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• Chiral Perturbation Theory (ChPT) is a low-energy effective theory of 
QCD and an integral component of our understanding of many nuclear 
processes.

• It describes interactions of mesons and baryons at the energy scale ~ 1 
GeV or below and, in my view, is the most elegant example employing 
”modern” techniques of effective field theories.

• Modern EFTs:
– In most cases, symmetry consideration alone is sufficient to capture the 

long wavelength dynamics of a physical system.
For ChPT the symmetry is SU(Nf)L x SU(Nf)R chiral symmetry.

– Short wavelength fluctuations are encoded in uncalculable “Wilson 
coefficients.”

– A power counting scheme must be supplied to organized the relative 
importance of different effective operators.
In ChPT the power counting is the “derivative expansion.”

The Mother of Modern EFTs



• The history of ChPT is described in the inaugural lecture of this 
seminar series:

§ “…phenomenological Lagrangians were developed…as merely labor-
saving devices…guaranteed to give the same results as current 
algebras...”

§ “No one took these theories seriously as true quantum field theories at 
the time.“

§ “The soft pion theorems had been successful, not only in agreeing with 
experiment, but also in killing off a competitor of quantum field theory 
known as S-matrix theory.” 

The birth of ChPT contributed to the downfall of S-matrix theory!

2101.04241



• “Modern” EFT means more than half-a-century ago:

• ChPT is an EFT about Nambu-Goldstone bosons, which has an even 
longer history:



The “textbook” example of Nambu-Goldstone bosons starts with the 
following potential energy:

� = �1 + i�2

V (�) = �µ2|�|2 + �|�|4

• There is an infinite number of 
ground state, labelled by the polar 
angle :

• Once an “alpha” is chosen, the 
rotational invariance is hidden.

|VACi = {|0i↵; ↵ 2 [0, 2⇡)}



To see the NGB explicitly, let’s go to “polar coordinate:”

In this parameterization, the ground state is
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⇢(x)p
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ground state:
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To see the NGB explicitly, let’s go to “polar coordinate:”

In this parameterization, the ground state is

This is the equivalent to shifting 
the Pi-mode by a constant:

Rotational symmetry implies the dynamics
must be independent of the constant shift!

This is a “shift symmetry,” which forbids
a “mass” term for the pi-mode!
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We could generalize to more complicated cases.  
For example, let’s consider n real scalars:

Then

~� = (�1, · · · ,�n)

V (~�) = �µ2~� · ~�+ �
⇣
~� · ~�

⌘2

h~�i = (v, 0, · · · , 0)

Broken symmetry G = O(n)

Unbroken symmetry H = O(n� 1)



The NGB mode can be parameterized by

Key observations:

• Interactions of NGB, in general, are horribly nonlinear.

• NGBs are always “derivatively coupled,” due to the shift symmetry:
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More generally, there is a well-defined procedure to write down NGB 
effective actions for arbitrary symmetry breaking pattern.
(CCWZ: Coleman, Callan, Wess and Zumino, Phys. Rev. 1969.)

One picks a nonlinearly realized group G, and a subgroup H of G that is 
linearly realized. 

We say G is the broken group and H the unbroken group:

The “pions” are the coordinates on the coset manifold G/H.

When

This is the shift symmetry!

Rarely discussed. Because 
it’s not needed in CCWZ.
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CCWZ looked for objects that have “simple” transformation properties 
under the action of G.
These are contained in the Cartan-Maurer one-form:

They are the “Goldstone covariant derivative” and the “associated gauge 
field”,

upon which the complete effective Lagrangian can be built (apart from 
the topological terms)

In CCWZ, NGB interactions depends both on the full symmetry G in the 
UV and the unbroken symmetry H in the IR.



Consider two different G’s and H’s, which both contain a complex NGB 
charged under (a U(1) subgroup of) H

in which case the Closure condition in Eq. (3.14) is equivalent to the Jacobi identity, thereby

allowing f iab to be interpreted as structure constants (living in the subspace spanned by

G/H).2 For a symmetric coset where fabc vanished, the knowledge of f ijk and f iab is su�cient

to reproduce the entire CCWZ Lagrangian.

In the end, the universal Lagrangian for nl�m, at the two-derivative order and all orders

in 1/f , is

L =
1

2
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p
T

T
|@µ⇡i, (3.17)

The Lagrangian is dictated by the infrared behavior of the Goldstone scattering amplitudes:

1) the Adler’s zero condition and 2) theH-invariance, without ever specifying what the broken

group G is in the UV. The only undetermined parameter is the overall normalization of the

decay constant.

To dispel any remaining doubts on the universality of Eq. (3.38), let’s consider two explicit

examples: SU(2)/U(1) and SU(5)/SO(5). The former is the minimal coset containing a

complex Nambu-Goldstone boson � charged under the unbroken U(1). For the latter, one

can obviously identify several SU(2) subgroups in SU(5) and several U(1) subgroups in

SO(5), resulting in many complex Nambu-Goldstone bosons. Denote one of them to be �.

The universality of Goldstone interactions imply interactions of � and � must be identical

with each other, which are dictated only by the unbroken U(1) and the Adler’s zero condition,

up to the normalization of the decay constant f . Using the CCWZ formalism to write down

the two-derivative interactions for � and � we obtain [3]3
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The interactions of � become identical to those of � after the rescaling of f ! 4f in Eq. (3.18),

as expected from the universality.

3.2 The Shift Symmetry to All Orders in 1/f

Although the closed-form expressions for Fi, i = 2, 3, 4 have been derived previously, the

general nonlinear shift F1 was presented without derivation only recently in Ref. [5]. The

simplest way to derive F1 is to make use of the universality of Eq. (3.38) and perform a

”matching” calculation into the simplest nontrivial unbroken group of H = SO(2) ⇡ U(1),

which we demonstrate below.
2The identification in Eq. (3.16) is possible only because we choose a basis such that (T i) = �(T i)T in

Eq. (3.3).
3There is a typo in Eq. (14) of Ref. [3]. The expression in Eq. (3.19) is the correct one.
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G1 = SU(2); H1 = U(1)

G2 = SU(5); H2 = SO(5)

G1 = SU(2); H1 = U(1)

G2 = SU(5); H2 = SO(5)

Indeed, the NGB effective interactions look different.



The conventional wisdom from the last half-a-century:

• SSB occurs when the ground state is not invariant under the full 
symmetry of the system.

• Nambu-Goldstone modes are long wavelength, “gapless” excitations 
over the degenerate ground states.

• NGBs are “derivatively coupled,” due to a shift symmetry.

• Effective interactions of NGB are dependent on both the full symmetry 
group G in the UV and the unbroken group H in the IR.



• CCWZ  has been applied to ChPT to very high orders. Some heroic 
efforts went into constructing the effective Lagrangian up to O(p8), 
which is completed only recently:
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• CCWZ  has been applied to ChPT to very high orders. Some heroic 
efforts went into constructing the effective Lagrangian up to O(p8), 
which is completed only recently:



In spite of the tremendous success of CCWZ in a wide range of topics, 
there’s something odd about it, in my view.

Its best summarized as the following question:

Nambu-Goldstone bosons are long-range degrees of freedom 
interpolating different vacua, why would its interactions know anything 
about the “broken group” G in the UV?

In other words, NGB’s should be all about the IR physics, not the UV. 
Indeed, NGB’s have a very peculiar IR property that has been known for 
(again) more than half-a-century.



First let’s talk about something that is not usually emphasized in the 
textbook. (One exception is Weinberg’s QFT Vol. 2.) 
Recall the ground state is characterized by

Now let’s bring in Quantum Mechanics...

This superposition of alpha-state is invariant under rotation. Why couldn’t 
it be the “ground state”?

|VACi = {|0i↵; ↵ 2 [0, 2⇡)}

|0̃i =
Z

d↵

2⇡
|0i↵ , R(✓)|0̃i = |0̃i



This is because an important ingredient for SSB to occur is the 
“superselection rule”,

for any Hermitian local operator “O”.

Then a stable ground state must carry a definite “alpha” and cannot be a 
superposition of alpha-states.

The superselection rule has an important implication for the S-matrix
elements involving a soft pion:

↵h0|O|0i↵0 = 0 for any Hermitian local operator O

lim
pµ!0

↵hf |i+ ⇡(p)i↵ = 0



Recall in quantum mechanics that a momentum eigenstate has the wave 
function:

Then a zero-momentum eigenstate has a constant wave function.

Since the pion interpolates between different vacua, a zero-momentum 
pion flips the direction of the ground state uniformly in the system:

This implies

The superselection rule then tells us

|~ki = eik·x

lim
pµ!0

⇡(p)|0i↵ ⇠ |0i↵0

lim
pµ!0

|i+ ⇡(p)i↵ ⇠ |ii↵0

lim
pµ!0

↵hf |i+ ⇡(p)i↵ ⇠ ↵hf |ii↵0 = 0

IL and Z. Yin: 1804.08629



This IR property of the NGB scattering amplitudes was first derived in the 
context of pions in low-energy QCD by Adler in 1960’s.

It is now known as the Adler’s zero condition.  

More importantly, it is a universal behavior of NGBs, independent of the 
symmetry breaking pattern G/H.

In QFT, one can show that the Adler’s zero condition,

follows directly from the shift symmetry acting on the NGB:

This is hardly surprising, as the shift symmetry is an indication of the 
existence of other degenerate ground states!

lim
pµ!0

↵hf |i+ ⇡(p)i↵ = 0

⇡ ! ⇡ + ✏+ · · ·

IL: 1512.01232



It turns out that the Adler’s zero condition allows for an entirely on-shell 
formulation of ChPT. 
It all started from an obscure paper by Susskind and Frye from (again) 
half-a-century ago:



This is what they did, schematically.
Use the Adler’s zero condition to fix the 4-pt amplitude of pions,

Some comments:

• They worked directly with “flavor-ordered” amplitudes.
• There is no constant term in the amplitude.
• “f” is a dimensionful parameter, while “c” is an arbitrary number, 

which could be absorbed into the normalization of “f”.

M4(p1, p2, p3, p4) = c
p2 · p4
f2

= c
p1 · p3
f2

p2i = 0 ;
4X

i=1

pi = 0



Once we have the 4-pt amplitude, we can build up the 6-pt amplitude 
from the 4-pt amplitude:

This expression doesn’t satisfy the Adler’s zero condition!

sij = (pi + pj)
2

P 2
ijk = (pi + pj + pk)

2



The resolution is to introduce an additional contribution, the “contact 
interaction,”

It turns out imposing the Adler’s condition also uniquely fixes this 6-pt 
contact interaction:



Susskind and Frye constructed up to 8-pt amplitudes this way, and
conjectured that this can be extended to arbitrary multiplicity “n”.

This is quite striking because they only invoked

• A notion of “flavor ordering,” which arises due to some discrete 
quantum numbers, given by the “unbroken group” H.

• The vanishing “soft limit” in the scattering amplitudes.

In other words, only IR data are used; They made no reference to the 
group “G” in the UV. 
How general is this approach?

The answer is affirmative, but didn’t arrive until much later, when the S-
matrix theory strikes back!



As a motivation for developing the techniques of modern EFT, Weinberg 
asked: (2101.04241)

“…the question naturally arose, is there a way of avoiding the 
machinery of current algebra by just writing down a field theory that 
would automatically produce the same results with much greater ease 
and perhaps physical clarity?”

Similarly, modern S-matrix programmers asked:

“…the question naturally arose, is there a way of avoiding the 
machinery of quantum field theories by just writing down a simple set of 
algorithms that would automatically produce the same results with 
much greater ease and perhaps physical clarity?”

The Rise of Modern S-Matrix Theory



• On-shell Soft Bootstrap

What Susskind and Frye did was the precursor to modern S-matrix 
program of “Soft Bootstrap,”

For NGB’s, all interaction vertices are determined by recursively requiring 
Adler’s zero on tree-level amplitudes.

In particular, the progress is based on the “soft recursion relation” 
proposed by Cheung, Kampf, Novotny and Trnka in 1412.4095 and 
1509.03309.

There’s a parallel algebraic approach seeking to reconstruct the CCWZ 
Lagrangian using only IR data, by recursively imposing the shift
symmetry. (IL: 1412.2145; 1412.2146; IL and Z. Yin: 1804.08629)



Soft recursion -- an all-leg shift in external momenta:

Taking z à 1/ai is equivalent to taking the soft limit of pi. Then

• The integrand vanishes like 1/zn-1 and the residue at infinity vanishes.
• There is no pole at z = 1/ai because of Adler’s zero condition.

• The only poles are at z = 0 and when the internal propagators go on-
shell (ie factorization channel).



Internal propagators go on-shell at

Cauchy’s theorem then gives

P̂I(z) =
X

i2I

pi � z

 
X

i2I

aipi

!

P̂ 2
I (z

±
I ) = 0

=

LHS includes contact term.
RHS includes only 
factorization channel!



A comment on the all-leg-shift:

• Nontrivial solutions for ai don’t always exist.

• For D=4, the number of non-trivial solutions is (n-5), n=number of external 
momenta.

• The general solution is only defined “projectively” and has a “shift 
symmetry”:

A(r) and B are arbitrary constants!



When soft-bootstrapping the amplitudes,

it is a non-trivial check that the outcome is independent of A(r) and B .

We will see that this doesn’t automatically happen. Thus we define a 
consistent EFT in soft bootstrap when



Soft-recursion relation allows one to generalize Susskind and Frye, to all 
orders in the multiplicity “n”.
But the discussion so far has been confined to the leading two-derivative 
operators.

In ChPT and/or a general EFT of NGB’s
• There exist higher derivative operators which become increasingly 

important as the energy becomes higher.

• Each higher derivative operator comes with an uncalculable Wilson 
coefficient, called the low-energy constant in ChPT.

• There also exists topological operators, the Wess-Zumino-Witten 
terms, at higher derivatives.

• There are more complicated “flavor structure,” beyond the single 
trace operator, at higher derivatives.

How does on-shell soft bootstrap incorporate these features?



Introducing “Soft blocks”

For four-derivative or less, one can show the soft blocks exist only for 4-pt 
and 5-pt contact terms. 

• Soft blocks are “seeds“ for soft recursion relations.

• Soft blocks are in 1-to-1 correspondence with the number of 
independent operators at a particular order in the derivative expansion.

• Practically speaking, each soft block represents the lowest order 
interaction vertex from a particular higher-derivative operator.

IL and Z. Yin: 1904.12859



Introducing “Soft blocks”

For four-derivative or less, one can show the soft blocks exist only for 4-pt 
and 5-pt contact terms. 

At O(p2), there are two “flavor-ordered“ 4-pt soft blocks:

Invariant under cyclic 
Permutations of (1234)

Invariant under separate cyclic 
Permutations of (12) and (34)

Single-trace Double-trace

IL and Z. Yin: 1904.12859



At this order in derivative expansion, one can construct two EFT’s using 
these two soft blocks, separately.

At 6-pt amplitudes,

•Invariant under cyclic permutations of (123456).
•Coincides with pions amplitudes worked out by Susskind and Frye.

•At 6-pt this is a “triple-trace” amplitudes.
•Not previously known in amplitudes community.

Single-trace

Multi-trace



Can there be a “mixed” EFT involving both single-trace and double-trace 
soft blocks at O(p2)?

The answer is NO, as the resulting amplitude is dependent on the arbitrary 
coefficient B in the general solutions for ai :

The two EFT’s from single- and double-trace soft blocks are mutually 
exclusive!

Single-trace Double-trace

NGBs in the adjoint of SU(N)  
= SU(N)xSU(N)/SU(N)

NGBs in the fundamental of SO(N)  
= SO(N+1)/SO(N)



4-pt Soft blocks at O(p4):

All four soft blocks appear in ChPT, where the NGB transforms as the 
adjoint of the unbroken SU(N) group:



For the fundamental of SO(N), only two operators exist at O(p4):

O(p2)

O(p4)

These soft blocks generate all  tree-amplitudes from the symmetry 
breaking pattern SO(N+1)/SO(N) up to O(p4).



At O(p4) and n=5, there is only 1 soft block,

Clearly, this corresponds to the “parity-odd” WZW term. It is NOT 
invariant under the shift symmetry. Instead, it varies by a total 
derivative.

A few comments:
• The WZW soft blocks is non-zero only when the number of flavors Nf

>=5, due to Bose symmetry.

• When introducing WZW soft block to SU(N>2) EFT, all amplitudes are 
consistent.

• When introducing WZW soft block to SO(N) EFT, we can’t get a 
sensible solution for the soft-bootstrapped 7-pt amplitude; the 
resulting EFT is inconsistent.

IL and Z. Yin: 1904.12859



However, there is a subtlety for Nf=5 in SO(N) EFT.

In this case three of the 7 external particles must have identical flavors 

à Need to symmetrize the 7-pt amplitude with respect to these three 
particles due to Bose symmetry.

Miraculously, after symmetrization a consistent 7-pt amplitude now 
emerges!

In the end,

• For the adjoin of SU(N), the WZW term exists for Nf > 3.
Since Nf = N2 - 1. à N >= 3.

• For the fundamental of SO(N), the WZW is absent except for Nf = 5. 
Since Nf = N à WZW only for SO(5) fundamental!

IL and Z. Yin: 1904.12859



These results agree completely with those from group-theoretic 
considerations based on the 5th de Rham cohomology group!

Mystery:

How do (Adler’s zero + Bose symmetry) know about the 5th de Rham
cohomology of the G/H coset?

D’Hoker and Weinberg: hep-ph/9409402; 
D’Hoker: hep-th/9502162



Let’s pause and reflect on what we have learned:

Interactions of NGB can be deduced entirely from IR data (Adler’s zero + 
IR quantum numbers), without reference to the broken group G.

An important corollary:

Self-interactions of NGBs with identical IR quantum numbers must be 
universal, independent of the G/H coset.

The universality has important implications for composite Higgs models 
where the Higgs boson arises as a pseudo-NGB. (D. Liu, IL and Z, Yin: 
1805.00489; 1809.09126)



This universality can be checked explicitly:

Going back to the earlier example of a complex NGB charged under the 
U(1) (sub)group of H:

They have identical IR quantum numbers (under U(1) group), and their 
self-interactions should be universal!
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Now let’s apply the on-shell method to counting operators in ChPT:

• As is well-known, construction of independent operators in EFT is 
notoriously difficult, due to the complicated operator relations such 
as integration-by-parts, equation-of-motion and etc.
For example, in ChPT the leading-order E.O.M. is

• Making things worse, there are additional relations imposed by the 
“symmetry” of the coset in ChPT.



• It turns out that these complicated operator relations manifest 
themselves trivially in soft blocks.

a) Integration-by-parts = total momentum conservation

b) Equation-of-motion = on-shell conditions for external momenta
c) Symmetry relations are automatically incorporated in soft-

bootstrap.

In the end, soft blocks are an efficient way to count the number of 
independent operators at each order in the derivative expansion!

Moreover, all tree amplitudes can be generated recursively once the soft 
blocks are obtained.



• We enumerated all soft blocks in ChPT up to O(p10), which correspond 
to pure mesonic operators in ChPT, ie turning off spin-1/2 and spin-1 
fields.

• For simplicity we work in general spacetime dimension D and general 
flavor Nf :

• The outcome agree with existing literature up to O(p8) and makes a 
prediction for O(p10).

Dai, IL, Mehen and Mohapatra: 2009.01819



There are other mysteries waiting to be explored for ChPT.

Ex1: Subleading single-soft theorem:

• In both QED and Gravity, S-matrix elements factorize universally:

• For NGBs, the Adler’s zero condition states:

However, in ChPT only even-point amplitudes exist due to parity. 

What is Mn then ?

lim
⌧!0

Mn+1(p1, · · · , pn; ⌧pn+1) =

✓
1

⌧
+ ⌧0 + · · ·

◆
Mn(p1, · · · , pn)

lim
⌧!0

Mn+1(p1, · · · , pn; ⌧pn+1) = (⌧ + · · · )Mn(p1, · · · , pn)



The subleading single soft limit in ChPT wasn’t computed until a few 
years ago. Using the Cachazo-He-Yuan formulation of scattering 
equations.
Cachazo, Cha and Mizera found, for ChPT, 

Mn =  Scattering amplitudes of an extended theory containing cubic 
biadjoint scalars interacting with the pions! 

The same result can be derived in QFT using Ward identity. (IL and Z. Yin: 
1709.08639 and 1804.08629.)

What are the phenomenological implications of this observation?

Can we observe the extended theory experimentally? 

1604.03893



Ex2: “double-copy” structure in ChPT:

• At the leading O(p2), there’s a “trivial” double-copy:

This is a trivial relation because the Kawai-Lowellen-Tye (KLT) kernel 
is [!3]-1.

• Among the four O(p4) operators, one of them has a non-trivial
double-copy:

Again what’s the implications for ChPT?
IL, L. Rodina, Z. Yin: 2009.00008



Concluding Remarks:

• Interactions of NGB’s can be determined (almost) entirely from the IR 
– using the Adler’s zero condition as the defining property. 

• The nonlinearity in the NGB interactions arises entirely from IR 
physics. What’s being “broken” in the UV is irrelevant, for the most 
part.

• The complete effective Lagrangian for ChPT can be formulated in an 
entirely on-shell perspective, when external sources and fermions are 
neglected.

• What happens when we put back the photon and the nucleon in 
ChPT??


