond the scope of
this work.

The approximations made here are expected to break
down for mX & 1 MeV. For such masses, the typical mo-
mentum transfer becomes comparable to or larger than
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▸ For sufficiently simple interactions, the effective 
interaction is already known, e.g. Frohlich Hamiltonian: 4
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FIG. 3. Sensitivity to DM scattering via an ultralight dark
photon, for kg-yr exposure on GaAs. On the orange line the
relic abundance can be explained by freeze-in [17–19]. The
reach for mX < MeV is from scattering into LO phonons.
For mX > MeV, the reach comes from considering GaAs as
a scintillator for DM-electron scattering [11]. The blue re-
gion indicates stellar [62] and BBN constraints [63], while the
green region is a Xenon10 limit [8]. Projections for various
experimental proposals are from Refs. [19, 25, 29, 64] (dotted
lines).

to contribute and the scattering rate transitions to reg-
ular nuclear recoils for su�ciently large momentum and
energy deposited. We therefore restrict to the sub-MeV
mass regime, while other experimental proposals are well
suited for MeV-GeV DM scattering (Fig. 3).

Using Eq. (4), we find that the scattering rate for X
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The total rate per unit time and target mass is then
given by R = 1

⇢
⇢DM

mX

R
d3vf(v)�(m�v), where f(v) is a

boosted, truncated Maxwell-Boltzmann distribution (see
e.g. [65]) with velocity dispersion v0 = 220 km/s, Earth
velocity ve = 240 km/s and escape velocity vesc = 500
km/s. To estimate the reach, we require 3 events for a
kg-year exposure. As is conventional in the literature, we
show in Fig. 3 the resulting sensitivity on gX in terms
of the DM-electron cross section,
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where ↵em is the fine structure constant, me is the elec-
tron mass, and µXe is the electron-DM reduced mass.
We find that even with ⇠ gram-month exposures, polar
materials can reach the freeze-in benchmark. Away from

the freeze-in line, a kg-year exposure can extend the reach
of existing proposals by several orders of magnitude.

Scalar-mediated nucleon scattering. Finally we
consider the case of sub-MeV DM with coupling to nu-
cleons only, similar to what was explored in Ref. [27, 28]
for multiphonon production in superfluid helium. The
strength of such an interaction can be parametrized by
the average DM-nucleon scattering length b̄n. GaAs im-
proves over helium for several reasons: first, DM can
scatter by exciting a single ⇠ 36 meV optical phonon,
rather than going through higher-order multiphonon in-
teractions. Second, the speed of sound is ⇠ 20 times
higher in GaAs, such that the energy of acoustic phonons
is higher and better matched to DM kinematics.

The di↵erential DM scattering rate is
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where pi is the initial DM momentum, and S(q,!) is
the dynamical structure factor, defined in the same way
as for neutron scattering. In the long-wavelength limit,
S(q,!) is given by [66]
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where d labels atoms in the primitive cell with mass md

and position rd. b̄d is the scattering length, e⌫,d,q is the
phonon eigenvector of branch ⌫ and atom d at momentum
q, and Wd the Debye-Waller factor of atom d.

Here we estimate the rate in the isotropic and long-
wavelength limit where Wd ⇡ 0 and the phonon eigen-
vectors have a simple form:
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with mn the nucleon mass, b̄n the DM-nucleon scatter-
ing length and AGa (AAs) the mass number of Ga (As).
The + (�) sign applies to the LA (LO) branch, where
both atoms are in phase (anti-phase). For a rough esti-
mate when mX ⌧ MeV, the phase factors in (12) can
be neglected. Similar to the Fröhlich Hamiltonian, the
analytic approximations made here are only valid in the
sub-MeV mass regime; for larger masses, a reliable the-
oretical treatment requires a complete description of the
phonon band structure over the Brillouin Zone as well
as multiphonon processes, which are beyond the scope of
this work.

The approximations made here are expected to break
down for mX & 1 MeV. For such masses, the typical mo-
mentum transfer becomes comparable to or larger than
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FIRST PRINCIPLES DERIVATION

▸ Phonons are excitations of lattice displacements.  Write 
down in terms of the lattice potential: 

▸ Now, quantize the lattice displacements: 

▸ Apply BCH to normal-order phonon creation/annihilation
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C. Quantization of Lattice Potential for Phonons and Magnons

Now that we have obtained eVlj in terms of the lattice degrees of freedom, Eq. (30), it remains

to compute the matrix elements

h⌫,k| eV(�q,v)|0i =
X

l,j

h⌫,k| eiq·xlj eVlj(�q,v)|0i (32)

by quantizing the lattice potential in terms of phonon or magnon modes. The simplest cases, where

phonon excitations in a crystal proceed through hN i (via the SI operator O1 = 1) and magnon

excitations proceed through hSei were considered previously in Refs. [33, 34, 52, 53] and Ref. [56],

respectively. Here we extend those calculations to include all four crystal responses (hN i, hS i,

hL i, hL ⌦ S i) identified in the previous subsection, which can be generated by the full set of

e↵ective operators.

Phonons arise from the ions’ displacements with respect to their equilibrium positions x0
lj :

ulj = xlj � x0
lj =

3nX

⌫=1

X

k21BZ

1p
2Nmj!⌫,k

⇣
â⌫,k ✏⌫,k,j e

ik·x0
lj + â†⌫,k ✏

⇤
⌫,k,j e

�ik·x0
lj

⌘
. (33)

Recall that N (without subscript, not to be confused with hN i) is the total number of primitive

cells in the crystal lattice, to be sent to infinity at the end of the calculation. The phonon creation

and annihilation operators satisfy the canonical commutation relations, [â⌫,k, â
†
⌫0,k0 ] = �⌫⌫0�k,k0

with all others vanishing. The eigenenergies !⌫,k and eigenvectors ✏⌫,k,j (normalized such that
P

j |✏⌫,k,j |2 = 1) are solved for by diagonalizing the quadratic crystal potential. The quadratic

crystal potential, and equilibrium positions, are computed with DFT [77] (see Refs. [34, 53] for

details) and the diagonalization is performed with phonopy [64]. At leading order, dependence

of the matrix element in Eq. (32) on ulj comes only from the phase factor eiq·xlj ; we assume

the DM-ion scattering potentials eVlj(�q,v) are not significantly a↵ected by ionic displacements

and can thus be pulled out of the matrix element.6 Then, evaluating the matrix element of

the phase factor, h⌫,k| eiq·xlj |0i, follows the standard procedure of expanding xlj as in Eq. (33)

and applying the Baker-Campbell-Hausdor↵ formula to normal-order the phonon creation and

annihilation operators [33]. As a result,

h⌫,k| eV(�q,v)|0i =
1

p
N

X

⌫,k,j

"
X

l

eVlj(�q,v) ei(q�k)·x0
lj

#
e�Wj(q)

i(q · ✏⇤⌫,k,j)p
2mj!⌫,k

, (34)

6 If eVlj receives contributions from DM-electron couplings, the scattering potential can depend on ulj directly, as

ionic displacements distort the electron wavefunctions. This correction can be taken into account via the Born

e↵ective charges in the case of SI interactions in the long wavelength limit, as discussed in Ref. [33].
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FIRST PRINCIPLES DERIVATION

▸ Obtain rate from Fermi’s golden rule: 

▸ Frolich Hamiltonian obtained in limit
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where Wj(q) = 1
4Nmj

P
⌫,k

|q·✏⌫,k,j |2
!⌫,k

is the Debye-Waller factor. Crucially, the 1p
N

factor (which

originates from Eq. (33) and is to be squared when computing the rate), together with the prefactor

1
V in the rate formula Eq. (5), indicates that the rate � would scale as 1

N2 ! 0 unless the l sum

in Eq. (34) scales with N . This in turn requires the N terms in the l sum to add up coherently,

which is possible only when i) the phonon momentum k matches the momentum transfer q up

to reciprocal lattice vectors, which is the statement of lattice momentum conservation, and ii)

P
l
eVlj ⇠ N , i.e. the DM couples coherently across the crystal lattice. The second requirement

is trivially satisfied for DM couplings to the scalar quantities hN i, tr(hL ⌦ S i). For couplings

to the vector and tensor quantities hS i, hL i, hL ⌦ S i (modulo the trace part), on the other

hand, coherence is possible only when they are ordered (or polarized), so that they point in the

same directions in all primitive cells; in the case of hS i, this can be achieved by spontaneous

magnetic ordering for  = e, or by applying an external magnetic field for  = p, n.

Up to possible small corrections due to the presence of di↵erent isotopes, we can set eVlj = eVj ,

which is independent of l. We then obtain the single phonon excitation rate:

�(v) =
1

⌦

Z
d3q

(2⇡)3

3nX

⌫=1

2⇡ �
�
!⌫,k � !q

� 1

2!⌫,k

����
X

j

e�Wj(q)eiG·x0
j
q · ✏⇤⌫,k,j

p
mj

eVj(�q,v)

����
2

, (35)

where ⌦ is the volume of the primitive cell, x0
j is the equilibrium position of the jth ion with

respect to the cell center, and it is implicit that q = k +G where G is a reciprocal lattice vector.

To map q to a vector k within the 1BZ, we first write q =
P3

i=1 aibi, with bi the basis vectors

of the reciprocal lattice, then construct a set of eight candidate G vectors whose components in

reduced coordinates take the floor and ceiling integer values of ai, and finally choose the correct

G vector to be the one that minimizes |q � G|.

The DM-ion scattering potential eVj that enters Eq. (35) is simply given by Eq. (30) above, with

the l subscripts dropped, assuming hS i, hL i, hL ⌦ S i are ordered, as explained above; in the

absence of ordering, the corresponding terms should be dropped (with hL ⌦ S i set to its scalar

component 1
3 tr(hL ⌦ S i) 1 = 1

3 hL · S i 1). In the special case of SI interactions, one has only

c( )1 , so eVj =
P

 c
( )
1 hN ij , reproducing the results in Ref. [33], whereas in the full EFT, all four

crystal responses can contribute to phonon excitations.

Next we move on to magnons. They are collective spin excitations in a magnetically ordered

phase, and can thus respond to DM scattering only if the potentials eVlj depend on the magnetic

ions’ e↵ective spins Slj . Generally, Slj can come from the electrons’ spin and orbital angular

momenta, hSeilj and hLeilj , respectively. When projected onto the Hilbert space spanned by Slj ,

G = 0

<latexit sha1_base64="NFIe/SukspO49o5D/Eg11kCAOCw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0YtQ9KDHCvYD0lI22027dLMJuxOhhP4MLx4U8eqv8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hZXVtfaO4Wdra3tndK+8fNE2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9up33ri2ohYPeI44d2IDpQIBaNoJT/rBCG5m5Br4vbKFbfqzkCWiZeTCuSo98pfnX7M0ogrZJIa43tugt2MahRM8kmpkxqeUDaiA+5bqmjETTebnTwhJ1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9Kbif56fYnjVzYRKUuSKzReFqSQYk+n/pC80ZyjHllCmhb2VsCHVlKFNqWRD8BZfXibNs6p3Xr14OK/UbvI4inAEx3AKHlxCDe6hDg1gEMMzvMKbg86L8+58zFsLTj5zCH/gfP4AjEKQIA==</latexit>

Wj ' 0

<latexit sha1_base64="UjnBZKehllHxdQHborHNN5vIEDI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gOaUDbbSbt2N4m7G6GU/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqh1Sj4DE2DDcC26lCKkOBrXB4M/VbT6g0T+J7M0oxkLQf84gzaqzkt7oPxNdc4iNxu+WKW3VnIMvEy0kFctS75S+/l7BMYmyYoFp3PDc1wZgqw5nAScnPNKaUDWkfO5bGVKIOxrObJ+TEKj0SJcpWbMhM/T0xplLrkQxtp6RmoBe9qfif18lMdBWMeZxmBmM2XxRlgpiETAMgPa6QGTGyhDLF7a2EDaiizNiYSjYEb/HlZdI8q3rn1Yu780rtOo+jCEdwDKfgwSXU4Bbq0AAGKTzDK7w5mfPivDsf89aCk88cwh84nz8BpJEF</latexit>

Z⇤
1 = �Z⇤

2 ⌘ Z⇤

<latexit sha1_base64="dGjoN+liWt17KcIuHaBzrP1rFVk=">AAACAnicbZDLSsNAFIYnXmu9RV2Jm8EiSMGSlIpuhKIblxXshbZpmEwn7dDJJM5MCiUUN76KGxeKuPUp3Pk2TtsstPWHgY//nMOZ83sRo1JZ1rextLyyurae2chubm3v7Jp7+zUZxgKTKg5ZKBoekoRRTqqKKkYakSAo8Bipe4ObSb0+JELSkN+rUUScAPU49SlGSluuedh07U4eXsGzplvU0CYPMR3CZifvmjmrYE0FF8FOIQdSVVzzq90NcRwQrjBDUrZsK1JOgoSimJFxth1LEiE8QD3S0shRQKSTTE8YwxPtdKEfCv24glP390SCAilHgac7A6T6cr42Mf+rtWLlXzoJ5VGsCMezRX7MoArhJA/YpYJgxUYaEBZU/xXiPhIIK51aVodgz5+8CLViwS4Vzu9KufJ1GkcGHIFjcApscAHK4BZUQBVg8AiewSt4M56MF+Pd+Ji1LhnpzAH4I+PzB2VwlOQ=</latexit>

|✏LO,k,j | =
q

µ12/mj

<latexit sha1_base64="YQPzk7FOk/v4mOXXeVKqX11cRkY="></latexit>
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FIRST PRINCIPLES DERIVATION

▸ Obtain rate from Fermi’s golden rule: 

▸ Dynamic structure factor 

▸ **If** interaction is ordinary SI interaction, can use 
famous result of Nozieres and Pines
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where Wj(q) = 1
4Nmj

P
⌫,k

|q·✏⌫,k,j |2
!⌫,k

is the Debye-Waller factor. Crucially, the 1p
N

factor (which

originates from Eq. (33) and is to be squared when computing the rate), together with the prefactor

1
V in the rate formula Eq. (5), indicates that the rate � would scale as 1

N2 ! 0 unless the l sum

in Eq. (34) scales with N . This in turn requires the N terms in the l sum to add up coherently,

which is possible only when i) the phonon momentum k matches the momentum transfer q up

to reciprocal lattice vectors, which is the statement of lattice momentum conservation, and ii)

P
l
eVlj ⇠ N , i.e. the DM couples coherently across the crystal lattice. The second requirement

is trivially satisfied for DM couplings to the scalar quantities hN i, tr(hL ⌦ S i). For couplings

to the vector and tensor quantities hS i, hL i, hL ⌦ S i (modulo the trace part), on the other

hand, coherence is possible only when they are ordered (or polarized), so that they point in the

same directions in all primitive cells; in the case of hS i, this can be achieved by spontaneous

magnetic ordering for  = e, or by applying an external magnetic field for  = p, n.

Up to possible small corrections due to the presence of di↵erent isotopes, we can set eVlj = eVj ,

which is independent of l. We then obtain the single phonon excitation rate:

�(v) =
1

⌦

Z
d3q

(2⇡)3

3nX

⌫=1

2⇡ �
�
!⌫,k � !q

� 1

2!⌫,k

����
X

j

e�Wj(q)eiG·x0
j
q · ✏⇤⌫,k,j

p
mj

eVj(�q,v)

����
2

, (35)

where ⌦ is the volume of the primitive cell, x0
j is the equilibrium position of the jth ion with

respect to the cell center, and it is implicit that q = k +G where G is a reciprocal lattice vector.

To map q to a vector k within the 1BZ, we first write q =
P3

i=1 aibi, with bi the basis vectors

of the reciprocal lattice, then construct a set of eight candidate G vectors whose components in

reduced coordinates take the floor and ceiling integer values of ai, and finally choose the correct

G vector to be the one that minimizes |q � G|.

The DM-ion scattering potential eVj that enters Eq. (35) is simply given by Eq. (30) above, with

the l subscripts dropped, assuming hS i, hL i, hL ⌦ S i are ordered, as explained above; in the

absence of ordering, the corresponding terms should be dropped (with hL ⌦ S i set to its scalar

component 1
3 tr(hL ⌦ S i) 1 = 1

3 hL · S i 1). In the special case of SI interactions, one has only

c( )1 , so eVj =
P

 c
( )
1 hN ij , reproducing the results in Ref. [33], whereas in the full EFT, all four

crystal responses can contribute to phonon excitations.

Next we move on to magnons. They are collective spin excitations in a magnetically ordered

phase, and can thus respond to DM scattering only if the potentials eVlj depend on the magnetic

ions’ e↵ective spins Slj . Generally, Slj can come from the electrons’ spin and orbital angular

momenta, hSeilj and hLeilj , respectively. When projected onto the Hilbert space spanned by Slj ,

2

parametrizes the rate at which excitations are emitted or
absorbed by the system:

Im �(!,k) = �
1

2
(1 � e

��!)S(!,k). (3)

Here the dynamic structure factor is defined as

S(!,k) ⌘
2⇡

V

X

i,f

e
��Ei

Z
|hf |n�k|ii|

2
�(! + Ei � Ef ) (4)

with � = 1/kBT and Z the partition function of the sys-
tem. Eq. (4) should remind the reader of Fermi’s golden
rule, and S(!,k) is directly proportional to the di↵eren-
tial DM-electron scattering rate. Using the relationship
between the susceptibility and dielectric response

1

✏(!,k)
= 1 +

4⇡↵em

k2
�(!,k), (5)

we can write the structure factor as

S(!,k) =
k
2

2⇡↵em

1

1 � e��!
Im


�1

✏L(!,k)

�
. (6)

This relation is well known in the condensed matter lit-
erature, see e.g. [37].

In the remainder of this paper we explore the con-
sequences of this relationship for dark matter electron
scattering. The main di↵erence with previous works
in the literature is essentially that, writing the ELF as
Im(✏(!,k))/|✏(!,k)|2, we see that a screening factor of
1/|✏(!,k)|2 is included inside the dynamic structure fac-
tor. Previous works studying DM scattering in semicon-
ductors [3, 22, 24] primarily considered the approxima-
tion |✏(!,k)|2 ⇡ 1. Since the DM scattering rate is dom-
inated by k >

⇠ keV, this assumption is not unreasonable,
but with detailed calculations we find that screening can
a↵ect the rate by a factor of a few in Si and Ge. In ad-
dition, while the importance of accounting for screening
has been well understood for vector mediators, screening
for scalar-mediated scattering was only pointed out more
recently in Ref. [38] (see also Ref. [39] for discussion of
in-medium e↵ects for scalars). In this work, we put scalar
and vector mediated scattering on the same footing and
show how they lead to identical response functions. We
also show how scattering form factors discussed in the
literature relate to the dielectric response, and perform
detailed calculations of the screening e↵ect in semicon-
ductor targets relevant for current low-threshold experi-
ments.

In the following section, we show how the DM-electron
scattering rate relates to the dynamic structure factor or
ELF. In section III, we discuss di↵erent ways to deter-
mine the dielectric function and thus the ELF, including
the details of our DFT calculations for semiconductors.
In section IV we present the implications for DM scatter-
ing in semiconductors and superconductors. We conclude
in section V.

II. DM-ELECTRON SCATTERING AS

DIELECTRIC RESPONSE

The most common models which predict dark matter-
electron scattering involve a scalar or vector mediator
which couple respectively to the electron number density
and the electron current. In the nonrelativistic limit, the
leading interactions of the mediator are the same for both
cases:

� L � g���̄� + ge�ēe ! g��n� + ge�n

�L � g�Vµ�̄�
µ
� + geVµē�

µ
e ! g�V0n� + geV0n (7)

since scattering via the 0th component of the vector dom-
inates. Here n� and n are respectively DM and elec-
tron number densities. This makes is it manifest that
in the non-relativistic limit the scalar and vector media-
tors ought to give identical rates, up to the rescaling of
the coupling constants. Note that the vector here could
represent a kinematically-mixed dark photon in the in-
teraction basis, or another vector.

Given the similarity in these interactions, we can thus
consider a general mediator with coupling to electrons ge

and coupling to the DM g�. We will write the mass of
the mediator as mV , although it could also be a scalar.
The coupling between the electron density perturbation
nk and the external potential to the DM is then given by

Hext =

Z
d
3k

(2⇡)3
nk ⇥

✓
g�gee

ik·x

k2 + m
2
V

◆
. (8)

where the term in the parentheses represents the external
and thus unscreened potential due to the DM (where x
is DM position). In this basis, all in-medium corrections
will be included in S(!,k), as the propagator itself re-
ceives no corrections. In the particle physics literature
the interaction term in (8) is often written in terms of
the total potential felt by the electrons, especially so in
the context of a kinetically mixed dark photon mediator.
In this basis the propagator receives a multiplicative cor-
rection of the form 1/✏(!, k), and one defines a di↵erent
structure factor, without the screening factor. The ap-
proaches are equivalent. However by working with the
external rather than the total potential, the parallel be-
tween the scalar and the vector mediator in (7) is more
manifest.

Evaluating the Hamiltonian in (8) between initial and
final DM states of momentum pi and pf , respectively,
as well as initial and final electron fluid states |ii, |fi, we
find the matrix element

M =
g�ge

V (k2 + m
2
V )

hf |n�k|ii�pi�pf ,k (9)

where in the continuum limit we can write the Kronecker
delta function as a Dirac delta function, �pi�pf ,k =
(2⇡)3/V ⇥ �(pi � pf � k). We now use Fermi’s Golden
rule, and sum over initial states |ii weighted by e

��Ei/Z,
as well as over final states. Inserting a factor of unity as

S(q,!)
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FIRST PRINCIPLES DERIVATION

▸ Obtain rate from Fermi’s golden rule: 

▸ The inverse lattice vector G maps momentum transfer 
outside 1BZ back inside it 

▸ Including the inverse lattice vector allows to extend 
calculation to high DM masses
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where Wj(q) = 1
4Nmj

P
⌫,k

|q·✏⌫,k,j |2
!⌫,k

is the Debye-Waller factor. Crucially, the 1p
N

factor (which

originates from Eq. (33) and is to be squared when computing the rate), together with the prefactor

1
V in the rate formula Eq. (5), indicates that the rate � would scale as 1

N2 ! 0 unless the l sum

in Eq. (34) scales with N . This in turn requires the N terms in the l sum to add up coherently,

which is possible only when i) the phonon momentum k matches the momentum transfer q up

to reciprocal lattice vectors, which is the statement of lattice momentum conservation, and ii)

P
l
eVlj ⇠ N , i.e. the DM couples coherently across the crystal lattice. The second requirement

is trivially satisfied for DM couplings to the scalar quantities hN i, tr(hL ⌦ S i). For couplings

to the vector and tensor quantities hS i, hL i, hL ⌦ S i (modulo the trace part), on the other

hand, coherence is possible only when they are ordered (or polarized), so that they point in the

same directions in all primitive cells; in the case of hS i, this can be achieved by spontaneous

magnetic ordering for  = e, or by applying an external magnetic field for  = p, n.

Up to possible small corrections due to the presence of di↵erent isotopes, we can set eVlj = eVj ,

which is independent of l. We then obtain the single phonon excitation rate:

�(v) =
1

⌦

Z
d3q

(2⇡)3

3nX

⌫=1

2⇡ �
�
!⌫,k � !q

� 1

2!⌫,k

����
X

j

e�Wj(q)eiG·x0
j
q · ✏⇤⌫,k,j

p
mj

eVj(�q,v)

����
2

, (35)

where ⌦ is the volume of the primitive cell, x0
j is the equilibrium position of the jth ion with

respect to the cell center, and it is implicit that q = k +G where G is a reciprocal lattice vector.

To map q to a vector k within the 1BZ, we first write q =
P3

i=1 aibi, with bi the basis vectors

of the reciprocal lattice, then construct a set of eight candidate G vectors whose components in

reduced coordinates take the floor and ceiling integer values of ai, and finally choose the correct

G vector to be the one that minimizes |q � G|.

The DM-ion scattering potential eVj that enters Eq. (35) is simply given by Eq. (30) above, with

the l subscripts dropped, assuming hS i, hL i, hL ⌦ S i are ordered, as explained above; in the

absence of ordering, the corresponding terms should be dropped (with hL ⌦ S i set to its scalar

component 1
3 tr(hL ⌦ S i) 1 = 1

3 hL · S i 1). In the special case of SI interactions, one has only

c( )1 , so eVj =
P

 c
( )
1 hN ij , reproducing the results in Ref. [33], whereas in the full EFT, all four

crystal responses can contribute to phonon excitations.

Next we move on to magnons. They are collective spin excitations in a magnetically ordered

phase, and can thus respond to DM scattering only if the potentials eVlj depend on the magnetic

ions’ e↵ective spins Slj . Generally, Slj can come from the electrons’ spin and orbital angular

momenta, hSeilj and hLeilj , respectively. When projected onto the Hilbert space spanned by Slj ,

q = k+G

<latexit sha1_base64="YQFGMvh5iWJSw+XpmFeL6oL3qss=">AAACBHicbZDLSsNAFIZP6q3WW9RlN4NFEISSSEU3QtGFLivYC7ShTKaTdujk4sxEKCELN76KGxeKuPUh3Pk2TtMstPWHgY//nMOZ87sRZ1JZ1rdRWFpeWV0rrpc2Nre2d8zdvZYMY0Fok4Q8FB0XS8pZQJuKKU47kaDYdzltu+Orab39QIVkYXCnJhF1fDwMmMcIVtrqm+Wk53roPkUXKKNxio5ndJ32zYpVtTKhRbBzqECuRt/86g1CEvs0UIRjKbu2FSknwUIxwmla6sWSRpiM8ZB2NQbYp9JJsiNSdKidAfJCoV+gUOb+nkiwL+XEd3Wnj9VIztem5n+1bqy8cydhQRQrGpDZIi/mSIVomggaMEGJ4hMNmAim/4rICAtMlM6tpEOw509ehNZJ1a5VT29rlfplHkcRynAAR2DDGdThBhrQBAKP8Ayv8GY8GS/Gu/Exay0Y+cw+/JHx+QMknZaA</latexit>

18

(a) Diamond: diamond-C,
Si, Ge. Two interpene-
trating face centered cubic
lattices, one o↵set by 1/4
along the cubic diagonal.
Each atom has four nearest
neighbors, forming corner-
sharing tetrahedra.

(b) Zincblende: ZnS, GaAs,
InSb, GaSb. Same arrange-
ment as diamond cubic, but
with two atom types, each
occupying one of the face
centered cubic lattices.

(c) Rock salt: NaCl, MgO,
LiF, NaF, NaI, PbS, PbSe,
PbTe. The two atom types
each form a face centered
cubic lattice, o↵set by 1/2
along the cubic axis. One
atom type is octahedrally
coordinated to the other
atom type and vice versa.

(d) Fluorite: CaF
2
. Ca

ions form a face centered
cubic lattice. Each Ca ion
is surrounded by eight F
ions in a cubic geometry.

(e) CsI. The two atom
types form interpenetrat-
ing primitive cubic lattices,
with an atom of one type
at the center of each cube
of the other type.

(f) ↵-quartz: SiO
2
. Each

Si ion is bonded to four
O ions, forming corner-
sharing tetrahedra.

(g) Corundum: Al
2
O

3
.

Each Al ion is bonded to
six O ions, forming octahe-
dra with a mixture of cor-
ner, edge and face-sharing
connectivities.

(h) Rutile: MgF
2
. Each

Mg ion is bonded to six
F ions, forming octahedra
with a mixture of corner
and edge-sharing connec-
tivities.

(i) Wurtzite: GaN, AlN,
ZnO. One atom type is
tetrahedrally bonded to the
other atom type and vice
versa. The tetrahedra
are corner-sharing and the
structure is a member of
the hexagonal crystal sys-
tem.

(j) CaWO
4
. Each Ca ion is

bonded to eight O ions, and
each W ion is bonded to
four O ions, forming corner-
sharing octahedra.

Figure 4. Crystal structures of targets in Table I.
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Figure 1. Projected reach from single phonon excitations (dashed) and electron transitions (solid) for DM scattering mediated
by a kinetically mixed light dark photon (the smallest-gap target InSb su↵ers from slow convergence in the electronic transition
calculation at m� < 1MeV, for which we show results of the two most accurate runs with solid and dotted curves, see
Appendix A 1 for details). Nuclear recoils (not shown) can also probe this model, but the conclusion on which targets are
superior is the same as for the light hadrophilic mediator model. A detector threshold of 1meV is used for the phonon
calculations, and all transitions with energy deposition greater than the band gaps are included in electron excitations. The
freeze-in benchmark is taken from Refs. [12, 79], corrected by including plasmon decay for sub-MeV DM [80]. Stellar constraints
are from Ref. [81] and currently, the strongest direct detection constraints are from DAMIC [61] and Xenon10 [14, 21].

Thus materials having low energy optical phonon modes
are desirable to search for light dark matter; CsI, for
example, has particularly low-lying optical phonon exci-
tations, and its sensitivity to the lightest DM masses is
seen in Fig. 1.

We can also see that at higher masses, single optical
phonon production rates vary widely between materials.
This can be understood analytically. Consider first the
simplest case of a diatomic polar crystal (e.g. GaAs).
The dominant contribution to the q integral in Eq. (20)
is well within the 1BZ and therefore we can set G = 0,
Wj ' 0, and g(q,!) / q�1. Approximating Z⇤

j
' Z⇤

j
1,

and noting that Z⇤
1
= �Z⇤

2
⌘ Z⇤, we see that the rate

is dominated by the longitudinal optical (LO) mode, for
which one can show ✏LO,k,1 and ✏LO,k,2 are anti-parallel,
and |✏LO,k,j | =

p
µ12/mj in the limit k ! 0, where µ12 is

the reduced mass of the two ions. Further approximating
the phonon dispersion as constant and "1 ' "1 1, the

rate simplifies to

R /
q4
0

mcell

⇢�
m�

�e

"21!LO

Z⇤2

µ2
�e
µ12

log

✓
m�v20
!LO

◆

/
Z⇤2

A1A2"21

✓
meV

!LO

◆
⌘ Q . (25)

We call Q a quality factor, since it is the combination
of material-specific quantities that determines the direct
detection rate. A higher-Q material has a better reach
in the high mass regime. More concretely, we find

R '
1

kg yr

✓
Q

10�7

◆✓
me

m�

◆✓
m2

e

µ2
�e

◆✓
�e

10�39 cm2

◆

⇥ log

✓
qmax

qmin

◆
. (26)

Note that although we have focused on the special case
of diatomic polar crystals in order to derive analytic esti-
mates, similar considerations apply for more complicated
crystals. For example, it is not surprising that larger
Born e↵ective charges and lighter ions are helpful. When
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1) MATCH TO NR OPERATORS

▸ Recall we are interested in matrix elements of the form 

▸ We need to calculate the lattice potential in the NR basis

6

where l = 1, . . . , N labels the primitive cells, j = 1, . . . , n labels the ions within each primitive cell,

and xlj is the position of the ion labeled by l, j. Therefore,

eV(�q,v) =

Z
d3x eiq·x V(x,v) =

X

l,j

eiq·xlj eVlj(�q,v) , (4)

and we obtain

�(v) =
1

V

Z
d3q

(2⇡)3

X

⌫,k

����
X

l,j

h⌫,k| eiq·xlj eVlj(�q,v)|0i

����
2

2⇡ �
�
!⌫,k � !q

�
. (5)

The central quantity for the rate calculation is then the lattice potential eVlj which the DM

senses. This will depend on both the specific DM model and on the lattice degrees of freedom (e.g.

the nucleon/electron number or total electronic spin of the ions) available to scatter from. We will

determine the lattice potential eVlj in two steps previously mentioned in the introduction: first, in

Sec. II A, we review the procedure of matching relativistic DM models onto NR e↵ective operators;

next, in Sec. II B, we further reduce these e↵ective operators to DM couplings to the lattice degrees

of freedom. In the simplest case of SI interactions, there is only one e↵ective operator, O1 = 1,

and eVlj is a linear combination of hNpilj , hNnilj and hNeilj (proton, neutron and electron numbers

of the ions, respectively) [33]. More generally, a DM model can generate a larger set of e↵ective

operators that involve the spins, momentum transfer, and the relative velocity. The resulting

lattice potential eVlj depends on lattice degrees of freedom that include, in addition to the particle

numbers hN ilj ( = p, n, e), also their spins hS ilj , orbital angular momenta hL ilj , as well as

spin-orbit couplings hL ⌦ S ilj (a tensor with components hLi
 S

k
 ilj , see Eq. (27) below). The

last step in computing the scattering rate is to quantize eVlj in terms of phonon/magnon creation

and annihilation operators; we carry out this exercise in Sec. II C. The framework in this section

will provide the basis for concrete calculations of direct detection rates via single phonon and

magnon excitations, and will be applied to a set of benchmark models in Sec. III.

A. From Dark Matter Models to Nonrelativistic E↵ective Operators

In this subsection, we take a top-down approach in deriving the EFT, focusing on how the

e↵ective operators arise from NR matching of well-motivated relativistic models. While one can also

take a bottom-up approach as in e.g. Ref. [57], and construct the EFT by enumerating operators

consistent with Galilean and translation invariance, we find it useful to have a set of benchmark

UV models to develop intuition on how realistic theories of DM, which often predict correlations

between EFT operators [60, 66], can be probed by experiment.

Trickle, Zhang, KZ 2009.13534
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Model UV Lagrangian NR EFT Responses

Standard SI
�
�
g�JS,� + g JS, 

�
or

c( )
1 =

g�g
eff
 

q2+m2
�,V

N
Vµ

�
g�J

µ
V,� � g J

µ
V, 

�

Standard SD a Vµ

�
g�J

µ
A,� + g J

µ
A, 

�
c( )
4 =

4g�g 
q2+m2

V
S

Other

scalar

mediators

P⇥ S �
�
g�JP,� + g JS, 

�
c( )
11 =

m 
m�

g�g
eff
 

q2+m2
�

N

S⇥P �
�
g�JS,� + g JP, 

�
c( )
10 = � g�g 

q2+m2
�

S

P⇥P �
�
g�JP,� + g JP, 

�
c( )
6 =

m 
m�

g�g 
q2+m2

�
S

Multipole

DM

models

Electric dipole Vµ

⇣
g�J

µ
edm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
11 = �m 

m�

g�g
eff
 

q2+m2
V

N

Magnetic dipole Vµ

⇣
g�J

µ
mdm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘

c( )
1 = q2

4m2
�

g�g
eff
 

q2+m2
V

N, S, L
c( )
4 = eµe↵

 
q2

m�m 

g�g
eff
 

q2+m2
V

c( )
5 =

m 
m�

g�g
eff
 

q2+m2
V

c( )
6 = �eµe↵

 

m 

m�

g�g
eff
 

q2+m2
V

Anapole Vµ

⇣
g�J

µ
ana,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘ c( )
8 = q2

2m2
�

g�g
eff
 

q2+m2
V N, S, L

c( )
9 = �eµe↵

 
q2

2m2
�

g�g
eff
 

q2+m2
V

(L · S)-interacting Vµ

�
g�J

µ
V,� + g (J

µ
mdm, + Jµ

V 2, )
�

c( )
1 = (1 + ) q2

4m2
 

g�g 
q2+m2

V

N,S, L⌦ S
c( )
3 =

g�g 
q2+m2

V

c( )
4 = q2

m�m 

g�g 
q2+m2

V

c( )
6 = �m 

m�

g�g 
q2+m2

V

a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. Each model is matched

onto the NR EFT by multiplying the currents J�J (defined in Table I) and the mediator propagator,

and accounting for in-medium e↵ects (if present) according to Eq. (14). The leading order nonvanishing

coe�cients c( )i for the operators O
( )
i (defined in Table III) are listed in the second to last column. For

the multipole DM models, �eµ ⌘ eµ � 1 where eµ is half the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9,

eµe ' 1), and we have defined eµe↵
 ⌘ 1 + g 

geff
 
�eµ . The last column lists the lattice degrees of freedom which

enter the scattering potential, Eq. (30). All models can excite phonons, and models with S or L response

generated by DM-electron coupling can also excite magnons.

For each UV model, the coe�cients c( )i of the NR operators generated at leading order are given

in Table II. These coe�cients contain all the information for constructing the lattice potential eVlj

for a given DM model, and will be exploited below for computing the DM detection rate. The list

of NR operators O
( )
i is already familiar from previous works on the EFT for direct detection via
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where l = 1, . . . , N labels the primitive cells, j = 1, . . . , n labels the ions within each primitive cell,

and xlj is the position of the ion labeled by l, j. Therefore,

eV(�q,v) =

Z
d3x eiq·x V(x,v) =

X

l,j

eiq·xlj eVlj(�q,v) , (4)

and we obtain

�(v) =
1

V

Z
d3q

(2⇡)3

X

⌫,k

����
X

l,j

h⌫,k| eiq·xlj eVlj(�q,v)|0i

����
2

2⇡ �
�
!⌫,k � !q

�
. (5)

The central quantity for the rate calculation is then the lattice potential eVlj which the DM

senses. This will depend on both the specific DM model and on the lattice degrees of freedom (e.g.

the nucleon/electron number or total electronic spin of the ions) available to scatter from. We will

determine the lattice potential eVlj in two steps previously mentioned in the introduction: first, in

Sec. II A, we review the procedure of matching relativistic DM models onto NR e↵ective operators;

next, in Sec. II B, we further reduce these e↵ective operators to DM couplings to the lattice degrees

of freedom. In the simplest case of SI interactions, there is only one e↵ective operator, O1 = 1,

and eVlj is a linear combination of hNpilj , hNnilj and hNeilj (proton, neutron and electron numbers

of the ions, respectively) [33]. More generally, a DM model can generate a larger set of e↵ective

operators that involve the spins, momentum transfer, and the relative velocity. The resulting

lattice potential eVlj depends on lattice degrees of freedom that include, in addition to the particle

numbers hN ilj ( = p, n, e), also their spins hS ilj , orbital angular momenta hL ilj , as well as

spin-orbit couplings hL ⌦ S ilj (a tensor with components hLi
 S

k
 ilj , see Eq. (27) below). The

last step in computing the scattering rate is to quantize eVlj in terms of phonon/magnon creation

and annihilation operators; we carry out this exercise in Sec. II C. The framework in this section

will provide the basis for concrete calculations of direct detection rates via single phonon and

magnon excitations, and will be applied to a set of benchmark models in Sec. III.

A. From Dark Matter Models to Nonrelativistic E↵ective Operators

In this subsection, we take a top-down approach in deriving the EFT, focusing on how the

e↵ective operators arise from NR matching of well-motivated relativistic models. While one can also

take a bottom-up approach as in e.g. Ref. [57], and construct the EFT by enumerating operators

consistent with Galilean and translation invariance, we find it useful to have a set of benchmark

UV models to develop intuition on how realistic theories of DM, which often predict correlations

between EFT operators [60, 66], can be probed by experiment.
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Interaction Type NR Operators
Point-like

Response

Composite

Response

Coupling to charge, v?-independent
O

( )
1 = 1

N -
O

( )
11 = S� ·

iq
m 

Coupling to charge, v?-dependent
O

( )
5 = S� ·

� iq
m 

⇥ v?�
N L

O
( )
8 = S� · v?

Coupling to spin, v?-independent

O
( )
4 = S� · S 

S -
O

( )
6 =

�
S� ·

q
m 

��
S ·

q
m 

�

O
( )
9 = S� ·

�
S ⇥

iq
m 

�

O
( )
10 = S ·

iq
m 

Coupling to spin, v?-dependent

O
( )
3 = S ·

� iq
m 

⇥ v?�

S L ⌦ S

O
( )
7 = S · v?

O
( )
12 = S� ·

�
S ⇥ v?�

O
( )
13 =

�
S� · v?��

S ·
iq
m 

�

O
( )
14 =

�
S · v?��

S� ·
iq
m 

�

O
( )
15 =

�
S� ·

� iq
m 

⇥ v?���
S ·

iq
m 

�

TABLE III. NR e↵ective operators relevant for DM scattering defined in Eq. (11), organized into four

categories, and the (point-like and composite) crystal responses generated. Here � is the DM and  is a

SM particle that can be the proton, neutron or electron. q is the momentum transfer from the DM to the

SM target. v?
⌘

P
2m�

�
K

2m 
, defined in Eq. (13), is the component of the relative velocity perpendicular to

q. Previous calculations [33, 34, 52, 53, 56] focused on phonon and magnon excitations via v?-independent

couplings to charge and spin, corresponding to the first and third categories listed here. In this work we

extend the calculations to all operators.

where " is the dielectric tensor, and gp,e are the tree-level (unscreened) couplings. The same is

true for a scalar mediator coupling to the electron’s scalar current JS,e [75]. For single phonon and

magnon excitations below the electronic band gap that we focus on in this work, one can use the

high-frequency dielectric "1, which captures the screening due to fast electron responses [33, 53, 76].

We will study the reach phonon and magnon detectors have to these benchmark models in

Sec. III, after developing the formalism of rate calculations within the EFT in the rest of this

section.
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�
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The central quantity for the rate calculation is then the lattice potential eVlj which the DM

senses. This will depend on both the specific DM model and on the lattice degrees of freedom (e.g.

the nucleon/electron number or total electronic spin of the ions) available to scatter from. We will

determine the lattice potential eVlj in two steps previously mentioned in the introduction: first, in

Sec. II A, we review the procedure of matching relativistic DM models onto NR e↵ective operators;

next, in Sec. II B, we further reduce these e↵ective operators to DM couplings to the lattice degrees

of freedom. In the simplest case of SI interactions, there is only one e↵ective operator, O1 = 1,

and eVlj is a linear combination of hNpilj , hNnilj and hNeilj (proton, neutron and electron numbers

of the ions, respectively) [33]. More generally, a DM model can generate a larger set of e↵ective

operators that involve the spins, momentum transfer, and the relative velocity. The resulting

lattice potential eVlj depends on lattice degrees of freedom that include, in addition to the particle

numbers hN ilj ( = p, n, e), also their spins hS ilj , orbital angular momenta hL ilj , as well as

spin-orbit couplings hL ⌦ S ilj (a tensor with components hLi
 S

k
 ilj , see Eq. (27) below). The

last step in computing the scattering rate is to quantize eVlj in terms of phonon/magnon creation

and annihilation operators; we carry out this exercise in Sec. II C. The framework in this section

will provide the basis for concrete calculations of direct detection rates via single phonon and

magnon excitations, and will be applied to a set of benchmark models in Sec. III.

A. From Dark Matter Models to Nonrelativistic E↵ective Operators

In this subsection, we take a top-down approach in deriving the EFT, focusing on how the

e↵ective operators arise from NR matching of well-motivated relativistic models. While one can also

take a bottom-up approach as in e.g. Ref. [57], and construct the EFT by enumerating operators

consistent with Galilean and translation invariance, we find it useful to have a set of benchmark

UV models to develop intuition on how realistic theories of DM, which often predict correlations

between EFT operators [60, 66], can be probed by experiment.
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We can carry out the same calculation for the other operators in Table III. The result is

eVlj(�q,v) =
X

 =p,n,e

c( )1 hN ilj

+ c( )3


�

iq

m 
v0

·
�
q̂ ⇥ hS ilj

�
+

q2

2m2
 

(�ik � q̂iq̂k)
�
hL ⌦ S ilj

�ik
�

+ c( )4 S� · hS ilj

+ c( )5


iq

m 
·
�
v0

⇥ S�
�
hN ilj +

q2

2m2
 

S� ·
�
1 � q̂q̂

�
· hL ilj

�

+ c( )6
q2

m2
 

�
q̂ · S�

��
q̂ · hS ilj

�

+ c( )7


v0

· hS ilj + ✏ikk
0 iqk

0

2m�

�
hL ⌦ S ilj

�ik
�

+ c( )8

�
v0

· S�
�
hN ilj +

iq

2m 
S� ·

�
q̂ ⇥ hL ilj

��

+ c( )9
iq

m 
S� ·

�
hS ilj ⇥ q̂

�

+ c( )10
iq

m 
· hS ilj

+ c( )11
iq

m 
· S� hN ilj

+ c( )12

�
v0

⇥ S�
�

· hS ilj +
iq

2m 

�
(q̂ · S�)�

ik
� q̂kSi

�

��
hL ⌦ S ilj

�ik
�

+ c( )13


iq

m 

�
v0

· S�
��
q̂ · hS ilj

�
+

q2

2m2
 

�
q̂ ⇥ S�

�
· hL ⌦ S ilj · q̂

�

+ c( )14


iq

m 

�
q̂ · S�

��
v0

· hS ilj

�
� ✏ikk

0 q2

2m2
 

q̂k
0�
q̂ · S�

��
hL ⌦ S ilj

�ik
�

+ c( )15


�

q2

m2
 

�
q̂ · (v0

⇥ S�)
��
q̂ · hS ilj

�

+
iq3

2m3
 

S� ·
�
1 � q̂q̂

�
· hL ⌦ S ilj · q̂

�
, (30)

where

v0
⌘ v �

q

2m�
. (31)

and summation over repeated Cartesian indices is implicit. Here and in what follows, we denote

q ⌘ |q| (so that q2 ⌘ q2 6= qµqµ), and q̂ ⌘ q/q.

To summarize, in the long wavelength limit, the DM-ion scattering potential eVlj involves a

set of quantities that characterize properties of the ion: the total numbers hN i, spins hS i and

orbital angular momenta hL i of the constituent particles  = p, n, e, as well as the spin-orbit
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▸ Recall, displacements contain phonon annihilation and 
creation operators 

▸ Evaluate potential, taking one type of each operator in 
table on previous page
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where Wj(q) = 1
4Nmj

P
⌫,k

|q·✏⌫,k,j |2
!⌫,k

is the Debye-Waller factor. Crucially, the 1p
N

factor (which

originates from Eq. (33) and is to be squared when computing the rate), together with the prefactor

1
V in the rate formula Eq. (5), indicates that the rate � would scale as 1

N2 ! 0 unless the l sum

in Eq. (34) scales with N . This in turn requires the N terms in the l sum to add up coherently,

which is possible only when i) the phonon momentum k matches the momentum transfer q up

to reciprocal lattice vectors, which is the statement of lattice momentum conservation, and ii)

P
l
eVlj ⇠ N , i.e. the DM couples coherently across the crystal lattice. The second requirement

is trivially satisfied for DM couplings to the scalar quantities hN i, tr(hL ⌦ S i). For couplings

to the vector and tensor quantities hS i, hL i, hL ⌦ S i (modulo the trace part), on the other

hand, coherence is possible only when they are ordered (or polarized), so that they point in the

same directions in all primitive cells; in the case of hS i, this can be achieved by spontaneous

magnetic ordering for  = e, or by applying an external magnetic field for  = p, n.

Up to possible small corrections due to the presence of di↵erent isotopes, we can set eVlj = eVj ,

which is independent of l. We then obtain the single phonon excitation rate:

�(v) =
1

⌦

Z
d3q

(2⇡)3

3nX

⌫=1

2⇡ �
�
!⌫,k � !q

� 1

2!⌫,k

����
X

j

e�Wj(q)eiG·x0
j
q · ✏⇤⌫,k,j

p
mj

eVj(�q,v)

����
2

, (35)

where ⌦ is the volume of the primitive cell, x0
j is the equilibrium position of the jth ion with

respect to the cell center, and it is implicit that q = k +G where G is a reciprocal lattice vector.

To map q to a vector k within the 1BZ, we first write q =
P3

i=1 aibi, with bi the basis vectors

of the reciprocal lattice, then construct a set of eight candidate G vectors whose components in

reduced coordinates take the floor and ceiling integer values of ai, and finally choose the correct

G vector to be the one that minimizes |q � G|.

The DM-ion scattering potential eVj that enters Eq. (35) is simply given by Eq. (30) above, with

the l subscripts dropped, assuming hS i, hL i, hL ⌦ S i are ordered, as explained above; in the

absence of ordering, the corresponding terms should be dropped (with hL ⌦ S i set to its scalar

component 1
3 tr(hL ⌦ S i) 1 = 1

3 hL · S i 1). In the special case of SI interactions, one has only

c( )1 , so eVj =
P

 c
( )
1 hN ij , reproducing the results in Ref. [33], whereas in the full EFT, all four

crystal responses can contribute to phonon excitations.

Next we move on to magnons. They are collective spin excitations in a magnetically ordered

phase, and can thus respond to DM scattering only if the potentials eVlj depend on the magnetic

ions’ e↵ective spins Slj . Generally, Slj can come from the electrons’ spin and orbital angular

momenta, hSeilj and hLeilj , respectively. When projected onto the Hilbert space spanned by Slj ,
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B. Matching E↵ective Operators Onto Lattice Degrees of Freedom

We now match the e↵ective operators O
( )
i onto lattice degrees of freedom (highlighted for

clarity) that appear in the DM-ion scattering potentials eVlj . In Table III, we have organized

the operators into four categories, according to whether O
( )
i / 1 (“coupling to charge”) or

O
( )
i / S (“coupling to spin”), and whether the operator involves v?. Since our focus is light

DM that evades conventional searches via nuclear recoils and electronic excitations, we will work

in the long wavelength limit, where the momentum transfer is small compared to the inverse ionic

radius (corresponding to m� . 10MeV), so at leading order, the only relevant degrees of freedom

are those that characterize the ion as a whole. Intuitively, we expect couplings to charge and spin of

a consituent particle  = p, n, e to match onto couplings to the total number hN i and spin hS i of

that particle, respectively. These are point-like degrees of freedom that do not involve the internal

motions of the ion constituents; they are the only degrees of freedom to which DM couples if the

operator is velocity-independent. On the other hand, velocity-dependent operators are expected to

couple DM to the motion of  particles inside an ion, manifest as the total orbital angular momenta

hL i and spin-orbit couplings hL ⌦ S i, which are “composite” degrees of freedom. In the rest

of this subsection, we will see concretely how these intuitive expectations are borne out. The final

result of this calculation is the lattice potential in terms of the NR EFT operator coe�cients c( )i ,

given below in Eq. (30).

Since the calculation proceeds in much the same way for all operators in the same category, to

avoid tedious repetition we pick one operator from each category to explain the procedure: O
( )
1 ,

O
( )
8 , O

( )
4 and O

( )
3 , with  taken to be one of p, n, e. To obtain the DM-ion scattering potentials

eVlj , we need to compute the matrix elements of these operators between the incoming and outgoing

states of the DM-ion system. Since the initial and final DM states are plane waves, the DM part

of the matrix element simply yields a phase factor, so

eVlj(�q,v) �

X

↵


c( )1

⌦
eiq·x↵

↵
lj
+ c( )4 S� ·

⌦
eiq·x↵S ,↵

↵
lj

+ c( )8 S� ·
⌦
eiq·x↵v?

↵

↵
lj
+ c( )3

iq

m 
·
⌦
eiq·x↵ v?

↵ ⇥ S ,↵
↵
lj

�
, (15)

where ↵ runs over all the  fermions associated with the ion labeled by l, j, and h·i represents the

ionic expectation value (assuming the ionic state is unchanged for the low energy depositions of

interest). In the long wavelength limit, we can expand eiq·x↵ = 1 + iq · x↵ + . . . . In the following

two paragraphs, we discuss in turn the v?-independent operators O
( )
1 , O

( )
4 (first line of Eq. (15))

and the v?-dependent operators O
( )
8 , O

( )
3 (second line of Eq. (15)).
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a) v?
-independent operators: O

( )
1 , O

( )
4 . For these, it is su�cient to set eiq·x↵ ! 1:

c( )1

X

↵

⌦
eiq·x↵

↵
lj
' c( )1

X

↵

h1ilj = c( )1 hN ilj , (16)

c( )4 S� ·

X

↵

⌦
eiq·x↵S ,↵

↵
lj
' c( )4 S� ·

X

↵

hS ,↵ilj = c( )4 S� · hS ilj . (17)

So we obtain, respectively, the expectation values of the  particle number and total spin for ion

l, j, as one would expect for the lowest order “coupling to charge” (O( )
1 ) and “coupling to spin”

(O( )
4 ) operators.

b) v?
-dependent operators: O

( )
8 , O

( )
3 . We can write v?

↵ as

v?
↵ = v �

q

2m�
�

(k + k0)↵
2m 

= v �
q

2m�
+

i

2m 

 !
r ↵ , (18)

where v = p
m�

is the incoming DM’s velocity. The first two terms do not act on the  wavefunctions,

so just as in the v?-independent case,

X

↵

⌧
eiq·x↵

✓
v �

q

2m�

◆�

lj

'

✓
v �

q

2m�

◆ X

↵

h1ilj =

✓
v �

q

2m�

◆
hN ilj , (19)

X

↵

⌧
eiq·x↵

✓
v �

q

2m�

◆
⇥ S ,↵

�

lj

'

✓
v �

q

2m�

◆
⇥

X

↵

hS ,↵ilj =

✓
v �

q

2m�

◆
⇥ hS ilj . (20)

The last term in Eq. (18), on the other hand, is the probability current operator, j↵ = i
2m 

 !
r ↵.

The treatment of this term is analogous to the nuclear recoil calculation [57]. First, we note that

the expectation value of j↵ is zero; assuming the ionic states are energy eigenstates implies that the

probability density is constant in time, and therefore by the continuity equation, @ihji↵ilj = 0. This

means that ji↵ can be written as a total derivative, ji↵ = @k
�
xi↵j

k
↵

�
, and therefore has vanishing

expectation value. The leading contribution then comes from expanding the eiq·x↵ to the next

order in q:

X

↵

⌦
eiq·x↵j↵

↵
lj
' i

X

↵

⌦
(q · x↵) j↵

↵
lj
, (21)

X

↵

⌦
eiq·x↵ j↵ ⇥ S ,↵

↵
lj
' i

X

↵

⌦
(q · x↵) j↵ ⇥ S ,↵

↵
lj
. (22)

To go further, we note that
⌦
xi↵j

k
↵

↵
lj

is anti-symmetric in i $ k since the symmetric part can be

written as a total derivative, xi↵j
k
↵ + xk↵j

i
↵ = @i0

�
xi↵x

k
↵j

i0
↵

�
and therefore has vanishing expectation

value. Expanding the anti-symmetric part gives

⌦
xi↵j

k
↵

↵
lj
=

1

2

⌦
xi↵j

k
↵ � xk↵j

i
↵

↵
lj
=

i

4m 

⇣⌦
xi↵
�!
r

k
↵

↵
lj
�

⌦
xi↵
 �
r

k
↵

↵
lj
�

⌦
xk↵
�!
r

i
↵

↵
lj
+

⌦
xk↵
 �
r

i
↵

↵
lj

⌘
, (23)
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The treatment of this term is analogous to the nuclear recoil calculation [57]. First, we note that

the expectation value of j↵ is zero; assuming the ionic states are energy eigenstates implies that the

probability density is constant in time, and therefore by the continuity equation, @ihji↵ilj = 0. This

means that ji↵ can be written as a total derivative, ji↵ = @k
�
xi↵j

k
↵

�
, and therefore has vanishing

expectation value. The leading contribution then comes from expanding the eiq·x↵ to the next

order in q:

X

↵

⌦
eiq·x↵j↵

↵
lj
' i

X

↵

⌦
(q · x↵) j↵

↵
lj
, (21)

X

↵

⌦
eiq·x↵ j↵ ⇥ S ,↵

↵
lj
' i

X

↵

⌦
(q · x↵) j↵ ⇥ S ,↵

↵
lj
. (22)

To go further, we note that
⌦
xi↵j

k
↵

↵
lj

is anti-symmetric in i $ k since the symmetric part can be

written as a total derivative, xi↵j
k
↵ + xk↵j

i
↵ = @i0

�
xi↵x

k
↵j

i0
↵

�
and therefore has vanishing expectation

value. Expanding the anti-symmetric part gives

⌦
xi↵j

k
↵

↵
lj
=

1

2

⌦
xi↵j

k
↵ � xk↵j

i
↵

↵
lj
=

i

4m 

⇣⌦
xi↵
�!
r

k
↵

↵
lj
�

⌦
xi↵
 �
r

k
↵

↵
lj
�

⌦
xk↵
�!
r

i
↵

↵
lj
+

⌦
xk↵
 �
r

i
↵

↵
lj

⌘
, (23)



LATTICE POTENTIAL

▸ Recall, displacements contain phonon annihilation and 
creation operators 

▸ Evaluate potential, taking one type of each operator in 
table on previous page
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where Wj(q) = 1
4Nmj

P
⌫,k

|q·✏⌫,k,j |2
!⌫,k

is the Debye-Waller factor. Crucially, the 1p
N

factor (which

originates from Eq. (33) and is to be squared when computing the rate), together with the prefactor

1
V in the rate formula Eq. (5), indicates that the rate � would scale as 1

N2 ! 0 unless the l sum

in Eq. (34) scales with N . This in turn requires the N terms in the l sum to add up coherently,

which is possible only when i) the phonon momentum k matches the momentum transfer q up

to reciprocal lattice vectors, which is the statement of lattice momentum conservation, and ii)

P
l
eVlj ⇠ N , i.e. the DM couples coherently across the crystal lattice. The second requirement

is trivially satisfied for DM couplings to the scalar quantities hN i, tr(hL ⌦ S i). For couplings

to the vector and tensor quantities hS i, hL i, hL ⌦ S i (modulo the trace part), on the other

hand, coherence is possible only when they are ordered (or polarized), so that they point in the

same directions in all primitive cells; in the case of hS i, this can be achieved by spontaneous

magnetic ordering for  = e, or by applying an external magnetic field for  = p, n.

Up to possible small corrections due to the presence of di↵erent isotopes, we can set eVlj = eVj ,

which is independent of l. We then obtain the single phonon excitation rate:

�(v) =
1

⌦

Z
d3q

(2⇡)3

3nX

⌫=1

2⇡ �
�
!⌫,k � !q

� 1

2!⌫,k

����
X

j

e�Wj(q)eiG·x0
j
q · ✏⇤⌫,k,j

p
mj

eVj(�q,v)

����
2

, (35)

where ⌦ is the volume of the primitive cell, x0
j is the equilibrium position of the jth ion with

respect to the cell center, and it is implicit that q = k +G where G is a reciprocal lattice vector.

To map q to a vector k within the 1BZ, we first write q =
P3

i=1 aibi, with bi the basis vectors

of the reciprocal lattice, then construct a set of eight candidate G vectors whose components in

reduced coordinates take the floor and ceiling integer values of ai, and finally choose the correct

G vector to be the one that minimizes |q � G|.

The DM-ion scattering potential eVj that enters Eq. (35) is simply given by Eq. (30) above, with

the l subscripts dropped, assuming hS i, hL i, hL ⌦ S i are ordered, as explained above; in the

absence of ordering, the corresponding terms should be dropped (with hL ⌦ S i set to its scalar

component 1
3 tr(hL ⌦ S i) 1 = 1

3 hL · S i 1). In the special case of SI interactions, one has only

c( )1 , so eVj =
P

 c
( )
1 hN ij , reproducing the results in Ref. [33], whereas in the full EFT, all four

crystal responses can contribute to phonon excitations.

Next we move on to magnons. They are collective spin excitations in a magnetically ordered

phase, and can thus respond to DM scattering only if the potentials eVlj depend on the magnetic

ions’ e↵ective spins Slj . Generally, Slj can come from the electrons’ spin and orbital angular

momenta, hSeilj and hLeilj , respectively. When projected onto the Hilbert space spanned by Slj ,

13

B. Matching E↵ective Operators Onto Lattice Degrees of Freedom

We now match the e↵ective operators O
( )
i onto lattice degrees of freedom (highlighted for

clarity) that appear in the DM-ion scattering potentials eVlj . In Table III, we have organized

the operators into four categories, according to whether O
( )
i / 1 (“coupling to charge”) or

O
( )
i / S (“coupling to spin”), and whether the operator involves v?. Since our focus is light

DM that evades conventional searches via nuclear recoils and electronic excitations, we will work

in the long wavelength limit, where the momentum transfer is small compared to the inverse ionic

radius (corresponding to m� . 10MeV), so at leading order, the only relevant degrees of freedom

are those that characterize the ion as a whole. Intuitively, we expect couplings to charge and spin of

a consituent particle  = p, n, e to match onto couplings to the total number hN i and spin hS i of

that particle, respectively. These are point-like degrees of freedom that do not involve the internal

motions of the ion constituents; they are the only degrees of freedom to which DM couples if the

operator is velocity-independent. On the other hand, velocity-dependent operators are expected to

couple DM to the motion of  particles inside an ion, manifest as the total orbital angular momenta

hL i and spin-orbit couplings hL ⌦ S i, which are “composite” degrees of freedom. In the rest

of this subsection, we will see concretely how these intuitive expectations are borne out. The final

result of this calculation is the lattice potential in terms of the NR EFT operator coe�cients c( )i ,

given below in Eq. (30).

Since the calculation proceeds in much the same way for all operators in the same category, to

avoid tedious repetition we pick one operator from each category to explain the procedure: O
( )
1 ,

O
( )
8 , O

( )
4 and O

( )
3 , with  taken to be one of p, n, e. To obtain the DM-ion scattering potentials

eVlj , we need to compute the matrix elements of these operators between the incoming and outgoing

states of the DM-ion system. Since the initial and final DM states are plane waves, the DM part

of the matrix element simply yields a phase factor, so

eVlj(�q,v) �

X

↵


c( )1

⌦
eiq·x↵

↵
lj
+ c( )4 S� ·

⌦
eiq·x↵S ,↵

↵
lj

+ c( )8 S� ·
⌦
eiq·x↵v?

↵

↵
lj
+ c( )3

iq

m 
·
⌦
eiq·x↵ v?

↵ ⇥ S ,↵
↵
lj

�
, (15)

where ↵ runs over all the  fermions associated with the ion labeled by l, j, and h·i represents the

ionic expectation value (assuming the ionic state is unchanged for the low energy depositions of

interest). In the long wavelength limit, we can expand eiq·x↵ = 1 + iq · x↵ + . . . . In the following

two paragraphs, we discuss in turn the v?-independent operators O
( )
1 , O

( )
4 (first line of Eq. (15))

and the v?-dependent operators O
( )
8 , O

( )
3 (second line of Eq. (15)).
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which after integration by parts can be simplified to

⌦
xi↵j

k
↵

↵
lj
=

i

2m 

⌦
xi

�!
r

k
↵ � xk

�!
r

i
↵

↵
lj
= �

1

2m 
✏ikk0hL

k0
↵ ilj , (24)

where L↵ is the angular momentum operator. We therefore have

X

↵

⌦
eiq·x↵j↵

↵
lj

'
iq

2m 
⇥

X

↵

hL ,↵ilj =
iq

2m 
⇥ hL ilj , (25)

X

↵

⌦
eiq·x↵ j↵ ⇥ S ,↵

↵
lj

'
i

2m 

X

↵

h(q ⇥ L ,↵) ⇥ S ,↵ilj

=
i

2m 

⇣X

↵

hL ,↵ ⌦ S ,↵ilj · q �

X

↵

hL ,↵ · S ,↵ilj q
⌘

=
i

2m 

�
hL ⌦ S ilj · q � hL · S ilj q

�

=
i

2m 

h
hL ⌦ S ilj · q � tr

�
hL ⌦ S ilj

�
q
i
. (26)

where

�
hL ⌦ S ilj

�ik
= hLi

 S
k
 ilj ⌘

X

↵

hLi
 ,↵S

k
 ,↵ilj (27)

are Cartesian components of the spin-orbit coupling tensor. Combining these with Eqs. (19) and

(20), we finally obtain

c( )8 S� ·

X

↵

⌦
eiq·x↵v?

↵

↵
lj
= c( )8 S� ·

✓
v �

q

2m�

◆
hN ilj +

iq

2m 
⇥ hL ilj

�
, (28)

c( )3
iq

m 
·

X

↵

⌦
eiq·x↵ v?

↵ ⇥ S ,↵
↵
lj

= c( )3

✓
iq

m 
⇥ v

◆
· hS ilj +

1

2m2
 

(q2�ik � qiqk)
�
hL ⌦ S ilj

�ik
�
. (29)

As alluded to previously, the v?-dependent operators O
( )
8 and O

( )
3 induce DM couplings to

not only the  particle number and total spin, but also its total orbital angular momentum and

spin-orbit coupling.

15

which after integration by parts can be simplified to

⌦
xi↵j

k
↵

↵
lj
=

i

2m 

⌦
xi

�!
r

k
↵ � xk

�!
r

i
↵

↵
lj
= �

1

2m 
✏ikk0hL

k0
↵ ilj , (24)

where L↵ is the angular momentum operator. We therefore have

X

↵

⌦
eiq·x↵j↵

↵
lj

'
iq

2m 
⇥

X

↵

hL ,↵ilj =
iq

2m 
⇥ hL ilj , (25)

X

↵

⌦
eiq·x↵ j↵ ⇥ S ,↵

↵
lj

'
i

2m 

X

↵

h(q ⇥ L ,↵) ⇥ S ,↵ilj

=
i

2m 

⇣X

↵

hL ,↵ ⌦ S ,↵ilj · q �

X

↵

hL ,↵ · S ,↵ilj q
⌘

=
i

2m 

�
hL ⌦ S ilj · q � hL · S ilj q

�

=
i

2m 

h
hL ⌦ S ilj · q � tr

�
hL ⌦ S ilj

�
q
i
. (26)

where

�
hL ⌦ S ilj

�ik
= hLi

 S
k
 ilj ⌘

X

↵

hLi
 ,↵S

k
 ,↵ilj (27)

are Cartesian components of the spin-orbit coupling tensor. Combining these with Eqs. (19) and

(20), we finally obtain

c( )8 S� ·

X

↵

⌦
eiq·x↵v?

↵

↵
lj
= c( )8 S� ·

✓
v �

q

2m�

◆
hN ilj +

iq

2m 
⇥ hL ilj

�
, (28)

c( )3
iq

m 
·

X

↵

⌦
eiq·x↵ v?

↵ ⇥ S ,↵
↵
lj

= c( )3

✓
iq

m 
⇥ v

◆
· hS ilj +

1

2m2
 

(q2�ik � qiqk)
�
hL ⌦ S ilj

�ik
�
. (29)

As alluded to previously, the v?-dependent operators O
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not only the  particle number and total spin, but also its total orbital angular momentum and

spin-orbit coupling.
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�
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not only the  particle number and total spin, but also its total orbital angular momentum and

spin-orbit coupling.
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As alluded to previously, the v?-dependent operators O
( )
8 and O

( )
3 induce DM couplings to

not only the  particle number and total spin, but also its total orbital angular momentum and

spin-orbit coupling.
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a) v?
-independent operators: O

( )
1 , O

( )
4 . For these, it is su�cient to set eiq·x↵ ! 1:

c( )1

X

↵

⌦
eiq·x↵

↵
lj
' c( )1

X

↵

h1ilj = c( )1 hN ilj , (16)

c( )4 S� ·

X

↵

⌦
eiq·x↵S ,↵

↵
lj
' c( )4 S� ·

X

↵

hS ,↵ilj = c( )4 S� · hS ilj . (17)

So we obtain, respectively, the expectation values of the  particle number and total spin for ion

l, j, as one would expect for the lowest order “coupling to charge” (O( )
1 ) and “coupling to spin”

(O( )
4 ) operators.

b) v?
-dependent operators: O

( )
8 , O

( )
3 . We can write v?

↵ as

v?
↵ = v �

q

2m�
�

(k + k0)↵
2m 

= v �
q

2m�
+

i

2m 

 !
r ↵ , (18)

where v = p
m�

is the incoming DM’s velocity. The first two terms do not act on the  wavefunctions,

so just as in the v?-independent case,

X

↵

⌧
eiq·x↵

✓
v �

q

2m�

◆�

lj

'

✓
v �

q

2m�

◆ X

↵

h1ilj =

✓
v �

q

2m�

◆
hN ilj , (19)

X

↵

⌧
eiq·x↵

✓
v �

q

2m�

◆
⇥ S ,↵

�

lj

'

✓
v �

q

2m�

◆
⇥

X

↵

hS ,↵ilj =

✓
v �

q

2m�

◆
⇥ hS ilj . (20)

The last term in Eq. (18), on the other hand, is the probability current operator, j↵ = i
2m 

 !
r ↵.

The treatment of this term is analogous to the nuclear recoil calculation [57]. First, we note that

the expectation value of j↵ is zero; assuming the ionic states are energy eigenstates implies that the

probability density is constant in time, and therefore by the continuity equation, @ihji↵ilj = 0. This

means that ji↵ can be written as a total derivative, ji↵ = @k
�
xi↵j

k
↵

�
, and therefore has vanishing

expectation value. The leading contribution then comes from expanding the eiq·x↵ to the next

order in q:

X

↵

⌦
eiq·x↵j↵

↵
lj
' i

X

↵

⌦
(q · x↵) j↵

↵
lj
, (21)

X

↵

⌦
eiq·x↵ j↵ ⇥ S ,↵

↵
lj
' i

X

↵

⌦
(q · x↵) j↵ ⇥ S ,↵

↵
lj
. (22)

To go further, we note that
⌦
xi↵j

k
↵

↵
lj

is anti-symmetric in i $ k since the symmetric part can be

written as a total derivative, xi↵j
k
↵ + xk↵j

i
↵ = @i0

�
xi↵x

k
↵j

i0
↵

�
and therefore has vanishing expectation

value. Expanding the anti-symmetric part gives

⌦
xi↵j

k
↵

↵
lj
=

1

2

⌦
xi↵j

k
↵ � xk↵j

i
↵

↵
lj
=

i

4m 

⇣⌦
xi↵
�!
r

k
↵

↵
lj
�

⌦
xi↵
 �
r

k
↵

↵
lj
�

⌦
xk↵
�!
r

i
↵

↵
lj
+

⌦
xk↵
 �
r

i
↵

↵
lj

⌘
, (23)

Appears from gradient in vperp



FOUR CRYSTAL RESPONSES

▸ All four responses generate phonons
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Interaction Type NR Operators
Point-like

Response

Composite

Response

Coupling to charge, v?-independent
O

( )
1 = 1

N -
O

( )
11 = S� ·

iq
m 

Coupling to charge, v?-dependent
O

( )
5 = S� ·

� iq
m 

⇥ v?�
N L

O
( )
8 = S� · v?

Coupling to spin, v?-independent

O
( )
4 = S� · S 

S -
O

( )
6 =

�
S� ·

q
m 

��
S ·

q
m 

�

O
( )
9 = S� ·

�
S ⇥

iq
m 

�

O
( )
10 = S ·

iq
m 

Coupling to spin, v?-dependent

O
( )
3 = S ·

� iq
m 

⇥ v?�

S L ⌦ S

O
( )
7 = S · v?

O
( )
12 = S� ·

�
S ⇥ v?�

O
( )
13 =

�
S� · v?��

S ·
iq
m 

�

O
( )
14 =

�
S · v?��

S� ·
iq
m 

�

O
( )
15 =

�
S� ·

� iq
m 

⇥ v?���
S ·

iq
m 

�

TABLE III. NR e↵ective operators relevant for DM scattering defined in Eq. (11), organized into four

categories, and the (point-like and composite) crystal responses generated. Here � is the DM and  is a

SM particle that can be the proton, neutron or electron. q is the momentum transfer from the DM to the

SM target. v?
⌘

P
2m�

�
K

2m 
, defined in Eq. (13), is the component of the relative velocity perpendicular to

q. Previous calculations [33, 34, 52, 53, 56] focused on phonon and magnon excitations via v?-independent

couplings to charge and spin, corresponding to the first and third categories listed here. In this work we

extend the calculations to all operators.

where " is the dielectric tensor, and gp,e are the tree-level (unscreened) couplings. The same is

true for a scalar mediator coupling to the electron’s scalar current JS,e [75]. For single phonon and

magnon excitations below the electronic band gap that we focus on in this work, one can use the

high-frequency dielectric "1, which captures the screening due to fast electron responses [33, 53, 76].

We will study the reach phonon and magnon detectors have to these benchmark models in

Sec. III, after developing the formalism of rate calculations within the EFT in the rest of this

section.
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where Wj(q) = 1
4Nmj

P
⌫,k

|q·✏⌫,k,j |2
!⌫,k

is the Debye-Waller factor. Crucially, the 1p
N

factor (which

originates from Eq. (33) and is to be squared when computing the rate), together with the prefactor

1
V in the rate formula Eq. (5), indicates that the rate � would scale as 1

N2 ! 0 unless the l sum

in Eq. (34) scales with N . This in turn requires the N terms in the l sum to add up coherently,

which is possible only when i) the phonon momentum k matches the momentum transfer q up

to reciprocal lattice vectors, which is the statement of lattice momentum conservation, and ii)

P
l
eVlj ⇠ N , i.e. the DM couples coherently across the crystal lattice. The second requirement

is trivially satisfied for DM couplings to the scalar quantities hN i, tr(hL ⌦ S i). For couplings

to the vector and tensor quantities hS i, hL i, hL ⌦ S i (modulo the trace part), on the other

hand, coherence is possible only when they are ordered (or polarized), so that they point in the

same directions in all primitive cells; in the case of hS i, this can be achieved by spontaneous

magnetic ordering for  = e, or by applying an external magnetic field for  = p, n.

Up to possible small corrections due to the presence of di↵erent isotopes, we can set eVlj = eVj ,

which is independent of l. We then obtain the single phonon excitation rate:

�(v) =
1

⌦

Z
d3q

(2⇡)3

3nX

⌫=1

2⇡ �
�
!⌫,k � !q

� 1

2!⌫,k

����
X

j

e�Wj(q)eiG·x0
j
q · ✏⇤⌫,k,j

p
mj

eVj(�q,v)

����
2

, (35)

where ⌦ is the volume of the primitive cell, x0
j is the equilibrium position of the jth ion with

respect to the cell center, and it is implicit that q = k +G where G is a reciprocal lattice vector.

To map q to a vector k within the 1BZ, we first write q =
P3

i=1 aibi, with bi the basis vectors

of the reciprocal lattice, then construct a set of eight candidate G vectors whose components in

reduced coordinates take the floor and ceiling integer values of ai, and finally choose the correct

G vector to be the one that minimizes |q � G|.

The DM-ion scattering potential eVj that enters Eq. (35) is simply given by Eq. (30) above, with

the l subscripts dropped, assuming hS i, hL i, hL ⌦ S i are ordered, as explained above; in the

absence of ordering, the corresponding terms should be dropped (with hL ⌦ S i set to its scalar

component 1
3 tr(hL ⌦ S i) 1 = 1

3 hL · S i 1). In the special case of SI interactions, one has only

c( )1 , so eVj =
P

 c
( )
1 hN ij , reproducing the results in Ref. [33], whereas in the full EFT, all four

crystal responses can contribute to phonon excitations.

Next we move on to magnons. They are collective spin excitations in a magnetically ordered

phase, and can thus respond to DM scattering only if the potentials eVlj depend on the magnetic

ions’ e↵ective spins Slj . Generally, Slj can come from the electrons’ spin and orbital angular

momenta, hSeilj and hLeilj , respectively. When projected onto the Hilbert space spanned by Slj ,
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coupling tensors
⌦
L ⌦ S 

↵
. We will refer to these as di↵erent types of crystal responses, as

they play a similar role to the nuclear responses in nuclear recoil calculations. We will sometimes

abbreviate them as N , S, L, L ⌦ S, or simply N , S, L, L ⌦ S, when there is no confusion. The

crystal responses generated by each NR operator and in each benchmark DM model have been

summarized in Tables III and II, respectively.

We reiterate that, among the four types of crystal responses, hN i and hS i are induced by DM

couplings to point-like ionic degrees of freedom (which do not involve internal motions of nucleons

or electrons inside an ion), while hL i and
⌦
L ⌦ S 

↵
are induced by DM couplings to composite

degrees of freedom. We therefore refer to them as point-like and composite responses respectively.

Velocity-independent operators (first and third categories in Table III) generate only point-like

responses, while velocity-dependent operators (second and fourth categories in Table III) can also

generate the corresponding composite responses. It is worth noting that for the velocity-dependent

operators that generate both point-like and composite responses – O3, O5, O8, O12,...,15 – the ratio

of composite versus point-like responses (i.e. coe�cients of hL i versus hN i, or
⌦
L ⌦ S 

↵
versus

hS i in Eq. (30)) is, parametrically, q
m v

. This is generic, as point-like and composite responses

result from the leading two terms in the expansion eiq·x↵ = 1+ iq ·x↵+ . . . , and qx ⇠
q

m v
L, with

L ⇠ O(1). For nuclear recoils, q
m v

⇠
µ�N
mp,n

with µ�N the reduced mass of the DM and the target

nucleus, so composite responses can be significant, as emphasized in Refs. [59, 60]. In contrast, in

the present case of collective excitations induced by light DM, we have q
m v

. m�

m 
. For couplings

to nucleons,  = p, n, this ratio is always smaller than one for sub-GeV DM, so for a given type of

excitation, point-like responses tend to dominate; for couplings to electrons,  = e, both point-like

and composite responses, if present, can be important. From the bottom-up point of view, it is

useful to keep in mind this interplay between point-like and composite responses for the purpose

of organizing the e↵ects of various operators, although from the top-down point of view, it seems

di�cult to construct well-motivated simple models that dominantly generate a composite response

(L or L ⌦ S) without being accompanied by a point-like response (N or S) of at least comparable

size, similar to the case of nuclear recoil as highlighted in Ref. [60]. We will elaborate on this in

Sec. III.



MAGNON COLLECTIVE EXCITATIONS

▸ Magnons couple to S and L responses 

▸ Project onto ionic spins 

▸ Expand in Holstein-Primakoff bosons, Diagonalize spin 
Hamiltonian (nearest neighbor Heisenberg interaction) 

▸ Need magnetic material to have non-zero spin expectation 
value over unit cell 

▸ YIG as benchmark
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they become

hSeilj ! �S,jSlj , hLeilj ! �L,jSlj , (36)

where �S,j , �L,j are numbers (which we will say more about shortly). Therefore, from Eq. (30) we

obtain the matrix element for exciting a magnon mode |⌫,ki:

h⌫,k| eV(�q,v)|0i =
X

l,j

eiq·xljf j(�q,v) · h⌫,k|Slj |0i , (37)

where

f j(�q,v) = �S,j


c(e)3

iq

me

�
q̂ ⇥ v0� + c(e)4 S� + c(e)6

q2

m2
e

�
q̂ · S�

�
q̂ + c(e)7 v0 + c(e)9

iq

me

�
q̂ ⇥ S�

�
+ c(e)10

iq

me

+c(e)12

�
v0

⇥ S�
�
+ c(e)13

iq

me

�
v0

· S�
�
+ c(e)14

iq

me
(q̂ · S�)v

0
� c(e)15

q2

m2
e

�
q̂ · (v0

⇥ S�)
�
q̂

�

+
�L,j

2


c(e)5

q2

m2
e

�
1 � q̂q̂

�
· S� � c(e)8

iq

me

�
q̂ ⇥ S�

��
. (38)

As in Eq. (30), we have defined q ⌘ |q|, q̂ ⌘ q/q, and v0
⌘ v �

q
2m�

.

Now we need to compute h⌫,k|Slj |0i. The calculation follows Ref. [56], which we encourage the

reader to consult for more details. The magnetic order is captured by a set of rotation matrices

Rj that take each Slj to a local coordinate system where it points in the +z direction:

Slj = Rj · S0
lj , hS0

lji =
�
hS0x

lj i, hS0y
lj i, hS0z

lj i
�
=

�
0, 0, Sj

�
. (39)

We restrict ourselves to commensurate orders, in which case the rotation matricesRj do not depend

on the primitive cell label l. We then apply the Holstein-Primako↵ transformation and expand Slj

around the ground state in terms of bosonic creation and annihilation operators:

S0x
lj =

�
2Sj � â†lj âlj

�1/2
âlj , S0y

lj = â†lj
�
2Sj � â†lj âlj

�1/2
, S0z

lj = Sj � â†lj âlj . (40)

Magnon eigenstates are obtained by diagonalizing the spin Hamiltonian, which is specific to the

target material; in the simplest cases, the target can be modeled by Heisenberg exchange interac-

tions Slj ·Sl0j0 between neighboring sites, while more complicated model descriptions are needed in

other cases. For a general spin Hamiltonian, the diagonalization can be achieved by a Bogoliubov

transformation in momentum space:

âlj =
1

p
N

X

k21BZ

âj,k e
ik·xlj ,

0

@ âj,k

â†j,�k

1

A =

0

@ Uj⌫,k Vj⌫,k

V⇤
j⌫,�k U⇤

j⌫,�k

1

A

0

@ b̂j,k

b̂†j,�k

1

A , (41)

where U, V are n⇥ n matrices (with n the number of magnetic ions per cell), and b̂†j,k, b̂j,k are the

creation and annihilation operators for the magnon eigenstates satisfying canonical commutation
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We restrict ourselves to commensurate orders, in which case the rotation matricesRj do not depend

on the primitive cell label l. We then apply the Holstein-Primako↵ transformation and expand Slj

around the ground state in terms of bosonic creation and annihilation operators:
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�1/2
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Magnon eigenstates are obtained by diagonalizing the spin Hamiltonian, which is specific to the

target material; in the simplest cases, the target can be modeled by Heisenberg exchange interac-

tions Slj ·Sl0j0 between neighboring sites, while more complicated model descriptions are needed in

other cases. For a general spin Hamiltonian, the diagonalization can be achieved by a Bogoliubov

transformation in momentum space:

âlj =
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where U, V are n⇥ n matrices (with n the number of magnetic ions per cell), and b̂†j,k, b̂j,k are the

creation and annihilation operators for the magnon eigenstates satisfying canonical commutation
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SPIN-ORBIT MATERIALS

▸ Angular momentum — spin-orbit-entangled Mott insulator 

▸ Effective spins 

▸ Kitaev material with bond directional coupling 

▸ Antiferromagnetic order
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relations, [b̂⌫,k, b̂
†
⌫0,k0 ] = �⌫⌫0�k,k0 with all others vanishing. An e�cient algorithm for the diagonal-

ization can be found in Ref. [65] (see also Refs. [56, 78]). Now computing the magnon excitation

matrix element h⌫,k|Slj |0i, and hence the DM scattering rate, is reduced to standard algebra. We

obtain [56, 78]

�(v) =
1

⌦

Z
d3q

(2⇡)3

nX

⌫=1

2⇡ �
�
!⌫,k � !q

� 1

2

����
X

j

eiG·x0
j
p
Sj

�
U⇤
j⌫,krj + Vj⌫,�kr

⇤
j

�
· f j(�q,v)

����
2

, (42)

where rj = (Rxx
j , Ryx

j , Rzx
j ) + i (Rxy

j , Ryy
j , Rzy

j ). As in the phonon case, it is implicit that k

matches q up to a reciprocal lattice vector, q = k +G, due to lattice momentum conservation.

A comment is in order about the target choice. In the case where the total Slj involve only spin

degrees of freedom (as is the case for yttrium iron garnet (YIG) discussed in Ref. [56]), �S,j = 1,

�L,j = 0, and only the first two lines of Eq. (38) are relevant. Targets for which �L,j 6= 0 are more

exotic. One class of materials with �L,j 6= 0 is spin-orbit-entangled Mott insulators [79–81], where

the combined e↵ect of crystal fields and spin-orbit coupling results in e↵ective spins Sj = 1
2 , and

we can show that �S,j = �
1
3 , �L,j = �

4
3 (see Appendix B for details, and Refs. [80–83] for related

discussion), so the magnetic ions’ e↵ective spins are in fact dominated by their orbital components.

Perovskite irridates such as Sr2IrO4 [79, 82] and Kitaev materials Na2IrO3, ↵-RuCl3 [81, 83–85] are

among the materials with this feature that have been actively studied recently by the condensed

matter physics community. While perhaps futuristic as DM detectors, such materials have the

novel feature of being sensitive to DM couplings with electrons’ orbital angular momenta.

As a final remark, we note from the derivation above that when the same crystal response,

hSei or hLei, excites both phonons and magnons, the phonon excitation rate is parametrically

suppressed by q2

mion!
⇠ 10�2

� q
keV

�2�10GeV
mion

��
10meV
!

�
. Thus, for example, for the third group of

operators in Table III with  = e, which generates only hSei response, single magnon excitation

is expected to achieve better sensitivity than single phonon excitation for the same exposure and

detector e�ciency. On the other hand, since phonons can be excited also by other crystal responses,

they have a broader coverage of the DM theory space. We will investigate the interplay between

single phonon and magnon excitations in the context of our benchmark models in the next section.

III. APPLICATION TO BENCHMARK MODELS

We now apply the general results of the previous section to the set of benchmark models in

Table II. The first step of the calculation – matching the relativistic model onto the NR EFT – was

already done in Sec. II A. The results are the operator coe�cients c( )i listed in the second to last
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Model UV Lagrangian NR EFT Responses

Standard SI
�
�
g�JS,� + g JS, 

�
or

c( )
1 =

g�g
eff
 

q2+m2
�,V

N
Vµ

�
g�J

µ
V,� � g J

µ
V, 

�

Standard SD a Vµ

�
g�J

µ
A,� + g J

µ
A, 

�
c( )
4 =

4g�g 
q2+m2

V
S

Other

scalar

mediators

P⇥ S �
�
g�JP,� + g JS, 

�
c( )
11 =

m 

m�

g�g
eff
 

q2+m2
�

N

S⇥P �
�
g�JS,� + g JP, 

�
c( )
10 = � g�g 

q2+m2
�

S

P⇥P �
�
g�JP,� + g JP, 

�
c( )
6 =

m 
m�

g�g 
q2+m2

�
S

Multipole

DM

models

Electric dipole Vµ

⇣
g�J

µ
edm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
11 = �m 

m�

g�g
eff
 

q2+m2
V

N

Magnetic dipole Vµ

⇣
g�J

µ
mdm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘

c( )
1 = q2

4m2
�

g�g
eff
 

q2+m2
V

N, S, L
c( )
4 = eµe↵

 
q2

m�m 

g�g
eff
 

q2+m2
V

c( )
5 =

m 

m�

g�g
eff
 

q2+m2
V

c( )
6 = �eµe↵

 

m 

m�

g�g
eff
 

q2+m2
V

Anapole Vµ

⇣
g�J

µ
ana,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘ c( )
8 = q2

2m2
�

g�g
eff
 

q2+m2
V N, S, L

c( )
9 = �eµe↵

 
q2

2m2
�

g�g
eff
 

q2+m2
V

(L · S)-interacting Vµ

�
g�J

µ
V,� + g (J

µ
mdm, + Jµ

V 2, )
�

c( )
1 = (1 + ) q2

4m2
 

g�g 
q2+m2

V

N,S, L⌦ S
c( )
3 =

g�g 
q2+m2

V

c( )
4 = q2

m�m 

g�g 
q2+m2

V

c( )
6 = �m 

m�

g�g 
q2+m2

V

a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. Each model is matched

onto the NR EFT by multiplying the currents J�J (defined in Table I) and the mediator propagator,

and accounting for in-medium e↵ects (if present) according to Eq. (14). The leading order nonvanishing

coe�cients c( )i for the operators O
( )
i (defined in Table III) are listed in the second to last column. For

the multipole DM models, �eµ ⌘ eµ � 1 where eµ is half the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9,

eµe ' 1), and we have defined eµe↵
 ⌘ 1 + g 

geff
 
�eµ . The last column lists the lattice degrees of freedom which

enter the scattering potential, Eq. (30). All models can excite phonons, and models with S or L response

generated by DM-electron coupling can also excite magnons.

For each UV model, the coe�cients c( )i of the NR operators generated at leading order are given

in Table II. These coe�cients contain all the information for constructing the lattice potential eVlj

for a given DM model, and will be exploited below for computing the DM detection rate. The list

of NR operators O
( )
i is already familiar from previous works on the EFT for direct detection via
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FIG. 3. Projected reach on the multipole DM models listed in Table II, assuming dark photon-like

couplings to SM particles: gp = �ge, gn = 0. The left panel shows the hierarchy of sensitivities of single

phonon excitations, in GaAs and in SiO2, to the three multipole DM models, together with the SI interaction

model for comparison. The center and right panels focus on the magnetic dipole and anapole DM models,

respectively, and compare the phonon reach of GaAs and SiO2 (via the N response), and the magnon reach

of YIG (via the S response) and ↵-RuCl3 (via both S and L responses); these models are best probed by

magnons, though the phonon sensitivity with an optimal target like SiO2 may be competitive.

DM models generate O1 and O11 at leading order, respectively, both of which induce only the N

response, which can be probed by single phonon excitation. The di↵erential rates are

⌃⌫(q)
SI
phonon =

g2�g
2
e

(q · "1 · q)2

���F (p)
N,⌫ � F (e)

N,⌫

���
2
, (65)

⌃⌫(q)
edm
phonon =

g2�g
2
e

(q · "1 · q)2
q2

4m2
�

���F (p)
N,⌫ � F (e)

N,⌫

���
2
. (66)

Eq. (65) is in agreement with previous results in Refs. [33, 34, 53]. The magnetic dipole and the

anapole DM models generate, in addition to N , also S and L responses, and can therefore be

probed by both phonons and magnons. For single phonon excitation, we have
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All have N response, probed by phonons
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Model UV Lagrangian NR EFT Responses

Standard SI
�
�
g�JS,� + g JS, 

�
or

c( )
1 =

g�g
eff
 

q2+m2
�,V

N
Vµ

�
g�J

µ
V,� � g J

µ
V, 

�

Standard SD a Vµ

�
g�J

µ
A,� + g J

µ
A, 

�
c( )
4 =

4g�g 
q2+m2

V
S

Other

scalar

mediators

P⇥ S �
�
g�JP,� + g JS, 

�
c( )
11 =

m 

m�

g�g
eff
 

q2+m2
�

N

S⇥P �
�
g�JS,� + g JP, 

�
c( )
10 = � g�g 

q2+m2
�

S

P⇥P �
�
g�JP,� + g JP, 

�
c( )
6 =

m 
m�

g�g 
q2+m2

�
S

Multipole

DM

models

Electric dipole Vµ

⇣
g�J

µ
edm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
11 = �m 

m�

g�g
eff
 

q2+m2
V

N

Magnetic dipole Vµ

⇣
g�J

µ
mdm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘

c( )
1 = q2

4m2
�

g�g
eff
 

q2+m2
V

N, S, L
c( )
4 = eµe↵

 
q2

m�m 

g�g
eff
 

q2+m2
V

c( )
5 =

m 

m�

g�g
eff
 

q2+m2
V

c( )
6 = �eµe↵

 

m 

m�

g�g
eff
 

q2+m2
V

Anapole Vµ

⇣
g�J

µ
ana,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘ c( )
8 = q2

2m2
�

g�g
eff
 

q2+m2
V N, S, L

c( )
9 = �eµe↵

 
q2

2m2
�

g�g
eff
 

q2+m2
V

(L · S)-interacting Vµ

�
g�J

µ
V,� + g (J

µ
mdm, + Jµ

V 2, )
�

c( )
1 = (1 + ) q2

4m2
 

g�g 
q2+m2

V

N,S, L⌦ S
c( )
3 =

g�g 
q2+m2

V

c( )
4 = q2

m�m 

g�g 
q2+m2

V

c( )
6 = �m 

m�

g�g 
q2+m2

V

a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. Each model is matched

onto the NR EFT by multiplying the currents J�J (defined in Table I) and the mediator propagator,

and accounting for in-medium e↵ects (if present) according to Eq. (14). The leading order nonvanishing

coe�cients c( )i for the operators O
( )
i (defined in Table III) are listed in the second to last column. For

the multipole DM models, �eµ ⌘ eµ � 1 where eµ is half the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9,

eµe ' 1), and we have defined eµe↵
 ⌘ 1 + g 

geff
 
�eµ . The last column lists the lattice degrees of freedom which

enter the scattering potential, Eq. (30). All models can excite phonons, and models with S or L response

generated by DM-electron coupling can also excite magnons.

For each UV model, the coe�cients c( )i of the NR operators generated at leading order are given

in Table II. These coe�cients contain all the information for constructing the lattice potential eVlj

for a given DM model, and will be exploited below for computing the DM detection rate. The list

of NR operators O
( )
i is already familiar from previous works on the EFT for direct detection via

30

10�3 10�2 10�1 1 10
m� [MeV]

10�16

10�14

10�12

10�10

10�8

10�6

10�4

10�2

g �
g e

gn = 0, gp = �ge

gana
�

gmdm
�

gedm
�

gSI
�

GaAs

SiO2

10�3 10�2 10�1 1 10
m� [MeV]

10�7

10�6

10�5

10�4

10�3

g �
g e

� � RuCl3

YIG

GaAs

SiO2

Anapole

gn = 0, gp = �ge

10�3 10�2 10�1 1 10
m� [MeV]

10�10

10�9

10�8

10�7

10�6

g �
g e

GaAs

SiO2

� � RuCl3

YIG

Magnetic Dipole

gn = 0, gp = �ge

FIG. 3. Projected reach on the multipole DM models listed in Table II, assuming dark photon-like

couplings to SM particles: gp = �ge, gn = 0. The left panel shows the hierarchy of sensitivities of single

phonon excitations, in GaAs and in SiO2, to the three multipole DM models, together with the SI interaction

model for comparison. The center and right panels focus on the magnetic dipole and anapole DM models,

respectively, and compare the phonon reach of GaAs and SiO2 (via the N response), and the magnon reach

of YIG (via the S response) and ↵-RuCl3 (via both S and L responses); these models are best probed by

magnons, though the phonon sensitivity with an optimal target like SiO2 may be competitive.

DM models generate O1 and O11 at leading order, respectively, both of which induce only the N

response, which can be probed by single phonon excitation. The di↵erential rates are

⌃⌫(q)
SI
phonon =

g2�g
2
e

(q · "1 · q)2

���F (p)
N,⌫ � F (e)
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2
, (65)
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Eq. (65) is in agreement with previous results in Refs. [33, 34, 53]. The magnetic dipole and the

anapole DM models generate, in addition to N , also S and L responses, and can therefore be

probed by both phonons and magnons. For single phonon excitation, we have
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FIG. 3. Projected reach on the multipole DM models listed in Table II, assuming dark photon-like

couplings to SM particles: gp = �ge, gn = 0. The left panel shows the hierarchy of sensitivities of single

phonon excitations, in GaAs and in SiO2, to the three multipole DM models, together with the SI interaction

model for comparison. The center and right panels focus on the magnetic dipole and anapole DM models,

respectively, and compare the phonon reach of GaAs and SiO2 (via the N response), and the magnon reach

of YIG (via the S response) and ↵-RuCl3 (via both S and L responses); these models are best probed by

magnons, though the phonon sensitivity with an optimal target like SiO2 may be competitive.

DM models generate O1 and O11 at leading order, respectively, both of which induce only the N

response, which can be probed by single phonon excitation. The di↵erential rates are
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SI
phonon =

g2�g
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Eq. (65) is in agreement with previous results in Refs. [33, 34, 53]. The magnetic dipole and the

anapole DM models generate, in addition to N , also S and L responses, and can therefore be

probed by both phonons and magnons. For single phonon excitation, we have
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Model UV Lagrangian NR EFT Responses

Standard SI
�
�
g�JS,� + g JS, 

�
or

c( )
1 =

g�g
eff
 

q2+m2
�,V

N
Vµ

�
g�J

µ
V,� � g J

µ
V, 

�

Standard SD a Vµ

�
g�J

µ
A,� + g J

µ
A, 

�
c( )
4 =

4g�g 
q2+m2

V
S

Other

scalar

mediators

P⇥ S �
�
g�JP,� + g JS, 

�
c( )
11 =

m 

m�

g�g
eff
 

q2+m2
�

N

S⇥P �
�
g�JS,� + g JP, 

�
c( )
10 = � g�g 

q2+m2
�

S

P⇥P �
�
g�JP,� + g JP, 

�
c( )
6 =

m 
m�

g�g 
q2+m2

�
S

Multipole

DM

models

Electric dipole Vµ

⇣
g�J

µ
edm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
11 = �m 

m�

g�g
eff
 

q2+m2
V

N

Magnetic dipole Vµ

⇣
g�J

µ
mdm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘

c( )
1 = q2

4m2
�

g�g
eff
 

q2+m2
V

N, S, L
c( )
4 = eµe↵

 
q2

m�m 

g�g
eff
 

q2+m2
V

c( )
5 =

m 

m�

g�g
eff
 

q2+m2
V

c( )
6 = �eµe↵

 

m 

m�

g�g
eff
 

q2+m2
V

Anapole Vµ

⇣
g�J

µ
ana,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘ c( )
8 = q2

2m2
�

g�g
eff
 

q2+m2
V N, S, L

c( )
9 = �eµe↵

 
q2

2m2
�

g�g
eff
 

q2+m2
V

(L · S)-interacting Vµ

�
g�J

µ
V,� + g (J

µ
mdm, + Jµ

V 2, )
�

c( )
1 = (1 + ) q2

4m2
 

g�g 
q2+m2

V

N,S, L⌦ S
c( )
3 =

g�g 
q2+m2

V

c( )
4 = q2

m�m 

g�g 
q2+m2

V

c( )
6 = �m 

m�

g�g 
q2+m2

V

a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. Each model is matched

onto the NR EFT by multiplying the currents J�J (defined in Table I) and the mediator propagator,

and accounting for in-medium e↵ects (if present) according to Eq. (14). The leading order nonvanishing

coe�cients c( )i for the operators O
( )
i (defined in Table III) are listed in the second to last column. For

the multipole DM models, �eµ ⌘ eµ � 1 where eµ is half the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9,

eµe ' 1), and we have defined eµe↵
 ⌘ 1 + g 

geff
 
�eµ . The last column lists the lattice degrees of freedom which

enter the scattering potential, Eq. (30). All models can excite phonons, and models with S or L response

generated by DM-electron coupling can also excite magnons.

For each UV model, the coe�cients c( )i of the NR operators generated at leading order are given

in Table II. These coe�cients contain all the information for constructing the lattice potential eVlj

for a given DM model, and will be exploited below for computing the DM detection rate. The list

of NR operators O
( )
i is already familiar from previous works on the EFT for direct detection via

30

10�3 10�2 10�1 1 10
m� [MeV]

10�16

10�14

10�12

10�10

10�8

10�6

10�4

10�2

g �
g e

gn = 0, gp = �ge

gana
�

gmdm
�

gedm
�

gSI
�

GaAs

SiO2

10�3 10�2 10�1 1 10
m� [MeV]

10�7

10�6

10�5

10�4

10�3

g �
g e

� � RuCl3

YIG

GaAs

SiO2

Anapole

gn = 0, gp = �ge

10�3 10�2 10�1 1 10
m� [MeV]

10�10

10�9

10�8

10�7

10�6

g �
g e

GaAs

SiO2

� � RuCl3

YIG

Magnetic Dipole

gn = 0, gp = �ge

FIG. 3. Projected reach on the multipole DM models listed in Table II, assuming dark photon-like

couplings to SM particles: gp = �ge, gn = 0. The left panel shows the hierarchy of sensitivities of single

phonon excitations, in GaAs and in SiO2, to the three multipole DM models, together with the SI interaction

model for comparison. The center and right panels focus on the magnetic dipole and anapole DM models,

respectively, and compare the phonon reach of GaAs and SiO2 (via the N response), and the magnon reach

of YIG (via the S response) and ↵-RuCl3 (via both S and L responses); these models are best probed by

magnons, though the phonon sensitivity with an optimal target like SiO2 may be competitive.

DM models generate O1 and O11 at leading order, respectively, both of which induce only the N

response, which can be probed by single phonon excitation. The di↵erential rates are

⌃⌫(q)
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Eq. (65) is in agreement with previous results in Refs. [33, 34, 53]. The magnetic dipole and the

anapole DM models generate, in addition to N , also S and L responses, and can therefore be

probed by both phonons and magnons. For single phonon excitation, we have
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YIG - S response
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DIRECTIONALITY IN ANISOTROPIC MATERIALS!

▸ Crystal Lattice is not Isotropic 

▸ Especially pronounced in certain 
materials, like sapphire

some point to have a number on hand]) The orientation is illustrated in Fig. 5, where ✓e is
the angle between the Earth’s axis and the direction of its velocity and ✓lab gives the latitude at
which the experiment is constructed. We choose the crystal orientation and coordinate system
such that the z-axis is aligned with the Earth’s velocity at t = 0. For GaAs the crystal axis is
along one for the faces of the cubic lattice, while for sapphire it is the axis along which the Al
atoms are positioned (Fig. 3) [TL: Instead, just show all xyz directions on the figure
of the crystals for GaAs and sapphire. Possible to make the statement that the
dipole coupling is largest along the primary crystal axis?].

Since we explicitly orient the crystal relative to the dark matter wind, there is no dependence
of the DM flux or scattering rate on the latitude at which the experiment is located. As a
function of time, the unit vector of ve in the crystal coordinate frame is

v̂e =

0

B@
sin ✓e sin �

sin ✓e cos ✓e(cos � � 1)

cos
2
✓e + sin

2
✓e cos �

1

CA (10)

with � = 2⇡ ⇥ t/24h the angle parametrizing the rotation of the Earth around its axis.

ve

Earth axis of  
rotation

t=0�e

Cygnus
�e ~ 42°	

DEC ~ 48°

Celestial  
equator

crystal axis

�lab

�lab

crystal axist=1/2 day

FIG. 5. The setup assumed in our calculation of DM scattering with the crystal. At t = 0, the z-axis of

the crystal coordinate system is aligned with the Earth’s velocity ve. With this choice, the modulation

is independent of the position of the lab, indicated by ✓lab. The Earth’s velocity is approximately in

the direction of Cygnus, which is at an angle of ✓e ⇡ 42
� relative to the Earth’s axis of rotation. We

also illustrate the orientation of the crystal after a half-day rotation.

12

FIG. 7. Mode 30 (left), mode 16 (center) and mode 4 (right), which dominate the scattering for

(dark) photon mediator processes at long wavelengths. Modes 30 and 16 are characterized by a large

oscillation dipole of the Al (gray) and O (red) atoms respectively. Mode 4 exhibits two large dipoles

from the Al atoms, oscillating in anti-phase. Adobe Acrobat is required to view this animation.
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FIG. 8. Modulation of the scattering rate of the dominant optical phonon modes over a sidereal day,

for different DM masses. The percentage in the legend indicates the weight of the mode in the total

rate, after excluding the acoustic modes.
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▸ Crystal Lattice is not Isotropic 

▸ Especially pronounced in certain 
materials, like sapphire

DIRECTIONALITY IN ANISOTROPIC MATERIALS!
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Figure 5. Top: Projected reach for the dark photon mediator model assuming 1meV and 20 meV energy thresholds, one
kg-year exposure. Solid curves show the 95% C.L. exclusion limits in the case of zero observed events, assuming no background.
Dashed curves and the associated ±1� bands show the cross sections for which we can reject the non-modulating hypothesis and
establish the statistical significance of a modulating signal, as explained in App. B. Bottom: Daily modulation amplitudes,
defined in Eq. (15), for the same energy thresholds for selected DM masses. Results are shown only for m� values where a
material has substantial reach and fmod > 10�2.

icant impact on either the reach or the daily modula-
tion amplitude, except at the lowest m� values. This
is because gapped optical phonons dominate the rate as
long as the DM is heavy enough to excite them. For the
hadrophilic scalar mediator models (Figs. 6 and 7), on the
other hand, acoustic phonons dominate and, as a result,
both the reach and the daily modulation amplitude are
sensitive to !min. Generally, a higher energy threshold
tends to amplify the daily modulation since the kinemati-
cally accessible phase space becomes limited, as discussed
in detail in Sec. II B 1. Similarly, the daily modulation
amplitude tends to increase at the lowest m� considered
because of phase space restrictions. The enhanced daily
modulation in these cases of course comes at the price of
a lower total rate, so there is a trade-o↵ between better
overall sensitivity and a higher daily modulation signal.
This is reflected by the dashed modulation reach curves
in the top panels of each figure, which ascend at lower

masses since the rate also vanishes.

From Figs. 5, 6 and 7, we see that hBN consistently
outperforms all other materials in terms of the daily mod-
ulation amplitude, which reaches O(1) for some m� and
!min values. This is due to the layered crystal structure
which means that the momentum transfers perpendicu-
lar and parallel to the layers lead to very di↵erent target
responses. Among the other materials, Al2O3, CaWO4

and SiC are also competitive targets for the dark photon
mediator model at m� . 100 keV, and CaWO4 shows
percent level daily modulation across a wide range of DM
masses for the heavy scalar mediator model.

[ZZ: ] [AC: Text between this comment and the

“conclusions” part is more recently written due to

new findings, therefore has been through a fewer

number of passes. A more careful scrutiny of this

part (including the caption of Fig. 8) is recom-

mended.] [KZ: Discussion needs to be substan-



EXPERIMENTAL PROSPECTS
▸ Sensor to detect phonons coupled to DM “absorber” 

▸ Zero-field read-out of phonons 

▸ Now funded by DoE — TESSERACT (TES with Sub-EV Resolution and Cryogenic 
Targets) 

▸ For a polar crystal target — Sub-eV Polar Interactions Cryogenic Experiment 
(SPICE)



SUMMARY

▸ Collective excitations provide a novel path to detect light 
DM 

▸ Theory framework for computing DM interaction rates in 
materials is now well-developed 

▸ New experiments such as SPICE have broad discovery 
potential for light DM


